Let L be a possibly degenerate second order differential operator and let Γη = d^(2−Q) be its fundamental solution at η; here d is a suitable distance. In this paper we study necessary and sufficient conditions for the weak solutions of −Lu ≥ f (ξ, u) ≥ 0 on RN to satisfy the representation formula (R) u(η) ≥ integral RN Γη f (ξ, u) dξ. We prove that (R) holds provided f (ξ, ·) is superlinear, without any as- sumption on the behavior of u at infinity. On the other hand, if u satisfies the condition |u(ξ)|dξ = 0, lim inf − R→∞ R≤d(ξ)≤2R then (R) holds with no growth assumptions on f (ξ, ·).

Representation Formulae and Inequalities for Solutions of a Class of Second Order Partial Differential Equations

D'AMBROSIO, Lorenzo;
2006

Abstract

Let L be a possibly degenerate second order differential operator and let Γη = d^(2−Q) be its fundamental solution at η; here d is a suitable distance. In this paper we study necessary and sufficient conditions for the weak solutions of −Lu ≥ f (ξ, u) ≥ 0 on RN to satisfy the representation formula (R) u(η) ≥ integral RN Γη f (ξ, u) dξ. We prove that (R) holds provided f (ξ, ·) is superlinear, without any as- sumption on the behavior of u at infinity. On the other hand, if u satisfies the condition |u(ξ)|dξ = 0, lim inf − R→∞ R≤d(ξ)≤2R then (R) holds with no growth assumptions on f (ξ, ·).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/106035
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 17
social impact