Organic field-effect transistors including a functional bio-recognition interlayer, sandwiched between the dielectric and the organic semiconductor layers, have been recently proposed as ultrasensitive label-free biosensors capable to detect target molecule in the low pM concentration range. The morphology and the structure of the stacked bilayer formed by the protein bio-interlayer and the overlying organic semiconductor is here investigated for different protein deposition methods. X-ray scattering techniques and scanning electron microscopy allow to gather key relevant information on the interface structure and to assess target analyte molecules capability to percolate through the semiconducting layer reaching the protein deposit lying underneath. Correlations between the structural and morphological data and the device analytical performances are established allowing to gather relevant details on the sensing mechanism and further improving sensor performances, in particular in terms of sensitivity and selectivity.

Structural and Morphological Study of a Poly(3-hexylthiophene)/Streptavidin Multilayer Structure Serving as Active Layer in Ultra-Sensitive OFET Biosensors

MAGLIULO, MARIA;MANOLI, KYRIAKI;PALAZZO, Gerardo;SCAMARCIO, Gaetano;TORSI, Luisa
2014-01-01

Abstract

Organic field-effect transistors including a functional bio-recognition interlayer, sandwiched between the dielectric and the organic semiconductor layers, have been recently proposed as ultrasensitive label-free biosensors capable to detect target molecule in the low pM concentration range. The morphology and the structure of the stacked bilayer formed by the protein bio-interlayer and the overlying organic semiconductor is here investigated for different protein deposition methods. X-ray scattering techniques and scanning electron microscopy allow to gather key relevant information on the interface structure and to assess target analyte molecules capability to percolate through the semiconducting layer reaching the protein deposit lying underneath. Correlations between the structural and morphological data and the device analytical performances are established allowing to gather relevant details on the sensing mechanism and further improving sensor performances, in particular in terms of sensitivity and selectivity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/103346
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact