By using stationary-to-Randers correspondence (SRC, see Caponio et al. in Rev Mat Iberoamericana 27:919–952, 2011), a characterization of light and time-convexity of the boundary of a region of a standard stationary (n+1)-spacetime is obtained, in terms of the convexity of the boundary of a domain in a Finsler n or (n+1)-space of Randers type. The latter convexity is analyzed in depth and, as a consequence, the causal simplicity and the existence of causal geodesics confined in the region and connecting a point to a stationary line are characterized. Applications to asymptotically flat spacetimes include the light-convexity of hypersurfaces Sn−1(r)×R, where Sn−1(r) is a sphere of large radius in a spacelike section of an end, as well as the characterization of their time-convexity with natural physical interpretations. The lens effect of both light rays and freely falling massive particles with a finite lifetime, (i.e., the multiplicity of such connecting curves) is characterized in terms of the focalization of the geodesics in the underlying Randers manifolds.
Convex regions of stationary spacetimes and Randers spaces. Applications to lensing and asymptotic flatness
GERMINARIO, Anna;
2016-01-01
Abstract
By using stationary-to-Randers correspondence (SRC, see Caponio et al. in Rev Mat Iberoamericana 27:919–952, 2011), a characterization of light and time-convexity of the boundary of a region of a standard stationary (n+1)-spacetime is obtained, in terms of the convexity of the boundary of a domain in a Finsler n or (n+1)-space of Randers type. The latter convexity is analyzed in depth and, as a consequence, the causal simplicity and the existence of causal geodesics confined in the region and connecting a point to a stationary line are characterized. Applications to asymptotically flat spacetimes include the light-convexity of hypersurfaces Sn−1(r)×R, where Sn−1(r) is a sphere of large radius in a spacelike section of an end, as well as the characterization of their time-convexity with natural physical interpretations. The lens effect of both light rays and freely falling massive particles with a finite lifetime, (i.e., the multiplicity of such connecting curves) is characterized in terms of the focalization of the geodesics in the underlying Randers manifolds.File | Dimensione | Formato | |
---|---|---|---|
CaponioGerminarioSanchez_CovexRegions_JGEA.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
510.45 kB
Formato
Adobe PDF
|
510.45 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.