This paper presents three different learning iterative strategies, in a multi-expert system. In first strategy entire new dataset is used. In second strategy each single classifier selects new samples starting from those on which it performs a misclassification. Finally, the collective behavior of classifiers is studied to select the most profitable samples for knowledge base updating. The experimental results provide a comparison of three approaches under different operating conditions and feedback process. A classifier SVM and four different combination techniques were used by considering the CEDAR (handwritten digit) database. It is shown how results depend by the iterations on the feedback process, as well as by the specific combination decision schema and by data distribution.

Learning Iterative Strategies in Multi-Expert Systems using SVMs for Digit Recognition

IMPEDOVO, DONATO;PIRLO, Giuseppe
2013-01-01

Abstract

This paper presents three different learning iterative strategies, in a multi-expert system. In first strategy entire new dataset is used. In second strategy each single classifier selects new samples starting from those on which it performs a misclassification. Finally, the collective behavior of classifiers is studied to select the most profitable samples for knowledge base updating. The experimental results provide a comparison of three approaches under different operating conditions and feedback process. A classifier SVM and four different combination techniques were used by considering the CEDAR (handwritten digit) database. It is shown how results depend by the iterations on the feedback process, as well as by the specific combination decision schema and by data distribution.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/104064
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact