An iterative pruning method for second-order recurrent neural networks is presented. Each step consists in eliminating a unit and adjusting the remaining weights so that the network performance does not worsen over the training set. The pruning process involves solving a linear system of equations in the least-squares sense. The algorithm also provides a criterion for choosing the units to be removed, which works well in practice. Initial experimental results demonstrate the effectiveness of the proposed approach over high-order architectures.

Iterative pruning in second order recurrent neural networks

CASTELLANO, GIOVANNA;FANELLI, Anna Maria
1995-01-01

Abstract

An iterative pruning method for second-order recurrent neural networks is presented. Each step consists in eliminating a unit and adjusting the remaining weights so that the network performance does not worsen over the training set. The pruning process involves solving a linear system of equations in the least-squares sense. The algorithm also provides a criterion for choosing the units to be removed, which works well in practice. Initial experimental results demonstrate the effectiveness of the proposed approach over high-order architectures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/112644
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 6
social impact