Statistical Relational Models are state-of-the-art representation formalisms at the intersection of logical and statistical machine learning. One of the most promising models is Markov Logic (ML) which combines Markov networks (MNs) and first-order logic by attaching weights to first-order formulas and using these as templates for features of MNs. MAP inference in ML is the task of finding the most likely state of a set of output variables given the state of the input variables and this problem is NP-hard. In this paper we present an algorithm for this inference task based on the Iterated Local Search (ILS) and Robust Tabu Search (RoTS) metaheuristics. The algorithm performs a biased sampling of the set of local optima by using RoTS as a local search procedure and repetitively jumping in the search space through a perturbation operator, focusing the search not on the full space of solutions but on a smaller subspace defined by the solutions that are locally optimal for the optimization engine. We show through extensive experiments in real-world domains that it improves over the state-of-the-art algorithm in terms of solution quality and inference time.

Efficient MAP Inference for Statistical Relational Models through Hybrid Metaheuristics

FERILLI, Stefano;ESPOSITO, Floriana
2009-01-01

Abstract

Statistical Relational Models are state-of-the-art representation formalisms at the intersection of logical and statistical machine learning. One of the most promising models is Markov Logic (ML) which combines Markov networks (MNs) and first-order logic by attaching weights to first-order formulas and using these as templates for features of MNs. MAP inference in ML is the task of finding the most likely state of a set of output variables given the state of the input variables and this problem is NP-hard. In this paper we present an algorithm for this inference task based on the Iterated Local Search (ILS) and Robust Tabu Search (RoTS) metaheuristics. The algorithm performs a biased sampling of the set of local optima by using RoTS as a local search procedure and repetitively jumping in the search space through a perturbation operator, focusing the search not on the full space of solutions but on a smaller subspace defined by the solutions that are locally optimal for the optimization engine. We show through extensive experiments in real-world domains that it improves over the state-of-the-art algorithm in terms of solution quality and inference time.
2009
978-3-642-04124-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/113051
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact