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A B S T R A C T

In the last decade, supervised learning methods for the classification of remotely sensed
images (RSI) have grown significantly, especially for hyper-spectral (HS) images. Recently, deep
learning-based approaches have produced encouraging results for the land cover classification
of HS images. In particular, the Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN) have shown good performance. However, these methods suffer for the problem
of the hyperparameter optimization or tuning that requires a high computational cost; moreover,
they are sensitive to the number of observations in the learning phase. In this work we propose
a novel supervised learning algorithm based on the use of copula functions for the classification
of hyperspectral images called CopSCHI (Copula Supervised Classification of Hyperspectral
Images). In particular, we start with a dimensionality reduction technique based on Singular
Value Decomposition (SVD) in order to extract a small number of relevant features that best
preserve the characteristics of the original image. Afterward, we learn the classifier through a
dynamic choice of copulas that allows us to identify the distribution of the different classes
within the dataset. The use of copulas proves to be a good choice due to their ability to
recognize the probability distribution of classes and hence an accurate final classification with
low computational cost can be conducted. The proposed approach was tested on two benchmark
datasets widely used in literature. The experimental results confirm that CopSCHI outperforms
the state-of-the-art methods considered in this paper as competitors.

1. Introduction

In recent years, remote sensing (RS) data has caught a lot of attention. Several space agencies promote satellite mission projects
nd currently, several satellites gravitate around our planet. On board these satellites there are a number of optical sensors capable
f acquiring images with different spatial and spectral resolutions. This type of data, after being properly pre-processed, can be used
or different tasks, from change detection to saliency detection to classification of land cover. Given the amount of data available,
yperspectral image analysis (HS) is a highly researched field in the scientific community. These studies have implications in several
reas, such as, oceanography, smart city, agriculture [1], health, hazard analysis, military services and vegetation monitoring [2,3].
n machine learning theory, the task of classification is approached with supervised learning techniques and in the context of RS
his task is commonly called Land Cover classification. In this direction in the literature, many algorithms have been developed for
his purpose; k-nearest-neighbor [4], random forest (RF) [5] and support vector machines (SVM) [6], represent the most traditional
ethods. Other approaches include, sparse representation (SR), that is an efficient machine-dependent method [7], Markov random
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field (MRF) [8], extreme learning machine (ELM) [9] and recently, in the field of deep learning, there are several techniques for
supervised classification involving neural networks (NN) [10].

An accurate land cover classification by supervised machine learning algorithms requires, during the learning phase, datasets in
hich the pixels have been appropriately labeled with ground truth information, collected through human intervention in situ or

with automated techniques. Despite the availability of RS images, this type of information is still limited, especially for HS images.
This process requires a lot of effort in terms of time and work, whereas many areas of planet earth are inaccessible and therefore
makes it impossible to collect labeled data [11]. Additional methods for supervised classification have been studied based on the
combination of spatial and spectral feature extraction techniques [12]. Given an HS image, any spectral vector is referred to as
spectral feature, while, spatial feature denotes the spatial relationship between any pixel and its neighbor. In particular, selecting
the relevant spectral/spatial features is fundamental to significantly improve the algorithm performance [13]. Several algorithm
for features extraction have been developed for the classification of HS images [10,14–16]. An additional consideration in the HS
classification is the curse of dimensionality. The accuracy of classifiers is affected by the size of the initial data during the learning
phase, which also increases the computational cost. It thus becomes useful to reduce the dimensionality of the dataset, in order
to obtain a smaller number of features that keep the more representative information of the considered image. In this context,
many methodologies present in the literature, recommend the use of data reduction techniques before the learning phase, such as,
Principal Component Analysis (PCA) [17], randomized principal component analysis (R-PCA) [18], Singular Value Decomposition
(SVD) [19], Independent Component Analysis (ICA) [20], and Linear Discriminant Analysis, (LDA). In [21] the authors propose
a reduction of dimensionality based on the non negative matrix factorization (SSNMF) and the extracted features are used for the
unsupervised classification of salient objects in HS images. The same strategy is employed in [22] by using the Autoencoder NN. This
type of technique is widely used even when the task is the unsupervised classification, indeed, the addition of spatial information
becomes crucial for a better grouping of pixels. In [23] a deep belief network (DBN) that combines (PCA), hierarchical learning-based
feature extraction, and logistic regression is employed for unsupervised feature learning classification. In the last decade, in parallel
with the well-known machine learning techniques applied in the field of classification, there has been a significant increase in
the development of deep learning techniques, through several neural network architectures (NN) [24,25], especially Convolutional
Neural Networks (CNN) and Recurrent Neural Network (RNN), that are two of the most common models used to analyze spatial and
spectral information. Several studies exist in literature, for instance, an HS image classification framework based on stacked denoise
autoencoder (SDAE) is proposed in [26]. A simple but effective CNN architecture containing five layers with weights for supervised
HS image classification has been applied in [27], another classification method that hierarchically constructs high level features
in an automated way is presented in [18]. Moreover in [28], a technique where, the whole dataset and an advanced architecture
with CNN, is presented. Another widely used model of ANN is the RNN that is adopted especially in the classification of data in
which temporal information is present, i.e. multi-temporal HS images. This technique can be used in the presence of multi-temporal
images. An application for time series satellite images classification using both, RNN and LSTM is presented in [29] and in [30].
In [31], CNN and RNN have also been used in combination: a RNN is recruited to model the dependencies between the features
then a CNN is used to learn more discriminative features for HS data classification. The techniques based on deep learning have
reached high levels of accuracy in supervised classification. However, some problems still remain open. Among these, the numbers
of hyperparameters to tune for the neural network, and the high computational cost needed during the learning stage. [11]. For
this reason, in this paper we propose a fully statistical approach for the HS image classification, that combines a Bayesian decision
theory and copula functions. Copula functions are suitable tools in statistics for modeling multiple dependence, more in detail, they
are able to link the marginal distributions of different variables in order to give a flexible and accurate description of the joint law
of the variables of interest [32–34]. Copulas have been studied in many works by the scientific community ranging from finance
and economics to hydrology and environmental science [35–38]. However, in the field of RS, and in particular for the classification
task, few works that employ copulas have been proposed [39–41]. In this paper, we provide a new contribution for the HS images
classification based on a designed algorithm that allows a dynamical choice of the suitable copula after a pre-processing stage in
which feature extraction is performed by a matrix factorization. We use different copula functions belonging to two main families,
Elliptical and Archimedean. The important step, concerning the choice of the probability density (pdf) of marginals for the estimation
of copulas is done via kernel density estimation (KDE) [42]. The classifier is learned by fitting the multivariate distribution of the
pre-processed image with Gaussian, t-Student, Clayton, Gumbel and Frank copulas, than, it is used to improve the prediction of
the test set. Preliminary results of the proposed algorithm are presented in [43]. Here the proposed method has been tested on
single hyperspectral images acquired by the ROSIS and AVIRIS sensors. Experimental results confirm that the use of copulas for
the classification achieves equal or better accuracy in comparison with other modern methods here considered. An extension of
this algorithm for time series based on the use of Bernstein copulas has been used in [44] for the classification of High-Resolution
Satellite Image Time Series (SITS).

The rest of the paper is structured as follows; Section 2 introduces the mathematical theoretical tools used for HS classification,
Section 3 describes the algorithm CopSCHI, Section 4 provides the details of the experiments, the results and some discussions about
them. In particular, the experiments described show the effectiveness of the proposed methodology and compare its performance
with various recent competitors. Finally, Section 5 summarizes the conclusions.

2. Mathematical foundations

2.1. Copulas

In statistical theory, copulas are the mechanism which allows to isolate the dependency structure in a multivariate distri-

bution [32]. In particular, we can build any multivariate distribution by specifying the marginal distributions and the copula,
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separately. Although the copula functions have been used to model linear and nonlinear dependencies, they have been seldom used
in computer science applications where nonlinear dependencies are common and need to be represented [45,46]. The complete
treatment of the copulas was made in [32,33,47], here, we briefly recall only the fundamental concepts:

Definition 2.1. A copula 𝐶 is a joint distribution function of standard uniform random variables. That is,

𝐶(𝑢1,… , 𝑢𝑑 ) = 𝑃 (𝑈1 ≤ 𝑢1,… , 𝑈𝑑 ≤ 𝑢𝑑 ),

here 𝑈𝑖 ∼ 𝑈 (0, 1) for 𝑖 = 1,… , 𝑑.

The following theorem constitutes the fundamental result in the context of copulas. This is known as the Sklar’s theorem, and
ives the relationship between a joint distribution and the relative cumulative function of copula.

heorem 2.2 (Sklar’s Theorem). Let 𝐹 be a 𝑑-dimensional distribution function with marginals 𝐹1, 𝐹2,… , 𝐹𝑑 , then there exists a copula 𝐶
uch that for all 𝑥 in R

𝑑
with components (𝑥1,… , 𝑥𝑑 ),

𝐹 (𝑥1, 𝑥2,… , 𝑥𝑑 ) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2),… , 𝐹𝑑 (𝑥𝑑 )),

where R denotes the extended real line [−∞,∞]. If 𝐹1(𝑥1), 𝐹2(𝑥2),… , 𝐹𝑑 (𝑥𝑑 ) are all continuous, then 𝐶 is unique. Moreover 𝐶 is uniquely
etermined on 𝑟𝑎𝑛𝑔𝑒(𝐹1) × 𝑟𝑎𝑛𝑔𝑒(𝐹2) ×⋯ × 𝑟𝑎𝑛𝑔𝑒(𝐹𝑑 ).

According to Definition 2.1 and Theorem 2.2, any joint distribution function 𝐹 with continuous marginals 𝐹1, 𝐹2,… , 𝐹𝑑 has
associated a unique copula function 𝐶. Furthermore, the corresponding copula 𝐶 is a function of the marginal distributions
𝐹1, 𝐹2,… , 𝐹𝑑 . A very useful result of Theorem 2.2 is that the 𝑑-dimensional joint density 𝑓 and the marginal densities 𝑓1, 𝑓2,… , 𝑓𝑑
are also related:

𝑓 (𝑥1,… , 𝑥𝑑 ) = 𝑐(𝐹1(𝑥1),… , 𝐹𝑑 (𝑥𝑑 )) ×
𝑑
∏

𝑖=1
𝑓𝑖(𝑥𝑖), (1)

where 𝑐 is the density of the copula 𝐶. Eq. (1) shows that the product of marginal densities and a copula density builds a 𝑑-
dimensional joint density. Notice that the dependence structure is given by the copula function and the marginal densities can be
of different distributions. This differs from the classical method to build multivariate distributions, where the main limitation is the
assumption that the marginals should be generally of the same type. The flexibility of copula functions consists in the possibility
to differentiate the marginal distribution from the probability joint structure. In this work we use the two main copula’s families,
Elliptical and Archimedean families and among them we employ the Gaussian, t-Student, Gumbel, Clayton and Frank copulas [34].

2.2. The probabilistic classifier based on copula function

In this section we introduce the classifier using copulas, following the strategy in [40]. Differently from the methodology used
in [40], in our approach we do not investigate a single copula but dynamically choose the best one from a set of copulas. We
recall that if 𝐹 is an absolutely continuous multivariate distribution function with marginals 𝐹1,… , 𝐹𝑑 , than the join pdf 𝑓 can be
expressed by

𝑓 (𝑥1,… , 𝑥𝑑 ;𝜱,𝜳 ) = 𝑐(𝐹1(𝑥1, 𝜙1),… , 𝐹𝑑 (𝑥𝑑 , 𝜙𝑑 );𝜳 ) ×
𝑑
∏

𝑘=1
𝑓𝑘(𝑥𝑘;𝜙𝑘) (2)

where 𝑐(𝑢1,… , 𝑢𝑑 ) = 𝜕𝑑𝐶(𝑢1 ,…,𝑢𝑑 )
𝜕𝑢1…𝜕𝑢𝑑

represents the density of the copula 𝐶(𝑢1,… , 𝑢𝑑 ) and 𝑓𝑘 denotes the pdf of 𝐹𝑘, 𝑘 = 1,… , 𝑑,
Φ = {𝜙𝑘|𝑘 = 1,… , 𝑑} represents the parameters of the marginals, Ψ are the parameters with respect to the copula (which may
be a unique parameter or multiple parameters depending on the selected copula). Let 𝛺 = {𝜔1,… , 𝜔𝑚} be a finite set of 𝑚 classes
and suppose we want to assign to each 𝑥 from the space R𝑑 a class from 𝛺. By using the Bayesian decision theory [48], 𝑥 can be
assigned to the class 𝜔𝑖 if:

𝑔𝑖(𝑥) > 𝑔𝑗 (𝑥) for all 𝑗 ≠ 𝑖

where, for all 𝑖 𝑔𝑖 ∶ [0,∞)𝑑 → R are called discriminant functions that are defined by

𝑔𝑖(𝑥) = 𝐏(𝜔𝑖|𝑥) =
𝑓 (𝑥|𝜔𝑖)𝐏(𝜔𝑖)

∑𝑚
𝑗=1 𝑓 (𝑥|𝜔𝑗 )𝐏(𝜔𝑗 )

(3)

where 𝑓 ∶ R𝑑 → [0,∞) is a likelihood function and 𝐏(𝜔𝑖), 𝑖 = 1,… , 𝑚 are the prior distributions of the classes from 𝛺.
Using (2), the likelihood 𝑓 (𝑥|𝜔𝑖) can be written as:

𝑓 (𝑥1,… , 𝑥𝑑 ;𝜱,𝜳 |𝜔𝑖) =

𝑐(𝐹1(𝑥1;𝜙1|𝜔𝑖),… , 𝐹𝑑 (𝑥𝑑 ;𝜙𝑑 |𝜔𝑖);𝜳 |𝜔𝑖) ×
𝑑
∏

𝑓𝑘(𝑥𝑘;𝜙𝑘|𝜔𝑖).
(4)
𝑘=1
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and then the discriminant function (3) for every 𝑖 becomes,

𝑔𝑖(𝑥) = 𝐏(𝜔𝑖|𝑥)

=

(

𝑐
(

𝐹1(𝑥1;𝜙1|𝜔𝑖),… , 𝐹𝑑 (𝑥𝑑 ;𝜙𝑑 |𝜔𝑖);𝜳 |𝜔𝑖
)
∏𝑑

𝑘=1 𝑓𝑘(𝑥𝑘;𝜙𝑘|𝜔𝑖)
)

𝐏(𝜔𝑖)

∑𝑚
𝑗=1

(

𝑐
(

𝐹1(𝑥1;𝜙1|𝜔𝑗 ),… , 𝐹𝑑 (𝑥𝑑 ;𝜙𝑑 |𝜔𝑗 );𝜳 |𝜔𝑖
)
∏𝑑

𝑘=1 𝑓𝑘(𝑥𝑘;𝜙𝑘|𝜔𝑗 )
)

𝐏(𝜔𝑗 )
.

(5)

The equation above depends on the conditional copula density, the conditional marginal densities and the prior probability of the
class.

2.3. Fitting copula

To estimate the conditional copula density parameters within Eq. (5), the well-known methods of copula theory can be used.
These methods are generally divided into parametric and non-parametric ones. In the first case, assuming that there are some
evidences that the marginals belong to known distributions, we can estimate the parameters Φ = {𝜙𝑘|𝑘 = 1,… , 𝑑} and Ψ by
maximum likelihood estimation (MLE), i.e. the maximization of the likelihood function:

log((Φ,Ψ))

=
𝑁
∑

𝑖=1
log

(

𝑐(𝐹1(𝑥𝑖,1;𝜙1),… , 𝐹𝑑 (𝑥𝑖,𝑑 ;𝜙𝑑 ),Ψ)

)

+

( 𝑁
∑

𝑖=1

𝑑
∑

𝑗=1
log 𝑓𝑗 (𝑥𝑖,𝑗 ;𝜙𝑗 )

)

.
(6)

A computationally advantageous technique for maximizing (6), called inference for marginals (IFM) was developed in [34]. This
method is an estimation approach for a multivariate (non-normal) response with co-variates when each of the parameters (either a
uni-variate or a dependence parameter) of the model can be associated with a marginal distribution [34,47]. The approach consists
of estimating uni-variate parameters from separately maximizing uni-variate likelihoods, and then estimating copula dependence
parameters from separate bi-variate likelihoods or from a multivariate likelihood. More specifically, the log-likelihoods in the
second part of Eq. (6) of the 𝑑 univariate marginals are separately maximized to get estimates of Φ = {𝜙𝑘|𝑘 = 1,… , 𝑑} and the first
part of Eq. (6) is maximized to get the estimate of Ψ.

In many real-world situations, it is not easy to specify marginal distributions, especially when the problem being analyzed
involves large data. In this context, the non-parametric approach allows this problem to be addressed. This method leads to
estimating only the copula parameter using pseudo-observations, i.e. the empirical cumulative distribution function 𝐹𝑗 , 𝑗 = 1… 𝑑
of the marginals [49]. Moreover, also the marginals pdf 𝑓𝑗 , 𝑗 = 1… 𝑑 in (6) can be estimated non parametrically. In this work we
adopted the useful Kernel Density Estimation (KDE) [42]. In more detail, let 𝑥1, 𝑥2,… , 𝑥𝑘, be 𝑘 samples drawn from an unknown
distribution. Then for any value 𝑥 the formula for KDE is:

𝑓 (𝑥;ℎ) = 1
𝑘ℎ

𝑘
∑

𝑖=1
𝐾

(𝑥 − 𝑥𝑖
ℎ

)

,

where 𝐾(.) is the Gaussian kernel 𝐾(𝑥) = 1
√

2𝜋
𝑒𝑥𝑝

(

− 𝑥2

2

)

and ℎ is the bandwidth which controls the smoothness of the resulting
density curve. Among the techniques suggested in [42] to estimation ℎ, we have chosen the Improved Sheather Jones (ISJ) algorithm,
as in the analysis of HS images, the sample dimension is big and far from being normal. The Improved Sheather-Jones algorithm is
a plug-in selector. The mean integrated square error (MISE) is given by

𝑀𝐼𝑆𝐸(ℎ) = E∫
(

𝑓 (𝑥;ℎ) − 𝑓 (𝑥)
)2𝑑𝑥.

The ISJ algorithm attempts to find ℎ to minimize the asymptotic mean integrated square error (AMISE), which depends on the
unknown quantity ‖𝑓 ′′(𝑥)2‖. Using a recursive formula, this is accomplished by computing a sequence of estimates [50].

Once the empirical distribution functions 𝐹𝑗 and 𝑓𝑗 have been calculated, Eq. (6) can be written as:

log((Φ,Ψ))

=
𝑁
∑

𝑖=1
log

(

𝑐(𝐹1(𝑥𝑖,1),… , 𝐹𝑑 (𝑥𝑖,𝑑 ),Ψ)

)

+

( 𝑁
∑

𝑖=1

𝑑
∑

𝑗=1
log 𝑓𝑗 (𝑥𝑖,𝑗 )

)

.
(7)

In Eq. (7) the only parameter to be estimated is Ψ.

Ψ̂ = argmax
Ψ

(Ψ) = argmax
Ψ

𝑁
∑

𝑖=1
log

(

𝑐(𝐹1(𝑥𝑖,1),… , 𝐹𝑑 (𝑥𝑖,𝑑 ),Ψ)

)

. (8)

This procedure is called maximum pseudo-likelihood estimation (MPLE) since the pseudo-observations are considered and it is proven

to be computationally more advantageous than the parametric method [49].
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2.4. Singular value decomposition

In general, remote sensing imagery consists of large arrays. The analysis of these matrices, in the task of classification, requires a
arge storage space and a very high computational cost; furthermore, the use of copulas is more efficient for analysis and inference of
ata of small size. Low-rank matrix dimensionality reduction process represents a branch of unsupervised mathematical techniques,
evoted to either to extract or create a low-dimensional structure which preserves the most important information [51–53]. The SVD
s one of the most powerful tools for decompose a matrix. It has several advantage: it always exists for any matrix, is numerically
table, is data-driven and can be used in different domains where the data can be reorganized in the form of a matrix.

Let 𝑋 ∈ R𝑛×𝑑 denote an 𝑛× 𝑑 matrix of real-valued data with rank 𝑟, where without loss of generality 𝑛 ≥ 𝑑, and therefore 𝑟 ≤ 𝑛.
The singular value decomposition is given by:

𝑋 = 𝑈𝐷𝑉 𝑇 (9)

where 𝑈 is an orthogonal matrix of dimension 𝑛 × 𝑛, 𝐷 is a rectangular matrix of dimension 𝑛 × 𝑑, and 𝑉 𝑇 is a orthogonal square
matrix of dimension 𝑑 × 𝑑 [53]. When 𝑛 is greater than 𝑑, the matrix 𝐷 may be written as:

𝐷 =
[

𝛴
0

]

, with 𝛴 = 𝑑𝑖𝑎𝑔(𝜎1,… , 𝜎𝑑 ).

The elements on the diagonal of 𝛴 are non-negative and arranged in non-increasing order.
The truncated form of SVD is used to represent 𝑋, that is:

𝑋 = 𝑈𝐷𝑉 𝑇 =
[

𝑈𝑑 𝑈𝑑
⟂]

[

𝛴
0

]

𝑉 𝑇 = 𝑈𝑑𝛴𝑉 𝑇 . (10)

The matrix 𝑈𝑑 contains the first 𝑑 principal columns of 𝑈 . The matrix 𝑈𝑑
⟂ contains the columns that generates an orthogonal vector

space complementary to the one generated by 𝑈𝑑 . The diagonal elements of the matrix 𝛴, 𝜎1,… , 𝜎𝑑 are called singular values, instead
the columns of 𝑈 and 𝑉 are called left and right singular vectors, respectively [53]. The number of non-zero singular values is the
rank of 𝑋. The SVD low-rank approximation of 𝑋 is obtained considering the principal 𝑟 singular values, moreover the Schmidt’s
approximation theorem [54] states that the optimal rank-𝑟 approximation to 𝑋, in a least squares sense, is given by the rank-𝑟 SVD
truncation 𝑈𝑟𝛴𝑟𝑉𝑟𝑇 , that corresponds to a sum of rank-1 matrices:

argmin
�̃� s.t. 𝑟𝑎𝑛𝑘(�̃�)=𝑟

‖𝑋 − �̃�‖𝑝 = 𝑈𝑟𝛴𝑟𝑉𝑟
𝑇 =

𝑟
∑

𝑖=1
𝜎𝑖𝑢𝑖𝑣

𝑇
𝑖 .

Here, 𝛴𝑟 contains the principal 𝑟× 𝑟 sub-block of 𝛴; ‖ ⋅ ‖𝑝 is either the 2-norm or the Frobenius norm. and 𝑢𝑖, 𝑣𝑖 are the columns
of the matrices 𝑈, 𝑉 .

The low rank matrix factorization strategy described above allows us to build a low-dimension approximation of the images in
terms of most significant spectral features.

3. Classification algorithm CopSCHI

In this paper we develop a new method for the classification called CopSCHI (Copula Supervised Classification of Hyperspectral
Images).

As known in machine learning theory, the problem of classification consists in learning some unknown function that maps an
input 𝑥 (which could be a vector) into an output 𝑦 where 𝑦 ∈ {1,… , 𝐶}, with 𝐶 being the number of classes. This function is estimated
on the basis of labeled training data consisting of a set of training examples. The classification algorithm analyzes training data and
generates a deducted function, which can be used to make predictions on novel inputs, meaning ones that we have not seen before.
Therefore, in the classification task, the first fundamental step is to decide what type of data should be used as a training set. Thus,
a set of input objects is collected and the corresponding outputs are also collected, both by human experts and by measurements.

In our case the aim is to classify images that come from satellite hyperspectral sensors. One way to formalize the problem is to
denote with  the HS image,  can be seen as a tensor of dimension 𝑛×𝑚× 𝑑 where, 𝑛 and 𝑚 identify the position of the pixels and
𝑑 represents the number of spectral signatures. The image (tensor)  can be reorganized in a matrix 𝐼 of dimension 𝑝 × 𝑑 where
𝑝 = 𝑛 × 𝑚. Often for this type of images there is no information of ground truth (labels) for each pixel, therefore it is necessary to
select as training set only that subset of pixels for which we have information.

The algorithm CopSCHI we propose consists in the following phases:

Dimensionality reduction phase:
1. Application of the truncated SVD algorithm (10) to reduce the dimensionality of the training set, previously reorganized as

a matrix 𝑋, by selecting an appropriate number of singular values 𝑟. Deciding how many singular values to keep, i.e. where
to truncate, is one of the most important and contentious decisions when using the SVD [53].
There are many factors, including specifications on the desired rank of the system, the magnitude of noise, and the distribution

of the singular values. It is a common praxis to truncate the SVD at a rank 𝑟 that captures a pre-determined amount of the
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variance or energy in the original data, such as 90% or 99% truncation. The amount of overall variance explained by the i-th
pair of SVD vectors is given by:

𝑅2
𝑖 =

𝜎2𝑖
∑

𝑗 𝜎
2
𝑗

.

This can also be computed as the ratio of the Frobenius norm of the rank-1 reconstructions to the norm of the original data
matrix:

𝑅2
𝑖 =

‖𝜎𝑖𝑢𝑖𝑣𝑇𝑖 ‖
2
𝐹

‖𝑋‖

2
𝐹

=
𝜎2𝑖

∑

𝑗 𝜎
2
𝑗

,

where 𝑢𝑖 and 𝑣𝑖 are i-th columns of 𝑈 and 𝑉 correspondingly. It is also possible to use the ratio of the 2-norm of rank-1
reconstruction to the 2-norm of the original data matrix:

𝐸𝑖 =
‖𝜎𝑖+1𝑢𝑖+1𝑣𝑇𝑖+1‖2

‖𝑋‖2
=

𝜎𝑖+1
𝜎1

.

We observe that 𝐸𝑖 = ‖𝑋 −𝑈𝑖𝛴𝑖𝑉 𝑇
𝑖 ‖2∕‖𝑋‖2, 𝑖 = 1, 𝑛 is the relative error in the approximation of the original matrix using the

2-norm, so it gives information about the quality of the approximation. The rank one matrices with 𝑅2
𝑖 or 𝐸𝑖 larger than a

threshold 𝜏 are kept, while the remaining matrices are truncated.
Once 𝑟 has been chosen, we get the reduced image of the training set 𝐼𝑟 = 𝑈𝑟𝛴𝑟.

Learning phase:
2. The pixels of the training dataset are grouped by class using the representation given by 𝐼𝑟 and the labels vector. For each

class the marginals are evaluated empirically and subsequently, for each class the copula is automatically fitted to the data
dynamically choosing among Gaussian, Frank, Gumbel and Clayton copulas belonging to Elliptical and Archimedean families.
To estimate the copula and find its parameter, the log-likelihood function (8) and the MPLE procedure have been adopted
as described in Section 2.3. The best copula representing the class is selected based on the minimum value of the Akaike
Information Criterion (AIC). For the maximization of the log-likelihood we use a numerical method, called Limited-Memory
BFGS (L-BFGS or LM-BFGS) that is an optimization algorithm in the family of quasi-Newton methods that approximates the
Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) using a limited amount of computer memory. It is a popular algorithm
for parameter estimation in machine learning [55,56]. The advantage of L-BFGS is that it requires a smaller number of
gradients instead of 𝑛(𝑛+1)

2 elements needed to store the whole (triangle) of a Hessian estimate, as is required with BFGS,
where 𝑛 is the size of the problem. Unlike BFGS, the Hessian estimation is never explicitly formed or stored in L-BFGS,
rather, the calculations that would be necessary with the Hessian estimation are done without explicitly forming it. L-BFGS
is used instead of BFGS when 𝑛 is very large.

Predicting phase:
3. In this phase, we select data (reorganized in the matrix 𝐼) for which we have no information to predict the class learned by

the copula classifier CopSCHI.
Since we have applied dimensionality reduction in the training phase, for the observation represented by 𝑡 (a row of the
matrix 𝐼) we evaluate the projection 𝑦 = 𝑡𝑉 𝑇

𝑟 , that is a vector of dimension 1× 𝑟. Then, taking into account the density of the
copula 𝑐 previously fitted in the learning phase on the training set, for each of the 𝑚 classes the discriminant functions 𝑔𝑖(𝑦),
𝑖 = 1…𝑚, are calculated on 𝑦 by using (5) in order to obtain the probabilities given the observation that it belongs to the
specific class. Finally, we get a prediction vector that assigns the pixel to the class for which it has the greatest probability
calculated with the discriminant function.

n the next section we describe the experiments conducted and the details for the initialization of the CopSCHI algorithm.

. Experiments

In order to demonstrate the effectiveness of our algorithm we will consider two datasets that consist both in a single HS
emote sensing scene and we will compare the results with benchmark machine learning algorithms and advanced classification
echniques based on neural networks architectures. More in detail, we will consider, Random Forest (RF) [5], Support Vector
achine (SVM) [57], Long Short Time Memory (LSTM) [58] and Convolutional Neural Network (CNN) [27]. The first two methods

ave been chosen because they still represent a fast and stable approach for classification analysis, therefore are widely used for
ulti-class land cover classification and with high-dimensional data. In addition, to demonstrate the validity of the use of copulas

n the classification task, we also take into consideration deep learning algorithms which, over the past decade, have been used to a
reater extent for RS images classification. In the literature different NN architectures has been developed, especially by employing
NN that are suitable for the classification of images. A complete comparison with all these architectures of NN is beyond the scope
f this work, for this reason in this paper we consider, as competitors, only two techniques that involve the CNN and LSTM. The
ccuracy performance is evaluated in term of Overall Accuracy (OA), F1-score and K measure [29,59,60]. The use of K measure
s justified by the fact that this index is widely used especially in the presence of classifications in which the number of labeled
bservations within the classes are unbalanced. The presentation of the results is organized as follows: description of the Dataset,

xperimental settings and Numerical results.
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Fig. 1. RGB Composite of Pavia University (left) and Ground Truth of Pavia University with different colors for each category(right). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. RGB Composite of Salinas (left) and Ground Truth of Salinas with different colors for each category(right). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

4.1. Dataset

We have considered two Hyperspectral remote sensing scenes widely used for testing algorithms.1 The first dataset is called the
Pavia University dataset. It is an urban site over the University of Pavia, Italy. The dataset was captured by the reflective optics
system imaging spectrometer (ROSIS-3). The size of the image is 610 × 340 with 1.3 m spatial resolution. The image has 103
pectral bands prior to water-band removal. It has a spectral coverage of 0.43 − 0.86 μm. A false composite image (R-G-B = band
0-27-46) and the corresponding ground truth are shown in Fig. 1. The second dataset is called Salinas. This scene was collected
y the 224-band AVIRIS sensor over Salinas Valley, California, and is characterized by high spatial resolution (3.7-meter pixels).
he area covered comprises 512 lines by 217 samples. We discarded the 20 water absorption bands, in this case bands: (108–112),
154–167), 224. This image was available only as at-sensor radiance data. It includes vegetables, bare soils, and vineyard fields.
alinas ground truth contains 16 classes, Fig. 2.

1 http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes.
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Table 1
Quantitative per class analysis, F1-score the Pavia University dataset.

Method 1-Asphalt 2-Meadows 3-Gravel 4-Trees 5-Painted
metal sheets

6-Bare Soil 7-Bitumen 8-Self Blocking
Bricks

9-Shadows

RF 90.18% 91.63% 57.21% 90.58% 99.87% 62.67% 71.41% 81.25% 99.64%
SVM 98.01% 96.12% 68.21% 72.88% 96.87% 61.29% 54.11% 83.91% 99.96%
LSTM 95.17% 95.44% 67.12% 75.98% 98.09% 63.73% 68.14% 80.37% 99.91%
CNN 93.02% 95.10% 71.47% 77.02% 98.66% 64.31% 70.29% 85.04% 100.00%
CopSCHI 94.33% 96.18% 81.71% 90.10% 99.63% 90.60% 91.10% 88.14% 100.00%

Table 2
Quantitative per class analysis, F1-score the Salinas dataset.

Method 1-Brocoli
green weeds
1

2-Brocoli
green
weeds 2

3-Fallow 4-Fallow
rough
plow

5-Fallow
smooth

6-Stubblet 7-Celery 8-Grapes
untrained

9-Soil
vinyard
develop

RF 99.50% 99.64% 97.27% 99.28% 98.38% 99.92% 99.67% 82.16% 99.36%
SVM 97.18% 99.06% 84.98% 98.36% 94.89% 99.69% 98.78% 76.51% 99.32%
LSTM 95.38% 99.09% 88.97% 97.41% 98.77% 99.14% 99.01% 77.41% 98.16%
CNN 99.11% 99.07% 96.78% 96.99% 98.04% 99.90% 99.69% 84.79% 99.10%
CopSCHI 99.75% 99.73% 98.11% 99.64% 97.95% 99.92% 99.72% 83.74% 99.16%

Method 10-Corn
senesced
green weeds

11-Lettuce
romaine
4wk

12-Lettuce
romaine
5wk

13-Lettuce
romaine
6wk

14-Lettuce
romaine
7wk

15-Vinyard
untrained

16-Vinyard
vertical
trellis

RF 95.70% 95.56% 97.8% 97.47% 96.51% 63.45% 99.17%
SVM 82.03% 70.42% 93.03% 92.70% 90.28% 57.67% 95.39%
LSTM 86.19% 82.34% 88.92% 90.72% 85.07% 58.24% 94.10%
CNN 87.05% 83.18% 96.91% 94.88% 90.16% 60.47% 97.91%
CopSCHI 94.34% 98.75% 99.22% 99.27% 97.18% 75.92% 99.26%

4.2. Experimental settings

CopSCHI is written in Python 3.7. Experiments are launched using an Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz and 16 GB
AM running Microsoft Windows 8.1 (64 bits).

For our analysis, as preliminary phase for our algorithm described in Section 3, the dataset has been split into 𝑘% of training
set, the rest (100 − 𝑘)% of the dataset has been used in the predicting phase as testing set. The training set has been standardized,
so that the mean of observed values is 0 and the standard deviation is 1. The choice of splitting size percentage 𝑘 can vary, first

e have selected 𝑘 = 50. The training set has been used as input for our algorithm, and for the initialization of the SVD we have
elected a number of components 𝑟 = 20 for Pavia University and 𝑟 = 22 for Salinas. This choice of 𝑟 is made by considering the
mount of overall variance explained, setting an high value of variance, 0.995% for Pavia dataset and 0.99% for Salinas dataset, as
xplained in Section 3. It is worth noting that we have split the dataset only in a training and test set without taking into account
validation set. This because, in the experiments carried out in this work we do not use a validation set but obviously this can be
efined in the preliminary phase in order to tune the parameters.

In the learning phase, we select for each copula a random initial parameter and we employ the optimization algorithm L-BFGS in
rder to find the best parameter. When the choice of copula is enabled, the best is selected with respect to the minimum value of AIC
therwise when only one copula is chosen then the best parameter is selected according to the maximum log-likelihood function.
or the competitors, we have implemented RF by adopting the default parameter set-up reported in the documentation.2 For SVM,
e have performed a cross validation3 in order to estimate the parameter and we have selected as kernel the radial basis function

RBF). For the experiments conducted by using NN architectures, LSTM and CNN we have used the same parameters described
n [16] using the Python TensorFlow library.4

.3. Numerical results

To evaluate the performance of the CopSCHI algorithm, we considered a test set together with the vector of the observed labels.
e have compared the predicted vectors of labels, obtained with our approach, with the other classifiers chosen as competitors.

he quantitative analysis was performed by using the metrics cited in Section 4. Tables 1 and 2, depict the average results in terms
f F1-score reached by the competitors classifiers and the best result obtained with CopSCHI setting the configuration in which we
hoose different copula functions amongst the two families, Euclidean and Archimedean.

Even if it is always not easy to compare different algorithms, the results show that the proposed classifier outperforms the
hosen competitors. In particular, for Pavia University dataset, we can observe that, considering the main competing approaches

2 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html.
3 https://scikit-learn.org/stable/auto_examples/model_selection/plot_grid_search_digits.html.
4 https://www.tensorflow.org/.
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Table 3
Percentage in term of F1-score for each classes in Pavia University dataset with CopSCHI with different copulas and one copulas. Best copula functions estimated
for each class (column 4), respective AIC value (column 5) and F1-score (column 3). Results with only Gaussian copula in term of F1-score (column 6) and
relative AIC (column 8).

Class Support F1-score Different copulas AIC F1-score Gaussian copula AIC

Asphalt 1989.00 94.91% Gaussian −36 650 94.91% Gaussian −79 279
Meadows 5595.00 96.46% Gaussian −79 279 96.46% Gaussian −79 279
Gravel 630.00 81.74% Clayton −14 827 79.34% Gaussian −13 827
Trees 919.00 91.95% Clayton −13 550 88.74% Gaussian −2382
Painted metal sheets 403.00 100.00% Gumbel −9091 98.54% Gaussian −1827
Bare Soil 1509.00 90.38% Gaussian −21 970 90.38% Gaussian −21 970
Bitumen 399.00 91.73% Gaussian −8909 91.73% Gaussian −8909
Self-Blocking Bricks 1105.00 88.28% Gaussian −18 712 88.28% Gaussian −18 712
Shadows 284.00 100.00% Frank −5652 100.00% Gaussian −15 652

Table 4
Percentage in term of F1-score for each classes in Salinas University dataset with CopSCHI with different copulas and one copulas. Best copula functions estimated
for each class (column 4), respective AIC value (column 5) and F1-score (column 3). Results with only Gaussian copula in term of F1-score (column 6) and
relative AIC (column 8).

Class Support F1-score Different copulas AIC F1-score Gaussian copula AIC

Brocoli green weeds 1 603.00 99.75% Gaussian −24 830.0 99.75% Gaussian −24 830.0
Brocoli green weeds 2 1118.00 99.73% Gaussian −36 940.3 99.73% Gaussian −36 940.3
Fallow 593.00 98.11% Frank −28 620.2 96.11% Gaussian −23 109.2
Fallow rough plow 418.00 99.64% Clayton −23 125.0 98.64% Gaussian −21 436.0
Fallow smooth 803.00 97.95% Gaussian −35 144.4 97.95% Gaussian −35 144.4
Stubblet 1188.00 99.92% Gaussian −39 599.1 99.92% Gaussian −39 599.1
Celery 1074.00 99.72% Gaussian −48 125.9 99.72% Gaussian −48 125.9
Grapes untrained 3381.00 83.74% Gaussian −78 175.1 83.74% Gaussian −78 175.1
Soil vinyard develop 1861.00 99.16% Gaussian −65 467.3 99.16% Gaussian −65 467.3
Corn senesced green weeds 983.00 94.34% Gumbel −27 943.2 93.77% Gaussian −24 693.2
Lettuce romaine 4wk 320.00 98.75% Gumbel −12 236.0 97.82% Gaussian −11 561.8
Lettuce romaine 5wk 578.00 99.22% Gumbel −21 045.1 98.89% Gaussian −13 086.0
Lettuce romaine 6wk 275.00 99.27% Gaussian −9507.7 99.27% Gaussian −9507.7
Lettuce romaine 7wk 321.00 97.18% Frank −8685.3 95.04% Gaussian −6742.3
Vinyard untrained 2181.00 75.92% Gaussian −55 565.6 75.92% Gaussian −55 565.6
Vinyard vertical trellis 542.00 99.26% Gaussian −25 753.7 99.26% Gaussian −25 753.7

our framework supplies the best classification results on seven over nine land cover classes. These classes are: 2-Meadows, 3-Gravel,
5-Painted metal sheets, 6-Bare Soil, 7- Bitumen, 8- Self Blocking Bricks and 9-Shadows. For Salinas our methodology achieves the
best result on thirteen over sixteen land cover classes. This classes are: 1-Broccoli green weeds1, 3- Fallow, 4-Fallow rough plow,
7-Celery, 8-Grapes untrained, 10-Corn senesced green weeds, 11-Lettuce romaine 4wk, 12-Lettuce romaine 5wk, 13-Lettuce romaine
6wk, 14-Lettuce romaine 7wk, 15-Vineyard untrained and 16-Vineyard vertical trellis.

In Tables 3, 4 are reported the results obtained by launching the algorithm first, with the automatic copula selection and then
omparing them with a configuration in which only the Gaussian copula is considered.

Looking at the results in terms of AIC and F1-score it can be observed how the choice of copulas improves the result of class
lassification, this justifies the use of this tool which allows to have different copulas able to model multivariate distributions.
e want to address the fact that in this work, only five copula functions have been considered and that many others exist in the

iterature [47]. We also noticed that the choice of the t-Student copula greatly slowed down the execution of the algorithm and
herefore we decided to exclude it from the choice also considering the fact that the results obtained did not change. Finally we
bserve, without reporting the results, that in addition to testing the single Gaussian copula we also tested all the others types
ndividually. The results obtained in terms of accuracy decrease, this is justified by the fact that in general, when the size of the
ataset is very big, the Gaussian copula is a better fit to the data [32]. In fact, in the two datasets taken into consideration, looking
t the column relating to the different copulas only four out of nine classes for the Pavia dataset are fitted with Archimedean
opulas, while for Salinas only six out of sixteen. In addition to show the robustness of the proposed approach, for all the algorithms
onsidered we have performed a Stratified K-Fold Cross-Validation5 with 𝑘 = 5. The average results in terms of Accuracy, F1-score

and K measure are reported in Tables 5 and 6 and we can observe that CopSCHI still outperforms all the competing methods.
Moreover, it has the smallest variance in all the considered measures. We observe also that the variance of the K measure is really

small, thus showing that it is not so sensible to this parameter, that is considered the best one when the classes are not balanced. It
is worth noting that, using different percentage of the split of the data, the accuracy of the different classifier may vary, as simpler
or more difficult examples are involved in the training or test set. For this reason, in Figs. 3 and 4, in order to confirm the stability
of our method, we report the results, in terms of Accuracy, F1-score and K measure [59], by varying the percentage of the training
dataset.

5 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html#sklearn.model_selection.StratifiedKFold.
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Table 5
Comparison analysis for the classification of Pavia University dataset performing a K-fold Cross Validation with 𝑘 = 5.

RF SVM LSTM CNN CopSCHI

Accuracy 88.25% ± 0.25% 82.77% ± 1.33% 84.37% ± 1.83% 84.12% ± 2.46% 92.93% ± 0.49%
F1-score 87.12% ± 1.48% 81.89% ± 1.06% 84.01% ± 2.58% 83.36% ± 1.67% 92.94% ± 0.28%
K 83.07% ± 0.59% 76.54% ± 1.32% 77.82% ± 2.43% 80.12% ± 2.08% 90.65% ± 0.25%

Table 6
Comparison analysis for the classification of Salinas University dataset performing a K-fold Cross Validation with 𝑘 = 5.

RF SVM LSTM CNN CopSCHI

Accuracy 87.90% ± 1.24% 84.07% ± 1.39% 84.48% ± 2.41% 86.03% ± 1.84% 92.87% ± 0.42%
F1-score 87.45% ± 0.35% 83.87% ± 1.68% 84.64% ± 0.94% 85.38% ± 2.47% 92.58% ± 0.17%
K 83.53% ± 0.84% 77.01% ± 1.47% 81.99% ± 2.09% 84.74% ± 3.45% 91.41% ± 0.19%

Fig. 3. Accuracy Measures, of CopSCHI, in term of OA, F1 Score and K for Pavia University by different percentages of training set.

Fig. 4. Accuracy Measures, of CopSCHI, in term of OA, F1 Score, K for Salinas by different percentages of training set.

In particular the experiment has been conducted with a percentage of 20%, 30%, 40%, 50% and 60%, respectively. As can be
seen in the barplots, for Pavia University the average, above the different percentages of the training set, is 92.81% ± 0.05% for the
Accuracy, 92.84% ± 0.06% for F1-score and 90.54% ± 0.12% for K. Instead, for Salinas dataset, we have an average of 92.23% ± 0.15%
for the Accuracy, 92.46% ± 0.05% for F1-score and 91.36% ± 0.18% for K measure. These results suggest to conclude that, even with
low percentage of data for the training set, for both considered datasets, CopSCHI supplies high accuracy without high variance by
varying the size of learning data. To conclude the analysis, in Figs. 5 and 6 we provide a qualitative investigation considering land
cover maps produced by our approach versus those produced by two of four competitor methods. In summary, the qualitative
analysis of the land cover maps produced for the Pavia University and Salinas study dataset confirms the quantitative results
discussed in the Tables 1 and 2.

By making a careful visual analysis of the land cover maps of the various classifiers, it can be seen that CopSCHI provides the
one that is very close to the ground truth. In fact, looking at Fig. 5(b) and (c) and comparing the maps with the ground truth in
Fig. 5(a) it can be seen how the central part, corresponding to the bare soil class, appears non-uniform, with the presence of noise
and therefore with pixels that are not correctly classified.

This type of noise is greatly reduced in the resulting land cover map produced by our method Fig. 5(d). Furthermore,
regarding Fig. 6(b) and (c), it can be seen the red and green salt and pepper effect that represents misclassified pixel within the
classes. This effect is less visible on the classification map Fig. 6(d) produced by our algorithm, confirming the quantitative results
of CopSCHI.

In this direction, we want to highlight that, no post-processing stage was carried out downstream of the classification algorithm
to eliminate that type of errors. Obviously such a correction could further improve the quantitative results reported in the previous

Tables by CopSCHI.
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Fig. 5. Qualitative investigation of Land Cover Map produced on the Pavia University study site: (a) Ground Truth, (b) RF, (c) SVM, and (d) CopSCHI.

Fig. 6. Qualitative investigation of Land Cover Map produced on the Salinas study site: (a) Ground Truth, (b) RF, (c) SVM, and (d) CopSCHI. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

. Conclusion

In this paper we presented a new supervised learning framework consisting of two procedures combined, reduction of
imensionality through factorization of matrices and classification through the use of copula functions belonging to different families,
n particular the family of Elliptic copulas and the family of Archimedean copulas. The choice of using copulas was guided by the
act that this tool is able to model the joint probability of random variables which, as often happens in real life, do not follow
Normal distribution. Once the factorization of the matrix through SVD has been applied and the number of singular value has

een appropriately chosen, we obtain a representation of the HS image in a low dimension. Then in the learning phase, for each
lass of the reduced image, a fitting stage above different copula functions has been applied in order to choose the best probability
epresentation of the class. This was possible thanks to an algorithm that automatically chooses the copula on the basis of the best
IC value. Experiments were also performed using a single copula, but it could be seen that the dynamic choice increased the
ccuracy of the classification. The proposed method achieved excellent results on two reference datasets, the Pavia University and
alinas data set, with an overall accuracy of 93,56%, 92,58% respectively. The main advantage of our framework is that it can be
eneralized to other remote sensing systems problems due to its robust design and the possibility to parallelize the entire process
o obtain a final classification with a reduced computational cost. An important consideration is that the performance remains high
espite varying the number of samples being trained. It is worth noting that, in the literature, various neural network architectures
ave been studied in the application of HS images classification with the dataset considered in this paper. The accuracy reached by
his approaches is around 99% [61,62]. However, for all these methodologies some problems still remain open, first, the phase of
raining neural networks which requires large amounts of computational time, and second, these networks must be trained differently
or each dataset to achieve high accuracy. The advantage of using our approach lies in the fact that it can be applied indiscriminately
o any type of HS images, and it is less sensitive to the size of training set in the learning phase, this allows to obtain a high level of
ccuracy in a relatively short time. However, it has been observed that the performance in terms of OA is sensitive to the parameter
hosen during the empirical estimation of the marginals. Moreover, in this work we use only five copula functions in order to fit the
robability distribution of the classes in the learning stage. As future direction, a possible extension could be the automatic choice
11
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of parameters during the marginal estimation phase, in this context it could also be useful to use other techniques to fit the marginal
distributions, like the techniques based on Spline Hermite quasi-interpolation presented in [63]. Another possible extension could
be to insert additional copula functions to those used in this work.
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