We study a system of (nonlinear) Schroedinger and Maxwell equation in a bounded domain, with a Dirichelet boundary condition for the wave function ψ and a nonhomogeneous Neumann datum for the electric potential φ. Under a suitable compatibility condition, we establish the existence of infinitely many static solutions ψ = u(x) in equilibrium with a purely electrostatic field E = −∇φ. Due to the Neumann condition, the same electric field is in equilibrium with stationary solutions ψ = u(x)exp(−iωt) of arbitrary frequency ω.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Neumann Condition in the Schroedinger-Maxwell system |
Autori: | |
Data di pubblicazione: | 2007 |
Rivista: | |
Abstract: | We study a system of (nonlinear) Schroedinger and Maxwell equation in a bounded domain, with a Dirichelet boundary condition for the wave function ψ and a nonhomogeneous Neumann datum for the electric potential φ. Under a suitable compatibility condition, we establish the existence of infinitely many static solutions ψ = u(x) in equilibrium with a purely electrostatic field E = −∇φ. Due to the Neumann condition, the same electric field is in equilibrium with stationary solutions ψ = u(x)exp(−iωt) of arbitrary frequency ω. |
Handle: | http://hdl.handle.net/11586/11319 |
Appare nelle tipologie: | 1.1 Articolo in rivista |