We study a system of (nonlinear) Schroedinger and Maxwell equation in a bounded domain, with a Dirichelet boundary condition for the wave function ψ and a nonhomogeneous Neumann datum for the electric potential φ. Under a suitable compatibility condition, we establish the existence of infinitely many static solutions ψ = u(x) in equilibrium with a purely electrostatic field E = −∇φ. Due to the Neumann condition, the same electric field is in equilibrium with stationary solutions ψ = u(x)exp(−iωt) of arbitrary frequency ω.

Neumann Condition in the Schroedinger-Maxwell system

PISANI, Lorenzo;SICILIANO G.
2007-01-01

Abstract

We study a system of (nonlinear) Schroedinger and Maxwell equation in a bounded domain, with a Dirichelet boundary condition for the wave function ψ and a nonhomogeneous Neumann datum for the electric potential φ. Under a suitable compatibility condition, we establish the existence of infinitely many static solutions ψ = u(x) in equilibrium with a purely electrostatic field E = −∇φ. Due to the Neumann condition, the same electric field is in equilibrium with stationary solutions ψ = u(x)exp(−iωt) of arbitrary frequency ω.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/11319
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 26
social impact