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A B S T R A C T

We study the relationship between climate change and financial systemic risk. First, we test whether, to what
extent and how quickly the systemic risk of US banking and insurance sectors reacts to billion-dollar weather
and climate disasters. We prove that some extreme events can exacerbate financial systemic risk and provide
insights about the different timing at which the reaction of the systemic risk measures takes place. Second,
we investigate through quantile regressions how the performance of green and brown market indexes affects
the systemic risk of the two US financial sectors. We observe that higher levels of the green indexes reduce
systemic risk more than a raise in brown indexes, with an increasing magnitude in tail conditions. A raise in
the riskiness of the green indexes seems to significantly increase systemic risk, with the effect being stronger
than that of an increase in the riskiness of brown indexes. Our results confirm the importance of the adoption
of appropriate policies aiming at contrasting the raise in the frequency and severity of climate disasters. Our
findings are also important in the perspective of the likely increase (decrease) in the exposure of financial
firms towards green (brown) companies, induced by the policy decisions taken to combat climate change, and
in terms of the implications for banks’ and insurers’ risk management models and procedures.
1. Introduction

After Mark Carney’s famous speech ‘‘Breaking the Tragedy of the
Horizon’’ (Carney, 2015), addressing the threats that climate change
poses to financial markets and institutions has become one of the
top priorities in the agenda of financial regulators and supervisors,
despite the difficulties of integrating climate related risk analysis into
financial stability monitoring and prudential supervision (Bolton et al.,
2020). Climate change gives rise to risks that are generally classi-
fied as physical risks — i.e., those referring to the damages caused
by natural catastrophic events to physical assets, natural capital and
human lives; and transition risks — i.e., those associated with the
economic and financial losses stemming from the re-evaluation of
carbon-intensive and low-carbon assets, caused by the transition to
a low-emission economy (Monasterolo, 2020; Battiston et al., 2021).
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According to the Financial Stability Board (2020), even if the cur-
rent estimates of the impact of physical risks on asset prices seem to
be relatively contained, it may be subject to considerable tail risk,
and their manifestation could lead to a significant fall in asset prices
and growing uncertainty. Transition risks materialize when the green
transition occurs in a disorderly and unpredicted way, following for
example technological shocks inducing a rapid decrease (increase) in
the costs (performance) of renewable energy production, or policy and
regulatory shocks, like the sudden introduction of a carbon tax or
of measures affecting banks’ capital requirements (High-Level Expert
Group on Sustainable Finance, European Commission, 2018; Network
for Greening the Financial System, 2019).

It has been widely recognized that physical and transition risks
are intertwined and represent a major source of systemic risk when
they cause losses to financial intermediaries, disruption in financial
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markets functioning, and sudden increases in the volatility of large asset
classes, with knock-on effects for the real economy (Monasterolo et al.,
2017; Alogoskoufis et al., 2021; Brunetti et al., 2021). The interconnect-
edness across financial markets and institutions might easily amplify
the effects of climate related risks through second-round/indirect eq-
uity losses and self-reinforcing feedback loops (Battiston et al., 2017;
Stolbova et al., 2018; Financial Stability Board, 2020). Adopting a
systemic perspective is therefore necessary when studying the way how
climate related issues interact with the financial system. The analysis
of the effects on financial systemic risk of climate change and of the
policies adopted to face it is a relatively new research field and previous
research generally uses a financial network approach to tackle these
issues (see, among others Battiston et al., 2017; Roncoroni et al., 2019;
Barucca et al., 2020). Prior studies have scantly examined the impact
that climate change driven extreme weather events might have on
financial systemic risk, mostly neglecting when and how fast this may
occur. Scholars have also devoted few efforts to study the relationship
between financial systemic risk and how green and brown companies
perform.

Compared to this literature, we follow a more direct and straightfor-
ward approach and develop an empirical analysis where: first, through
the Wilcoxon signed rank sum test, we investigate whether, to what
extent and how quickly the systemic risk of US banking and insurance
sectors reacts to billion-dollar weather and climate disasters; second,
by using quantile regressions, we study the relationship between the
systemic risk of US banks and insurers and the performance of green
and brown market indexes, as measured through their levels and two
risk measures — i.e., the Value at Risk (𝑉 𝑎𝑅) and the Expected Shortfall
𝐸𝑆). The two parts of our empirical investigation are strictly intercon-
ected since they are both linked with the adoption of climate policies,
hich are intended to contrast the rise in the frequency and severity of
xtreme weather events, on the one hand, and are expected to change
he degree of greenness (brownness) of financial firms’ asset portfolios,
n the other hand. Our findings are valuable in both perspectives.

We estimate the systemic risk of US banks and insurers through
wo consolidated market-based systemic risk measures (SRMs), namely
he delta conditional Value at Risk (𝛥𝐶𝑜𝑉 𝑎𝑅) developed by Adrian
nd Brunnermeier (2016) and the marginal expected shortfall (𝑀𝐸𝑆)
f Acharya et al. (2017). The decision to use these SRMs is in line with
he Basel Committee on Banking Supervision’s claim (2021), according
o which frameworks to systematically translate climate change impacts
nto standard financial risks are not in place and standard financial
isk metrics must be enhanced to account for co-movements among
inancial institutions, given the interconnectedness within the financial
ystem. Since market-based SRMs are among the best suited measures
o take the interconnectedness into account (Cai et al., 2018), our
pproach addresses these issues.

Our empirical analysis takes a backward-looking approach and is
ased on past events, both climate disasters and historical time series
f brown and green firms’ equity performance. This means that our
indings might not be confirmed by future investigations since the way
he transition policies will be designed and implemented might sig-
ificantly change the frequency and severity of climate-related events
nd green/brown companies’ performance. Nevertheless, we believe to
rovide some new and interesting insights, useful in the perspective
f policy makers, financial regulators and supervisors and financial
ntermediaries, all involved in the efforts to contrast and manage
limate-related risks.

To the best of our knowledge, prior literature has never investi-
ated financial system reaction, as measured by consolidated systemic
isk metrics, to climate disasters, especially in terms of the speed at
hich this reaction occurs. We first prove that the size and nature of

limate events are not necessarily a relevant factor in determining a
ignificant impact on financial systemic risk. 88% of the events that can
ignificantly increase SRMs have a cost between 1 and 10 USD billion,
2

hich is a small value if compared with the damages that some of these
disasters have caused in the recent past. As far as the speed of the
reaction is concerned, we show that financial systemic risk sensitivity
exhibits a certain delay since SRMs mainly rise after the climate event
terminates.

Relative to prior studies, this research also provides some new
evidence as concerns the study of the relationship between green
and brown firms’ performance and systemic risk of the banking and
insurance sectors. Overall, the sensitivity of SRMs of both sectors is
more pronounced in the tails of the green/brown indexes distributions,
which confirms the need of climate policies that can ensure an orderly
and easily predictable transition to a green economy. Since we find
that higher 𝑉 𝑎𝑅𝑠 and 𝐸𝑆𝑠 of green indexes seem to increase SRMs
more than brown indexes, we show that the riskiness of green firms,
if not adequately managed, might have an even worse impact on
the financial system, if compared with brown firms. Finally, we also
highlight that banks are overall more exposed than insurers to green
companies’ performance. This calls for further efforts by academic re-
search, policy makers, financial supervisors and institutions to explain
the peculiarities underlying the relationship between different finan-
cial intermediaries and their green counterparties and to consistently
design and implement effective climate policies and risk management
practices.

The evidence of a significant relation between some extreme weather
events and financial systemic risk confirms the importance of the
adoption of appropriate policies aiming at contrasting the raise in the
occurrence probability and magnitude of such catastrophes and high-
lights the necessity to effectively embed the risk stemming from these
events into the risk management practices of financial intermediaries
and into the practices of financial supervisors. By highlighting how
differently the performance of green and brown companies, as reflected
by the performance of the respective market indexes, affects financial
systemic risk, our results contribute to the current policy debate about
the actions to take to effectively contrast climate change, and to the
related previous literature, which mainly focuses on the reduction
in the value of brown companies’ stranded assets. Our findings are
important in the perspective of the likely increase (decrease) in the
exposure of financial firms towards green (brown) companies, induced
by the policy decisions that will be taken to combat climate change, and
in terms of the implications for banks’ and insurers’ risk management
models and procedures. The way how financial intermediaries manage
risk and financial supervisors exert their function should account for
the different contribution of green and brown companies’ riskiness to
systemic risk.

The remainder of the paper is organized as follows. In Section 2 we
describe how climate change issues are linked to financial systemic risk,
discuss our reference literature, the differences of the approach we use
and the contribution we can provide. Section 3 outlines the systemic
risk models focusing on the estimation of 𝛥𝐶𝑜𝑉 𝑎𝑅 and 𝑀𝐸𝑆, the
main hypotheses and the methodologies we use to test them. Section 4
describes the data used for the empirical analysis. Results are examined
in Section 5. Section 6 provides concluding remarks and discusses some
policy implications.

2. Climate change and financial systemic risk: a literature review

The rise in the frequency and severity of extreme weather events
hitting non-financial firms negatively affects the stability of banks and
insurers in a direct way, which is to a major extent linked to the
specific business these financial companies run. Insurers are directly
affected because they provide guarantees to cover losses on physical
assets and property. The shock caused by a climate-induced disaster can
be passed from them on to banks and other financial firms through: (i)
an exposure effect, triggered if the latter are creditors or counterparties
to the insurance companies; (ii) an asset liquidation effect, according
to which insurers might be forced to sell assets at fire-sale prices to

pay huge claims, causing a price fall which might negatively affect
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banks’ and other financial firms’ asset portfolio value. Even the banking
sector is directly exposed to physical risks as they undermine borrow-
ers’ ability to repay and reduce the value of damaged assets, which
affects banks’ capacity to fully recover the value of the loan in case
of default, if the assets are used as collateral. Extreme weather events
may also lead to liquidity strains by inducing banks’ counterparties to
withdraw deposits and draw on credit lines. The transmission of the
shock from banks to insurers and other financial institutions follows
the exposure and asset liquidation effects described above (Gros et al.,
2016). Nevertheless, banks and insurance companies are exposed to
the impact of climate change on non-financial firms even because they
invest in securities issued by these latter, whose value might be affected
both by climate induced disasters and climate policies. In other words,
if we still focus on the risk transmission mechanism starting from their
counterparties and leading to them, banks and insurers are exposed to
climate change and to climate policies because they hold, directly or
indirectly (e.g., through investment funds), financial contracts, mainly
shares/stocks and bonds issued by firms whose performance is affected
both by extreme weather events and by the way how climate policies
are designed and implemented. Being able to drive their performance,
extreme weather events and climate policies can change the value of
those financial contracts, thus affecting the value of banks’ and insurers’
assets.

Studying how financial companies react to climate change is diffi-
cult because climate risks and their impact are difficult to assess (Battis-
ton et al., 2021). By moving from Taleb (2007)’s ‘‘black swan’’, Bolton
et al. (2020) warn that climate change could lead to ‘‘green swan’’
events and be the cause of a systemic crisis. Green swans share some
features with black swans, namely non-linearity, fat tailed distributions
and uncertainty, that cannot be effectively captured and modelled
by traditional pricing and risk management approaches (Balint et al.,
2017; Monasterolo et al., 2019). The complexity of climate change
events is even of a higher order because of the chain reactions, cas-
cade effects and feedback loops that might generate unpredictable
social, economic, and financial dynamics (Battiston et al., 2016; Gros
et al., 2016; Bolton et al., 2020; Battiston et al., 2021). From a policy
perspective, the absence of well-established knowledge about their
effects on real economy and financial markets and institutions makes
the design of green public policies quite a challenging task. This has
called for the development of forward-looking methods, grounded in
scenario-based analyses, to capture the systemic risk emerging from the
interaction between climate change and financial system (Monasterolo
et al., 2017; Morana and Sbrana, 2019; Bolton et al., 2020; Financial
Stability Board, 2020; Monasterolo, 2020). Research has tried to ac-
count for the nature of climate risks and their interplay with financial
risks. Works in this area use stock-flow consistent (SFC) and agent-
based models to explore macroeconomic and financial consequences
of climate risk. Studies combine climate scenarios with financial risk
metrics and methods proposed by academics (Battiston et al., 2017)
and apply modelling approaches based on complexity economics and
network models (Battiston et al., 2012, 2016) to specifically assess how
financial interconnectedness contributes to systemic risk.

Dafermos et al. (2017) develop a stock-flow-fund ecological macroe-
conomic model to investigate the trajectories of key environmental,
macroeconomic and financial variables under different assumptions
about the sensitivity of economic activity to the leverage ratio of firms
and different types of green finance policies. They highlight that envi-
ronmental changes cause economic damages that are reinforced as the
contractionary effects of a higher leverage ratio become stronger. Green
finance policies turn out to have beneficial effects on environmental
variables and firms’ financial fragility, which are even boosted when
the expansion of green credit occurs together with the conventional
credit restriction. Bovari et al. (2018) adopt an integrated ecological
macroeconomic model that combines global warming and private over-
indebtedness. They show that short-term results of climate change
3

on economic fundamentals may lead to severe consequences for the
economy in case of a too rapid application of climate policies; in
the long run, negative effects might be due to the lack of proactive
climate policies. Monasterolo and Raberto (2018) develop an SFC
model rooted on a balance sheet approach, through which they show
that green public policies can promote green growth by influencing
firms’ expectations and the credit market. Lamperti et al. (2019) adopt
an agent-based climate-macroeconomic model and argue that climate
change will increase the frequency of banking crises. An additional
fiscal burden of approximately 5%–15% of gross domestic product per
year and an increase of the ratio of public debt to gross domestic
product by a factor of 2 will be required to rescue insolvent banks.
Macroprudential regulation can attenuate bailout costs only modestly.

Since the global financial crisis, scholars have been developing
financial network models to assess the role of financial interconnect-
edness and complexity on the emergence of systemic risk (Battiston
et al., 2012; Castrén and Rancan, 2014). Due to their ability to capture
loss amplification mechanisms, central banks and financial supervisors
use network models in stress test exercises (Monasterolo, 2020). In the
perspective of the integration of climate risks, Battiston et al. (2017)
apply financial valuation in network models to analyse investors’ expo-
sure to equity holdings issued by some economic activities defined as
climate-policy relevant sectors (CPRS), such as fossil fuels, utilities and
energy-intensive sectors. Based on the DebtRank algorithm (Battiston
et al., 2012), the authors develop a climate-stress test of the financial
system in which they assess not only the first-round effects, but also
the indirect losses caused by the devaluation of counterparties’ debt
obligations on the interbank market (second-round effects). Their re-
sults confirm that EU and US financial firms are largely exposed to
financial contracts whose issuers belong to CPRS and that network
effects — i.e., mutual exposures of financial intermediaries; might
amplify potential losses.

Stolbova et al. (2018) develop a methodology based on multi-layer
financial-real economy networks, through which they study the direct
and indirect chains of contracts at the basis of the chains of financial
exposures across multiple financial instruments. They account for the
amplification of climate policy shocks, with the transmission channel
given by the changes in the valuation of equity and debt securities
conditional upon a shock on the asset side of the security issuer. Based
on the findings referred to a dataset of financial exposures between the
institutional sectors in the Euro Area, even a small shock on the banking
system could create a great amplification in the banks-households chain
and the consequent large gains (losses) for the banks would positively
(negatively) affect the real economy. Battiston et al. (2019)’s CLIMAFIN
provides a science-based approach to climate scenarios adjusted finan-
cial pricing models and risk metrics, which is built on the definition
of a risk-adverse investor information set, risk management strategy
and portfolio of risky financial contracts and securities. To define a
climate spread — i.e., the change in the spread of a corporate or
sovereign bond conditional to a given climate policy shock scenario;
and a climate VaR — i.e., the ‘‘worst-case loss’’ under future climate
shock scenarios, given a certain confidence level; CLIMAFIN adopts
a valuation model to price equity risk and credit risk conditioned to
forward-looking climate transition risk. The approach was applied to
the analysis of development banks’ project loans, conditional to climate
related risk scenarios (Monasterolo and Stefano, 2016; Monasterolo and
Raberto, 2018), and to provide a forward-looking climate transition risk
assessment of the sovereign bond portfolios of insurance companies in
Europe (Battiston et al., 2019).

Dietz et al. (2016) use a standard integrated assessment model
and the ‘‘climate VaR’’ framework. Assuming that climate change can
reduce the dividend payments of firms and the price of financial assets,
they provide various estimates about the climate-induced loss in the
value of financial assets, finding that the expected ‘‘climate VaR’’ of
global financial assets is 1.8% along a business-as-usual emissions
path. In examining the physical effects of climate change on financial

stability, the study by Dafermos et al. (2018) moves beyond Dietz
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et al. (2016)’s analysis. Within their SFC-based approach, the authors
consider the balance sheets and the financial flows in the financial
sector, thus being able to model the climate-induced fragility of firms’
and banks’ financial structures. By using a multiple financial asset
portfolio choice framework and accounting for a non-neutral impact
of the financial system on the economic activity, they capture the
implications of a fire sale of certain financial assets and consider the
interactions between economic performance and financial (in)stability.
According to the results obtained by calibrating the model using global
data and running simulations for the years 2016–2120, in a business-as-
usual scenario climate change is likely to negatively affect the default
of firms, the leverage of banks and the price of financial assets. The
paper also shows that climate-induced financial instability reinforces
the adverse effects of climate change on economic activity and that
the implementation of a green corporate quantitative easing program
can reduce climate-induced financial instability and restrict global
warming.

Another stream of literature deals with the link between climate
change and financial system by looking at how financial markets react
to climate announcements. The financial system has started to consider
climate issues only in recent times, particularly after the 2015 Paris
Agreement, and the scant existing research has not reached conclu-
sive evidence. Two papers specifically examine the consequences of
Trump’s presidential election and the nomination of the climate skep-
tic Scott Pruitt to head the Environmental Protection Agency (EPA):
according to Ramelli et al. (2018), investors rewarded companies in
high-emissions industries, at least in the short run; Wagner et al.
(2018) find that investors rewarded companies demonstrating more
responsible climate strategies. Mukanjari and Sterner (2018) study the
stock market reaction to the 2015 Paris Agreement announcement and
the presidential election of Donald Trump, without finding a different
effect on the financial performance of fossil energy firms. Monasterolo
and De Angelis (2020) test if financial EU, US and global stock markets
priced the Paris Agreement by decreasing (increasing) the systematic
risk and increasing (decreasing) the portfolio weights of low-carbon
(carbon-intensive) indexes afterwards. Their results show that overall
systematic risk for the low-carbon indexes decreased consistently, while
stock markets’ reaction was mild for most carbon-intensive indexes,
suggesting that investors started to consider low-carbon assets as an
attractive opportunity after the Paris Agreement, with no penalization
for carbon-intensive assets though.

Relative to prior literature, we take a different approach and rest
interested in a different target variable, since this research examines
the relationship between climate change and financial system by specif-
ically focusing on this latter’s stability, as measured by market-based
SRMs. Therefore, our analysis is also valuable for the research dealing
with financial systemic risk, as we verify whether and how climate
change related issues can affect this risk. We focus on two different
aspects of climate change, by looking at the effects of extreme weather
events and by detecting whether and how the performance of green and
brown companies influences banks’ and insurers’ systemic risk. The two
issues we are interested in both depend on the adoption of policies to
combat climate change, which are intended to contrast the rise in the
frequency and severity of extreme weather events, on the one hand, and
are expected to increase (decrease) the degree of greenness of banks’
and insurers’ asset portfolios, on the other hand.

The approach we use in our empirical analysis shares to some extent
the logic of a stress test exercise, since we look at how market-based
SRMs of US banks and insurers react in ‘‘stressed situations’’, namely
when a climate disaster happens and when the performance of green
and brown companies is observed under tail conditions. Nevertheless,
unlike what we do in our investigation, to stress test portfolios of
financial institutions against forward-looking climate risks, previous lit-
erature discussed above has developed approaches based on complexity
economics and network science. Relative to traditional economic and
4

financial risk models, these approaches enable to capture some key
characteristics of the climate-finance relationship: feedback loops that
could cause amplification effects, and cascade effects; non-linearities
and tipping points, after which a system changes its core characteristics
and is no more able to go back to the original status; the possibility
that a measure introduced with a specific goal could have completely
different yet long-standing effects on the system (Monasterolo, 2020).
Further, such methods can be used to conduct a climate stress test of the
banking system based on microeconomic data at the level of individual
banks (Battiston et al., 2017).

Under the network-based approach, systemic risk is quantified and
measured by analysing the evolution of the nodes and the structure
of the network, where the nodes are the financial institutions and the
links connecting them are the financial contracts, such as equity, bonds
and loans. Assessing financial risk through network models benefits
from their ability to consider the potentially relevant impact of indirect
exposures on losses, diversification of risk across counterparties and
external assets, and interconnectedness. By accounting for imperfect
information and incomplete risk markets, network models allow to
understand how externalities affect financial contracts and contribute
to create and boost systemic risk. Finally, network models can estimate
the feedback effects between the financial system and the real economy
and grant a more comprehensive explanation of the macroeconomic
aggregate phenomena.

Our method neither allows to analyse the exposures of banks and
insurers to sectors of the economy that can be considered relevant
in a climate policy perspective, nor makes it feasible to examine the
exposures among banks and insurers themselves, across several types of
financial instruments. We are not able to analyse how, once transferred
on to the financial system, climate risk spreads through the different
financial actors. We miss the second-round effects of climate-related
shocks, both caused by physical risks and transition policy measures,
and directly look at the market-based measures of systemic risk. Nev-
ertheless, we believe that the methodology we adopt, which has the
advantages to be straightforward, grounded on consolidated metrics,
namely the 𝛥𝐶𝑜𝑉 𝑎𝑅 and 𝑀𝐸𝑆, fed by objective market-based data,
and very easy to replicate, is well suited to address the specific issues
we want to tackle: first, whether, how and at which speed financial
systemic risk is sensitive to physical risks; second, how the market
reacts to brown and green companies’ equity performance.

In their stress testing exercises and scenario analyses aimed at
assessing the resilience of financial institutions, supervisory authorities
make recourse to hypothetical climate scenarios covering both transi-
tion and physical risk, as well as short-term and long-term perspectives.
Even if these scenarios must be considered hypothetical and do not
necessarily represent the most likely future outcomes, by accounting for
a range of possible future climate pathways, as well as the associated
economic and financial developments, their analysis can help to under-
stand how climate-related financial risks may materialize. In this sense,
supervisors’ approaches are forward looking by nature. Nevertheless,
running such exercises is not an easy task: in comparing climate stress
testing with traditional solvency stress tests, Baudino and Svoronos
(2021) find that the main issues are those referred to data availability,
capturing financial risks over long horizons, modelling physical risk
and developing models that can convert climate scenarios into financial
variables. Further, the likelihood of the realization of a given climate
scenario pathway is uncertain and depends on the ability of countries
to introduce coordinated climate policies and on the rational reaction
of socioeconomic agents in terms of their consumption and production
behaviour (Monasterolo, 2020).

In this regard, our method does not rely on hypotheses concerning
the evolution of climate factors. We study the impact on financial
systemic risk of climate events actually occurred and of the historical
market performance of green and brown companies. In this paper we
do not need to identify future scenarios about the evolution of climate
change-related factors, in terms neither of physical (e.g., global tem-

perature rise) nor institutional (e.g., carbon tax) shocks. Our analysis
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accounts for the fact that, even if the timescale of climate change
impacts is two decades or more, investors might base their decisions
on a much shorter time horizon and on a market backward-looking
benchmark that is estimated on past companies’ performance (Monas-
terolo, 2020). Even if we acknowledge that the past does not necessarily
represent a good guide for the future, looking at what has already
happened can give us some useful insights on what can happen and
how policy makers and financial institutions and supervisors can act
to better combat the climate change and more effectively manage the
transition to a low carbon economy.

3. Methodology

In Section 3.1, we present the methodology used to estimate sys-
temic risk of the US banking and insurance sectors. We use the 𝛥𝐶𝑜𝑉 𝑎𝑅,
as proposed by Adrian and Brunnermeier (2016), and the 𝑀𝐸𝑆 by
Acharya et al. (2017). As discussed in Section 3.2, we perform a formal
test to investigate whether, to what extent and how quickly these
market-based SRMs incorporate the information deriving from a sample
of climate-induced catastrophes observed in the US from December
12, 2015 to July 30, 2022. In Section 3.3, we describe the quantile
regression method through which we investigate the impact of the
performance of green and brown market indexes on the stability of the
US banks and insurers during the same period.

3.1. Measuring financial systemic risk

Adrian and Brunnermeier (2016) introduced the 𝛥𝐶𝑜𝑉 𝑎𝑅 as a mea-
sure for market-based systemic risk, which hinges on the most common
risk measure used by financial institutions, namely the 𝑉 𝑎𝑅.1 This
latter focuses on the risk of an individual institution in isolation, which
does not necessarily represent its contribution to the overall systemic
risk. To emphasize the systemic nature of this risk measure, Adrian
and Brunnermeier (2016) added the prefix ‘‘Co’’, which stands for
‘‘conditional’’.

We estimate 𝛥𝐶𝑜𝑉 𝑎𝑅𝑖 of the US banking and insurance sector (𝑖)
as the difference between the 𝐶𝑜𝑉 𝑎𝑅 of sector 𝑖 conditioned on the
distress of the financial system and its 𝐶𝑜𝑉 𝑎𝑅 conditioned on the
median state. We denote the 𝑞%-VaR quantile by 𝑉 𝑎𝑅𝑞,𝑀𝑎𝑟𝑘𝑒𝑡:

𝑃𝑟(𝑋𝑀𝑎𝑟𝑘𝑒𝑡 ≤ 𝑉 𝑎𝑅𝑞,𝑀𝑎𝑟𝑘𝑒𝑡) = 𝑞% (1)

where 𝑋𝑀𝑎𝑟𝑘𝑒𝑡 is the US financial system’s ‘‘return loss’’ for which
𝑉 𝑎𝑅𝑞,𝑀𝑎𝑟𝑘𝑒𝑡 is defined. 𝐶𝑜𝑉 𝑎𝑅𝑖|𝐶(𝑋𝑀𝑎𝑟𝑘𝑒𝑡)

𝑞 is the 𝑉 𝑎𝑅 of sector 𝑖 that is
conditional on some event 𝐶(𝑋𝑀𝑎𝑟𝑘𝑒𝑡) in the financial system. Event
𝐶 is an event equally likely across institutions, such as the financial
system’s loss at or above its 𝑉 𝑎𝑅𝑞,𝑀𝑎𝑟𝑘𝑒𝑡. 𝐶𝑜𝑉 𝑎𝑅𝑖|𝐶(𝑋𝑀𝑎𝑟𝑘𝑒𝑡)

𝑞 is implicitly
defined by the 𝑞%-quantile of the conditional probability distribution:

𝑃𝑟(𝑋𝑖|𝐶(𝑋𝑀𝑎𝑟𝑘𝑒𝑡) ≤ 𝐶𝑜𝑉 𝑎𝑅𝑖|𝐶(𝑋𝑀𝑎𝑟𝑘𝑒𝑡)
𝑞 ) = 𝑞% (2)

The 𝛥𝐶𝑜𝑉 𝑎𝑅 of sector 𝑖 that is conditional on the entire financial
system being under distress is computed as follows:

𝛥𝐶𝑜𝑉 𝑎𝑅𝑖
𝑞 = 𝐶𝑜𝑉 𝑎𝑅

𝑖|𝑋𝑀𝑎𝑟𝑘𝑒𝑡=𝑉 𝑎𝑅𝑞,𝑀𝑎𝑟𝑘𝑒𝑡
𝑞 −𝐶𝑜𝑉 𝑎𝑅

𝑖|𝑋𝑀𝑎𝑟𝑘𝑒𝑡=𝑉 𝑎𝑅50𝑡ℎ,𝑀𝑎𝑟𝑘𝑒𝑡
𝑞 (3)

We use a quantile regression to estimate 𝛥𝐶𝑜𝑉 𝑎𝑅. In particular,
ollowing Adrian and Brunnermeier (2016), we estimate the following:2

𝑞,𝑖 = 𝛼𝑞 + 𝛽𝑞𝑋𝑞,𝑀𝑎𝑟𝑘𝑒𝑡 (4)

1 For several studies providing extensions of the 𝛥𝐶𝑜𝑉 𝑎𝑅 estimation
method see among others Girardi and Ergün (2013), López-Espinosa et al.
(2012), Reboredo and Ugolini (2015), Sedunov (2016).

2 For simplicity of exposition we drop the index notation and the error term
from the regression equation.
5

where 𝑋𝑞,𝑖 and 𝑋𝑞,𝑀𝑎𝑟𝑘𝑒𝑡 denote sector 𝑖 and the financial system return
loss, respectively. Using the predicted value of 𝑋𝑀𝑎𝑟𝑘𝑒𝑡 = 𝑉 𝑎𝑅𝑞,𝑀𝑎𝑟𝑘𝑒𝑡,
we yield the 𝐶𝑜𝑉 𝑎𝑅𝑞,𝑖 measure as follows:

𝐶𝑜𝑉 𝑎𝑅𝑖
𝑞 = 𝑉 𝑎𝑅

𝑖|𝑋𝑀𝑎𝑟𝑘𝑒𝑡=𝑉 𝑎𝑅𝑞,𝑀𝑎𝑟𝑘𝑒𝑡
𝑞 = 𝛼𝑞 + 𝛽𝑞𝑉 𝑎𝑅𝑞,𝑀𝑎𝑟𝑘𝑒𝑡 (5)

here 𝑉 𝑎𝑅𝑞,𝑀𝑎𝑟𝑘𝑒𝑡 is the 𝑞%-quantile of the financial system losses.
ased on Eq. (3), we estimate 𝛥𝐶𝑜𝑉 𝑎𝑅𝑖

𝑞 as:

𝐶𝑜𝑉 𝑎𝑅𝑖
𝑞 = 𝐶𝑜𝑉 𝑎𝑅𝑖

𝑞 − 𝐶𝑜𝑉 𝑎𝑅
𝑖|𝑋𝑀𝑎𝑟𝑘𝑒𝑡=𝑉 𝑎𝑅50𝑡ℎ,𝑀𝑎𝑟𝑘𝑒𝑡
𝑞 =

𝛽𝑞(𝑉 𝑎𝑅𝑞,𝑀𝑎𝑟𝑘𝑒𝑡 − 𝑉 𝑎𝑅50𝑡ℎ ,𝑀𝑎𝑟𝑘𝑒𝑡) (6)

Based on Eq. (6), we estimate 𝛥𝐶𝑜𝑉 𝑎𝑅𝑖
95𝑡ℎ

as the difference between
he predicted 𝐶𝑜𝑉 𝑎𝑅 at the 95th quantile and the one at the 50th
uantile.

Our study considers equity losses with positive values. For this
eason, in the empirical results, we consider only positive values for
𝑎𝑅𝑖

𝑞,𝑡 and 𝐶𝑜𝑉 𝑎𝑅𝑖
𝑞,𝑡, because a negative capital shortfall indicates a

apital surplus.3
In addition, as an alternative measure for market-based systemic

isk, we estimate the 𝑀𝐸𝑆 proposed by Acharya et al. (2017), which
s defined as the 𝐸𝑆 of sector 𝑖 in the tail of the financial system’s loss
istribution.4 This measure can be interpreted as the losses of the US
anking and insurance sectors when the entire financial system is in a
ail event.

We estimate the 𝑀𝐸𝑆 as the average return of sector 𝑖 portfolio
uring the 5% worst days for the financial system. This measure
stimates the equal-weighted average return of any given sector (𝑅𝑖)
or the 𝑞 = 5% worst days of the financial system returns (𝑅𝑚):

𝑀𝐸𝑆 𝑖
𝑞% = 1

#𝑑𝑎𝑦𝑠
∑

𝑅𝑖
𝑡 (7)

Both the 𝛥𝐶𝑜𝑉 𝑎𝑅 and the 𝑀𝐸𝑆 are estimated considering a 1-year
moving window.

The 𝑆𝑅𝐼𝑆𝐾 by Brownlees and Engle (2017) might also be used to
identify the contribution of each financial sector to systemic risk as it
measures the capital shortfall conditional on a severe market decline.5
Since it is computed by also accounting for balance-sheet variables, the
𝑆𝑅𝐼𝑆𝐾 is less volatile compared to 𝛥𝐶𝑜𝑉 𝑎𝑅 and 𝑀𝐸𝑆, but also less
suitable when investigating the reactions of systemic risk to volatile
events such as climate-induced catastrophes, which is the reason why
we choose not to adopt this systemic risk measure in our analysis.

3.2. Testing the impact of climate-induced catastrophes on financial sys-
temic risk

As in Morelli and Vioto (2020), to analyse the impact of physical
risks associated with climate disasters on financial systemic risk, we use
the Wilcoxon signed rank sum test for paired data,6 which allows to test

3 We estimate negative values for 𝑉 𝑎𝑅𝑖
𝑞,𝑡 and 𝐶𝑜𝑉 𝑎𝑅𝑖

𝑞,𝑡 only at the 50th
quantile, which represents the median state, so the absence of a distress for
sector 𝑖.

4 For extensions and further studies on the relevance of the 𝑀𝐸𝑆, see Idier
et al. (2014) and Banulescu and Dumitrescu (2015).

5 Other systemic risk measures have also been proposed. For a comprehen-
sive description of the main systemic risk measures, readers can refer to the
survey papers by Bisias et al. (2012) and Silva et al. (2017).

6 We chose the Wilcoxon signed rank sum test because it requires no or
very limited assumptions to be made about the format of the data. It can
be useful for dealing with unexpected, outlying observations that might be
problematic with a parametric approach. Nevertheless, we are aware that
non-parametric methods may lack power as compared with more traditional
approaches, which is a particular concern if the assumptions for the corre-
sponding parametric method hold, and adjustments to the test statistic may
be necessary. For a detailed description of the Wilcoxon signed rank sum test,
readers can refer to Wilcoxon (1945).
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whether, to what extent and how quickly SRMs of the US banking and
insurance sectors react to the billion-dollar weather and climate dis-
asters occurred during our sample period. We first investigate whether
the systemic risk of US banks and insurers observed during the ℎ days a
atural catastrophe lasts — i.e., between day ℎ and day 𝑡+ℎ; is greater
han that recorded ℎ days before, thus applying the Wilcoxon signed
ank sum test to the following null hypothesis:

0 ∶ 𝑆𝑅𝑀 𝑖
𝑡∶𝑡+ℎ ≤ 𝑆𝑅𝑀 𝑖

𝑡−ℎ−1∶𝑡−1 (8)

1 ∶ 𝑆𝑅𝑀 𝑖
𝑡∶𝑡+ℎ > 𝑆𝑅𝑀 𝑖

𝑡−ℎ−1∶𝑡−1 (9)

here 𝑖 indicates the sector under analysis and 𝑡 is the day when the
xtreme climate event starts. The failure to reject the null hypothesis
8) implies that the market does not perceive an increase in systemic
isk for the sector 𝑖 during a specific climate-induced catastrophe.

In addition, we apply the Wilcoxon signed rank sum test to two
ore null hypotheses. We first test whether the systemic risk of the

anking and insurance sectors during the ℎ days after the event —
.e., from day 𝑡+ ℎ+ 1 to day 𝑡+ 2ℎ+ 1; is greater than that referred to
he ℎ days preceding the start of the event — i.e., between day 𝑡−ℎ−1

and day 𝑡 − 1; with the following hypotheses to be tested:

𝐻0 ∶ 𝑆𝑅𝑀 𝑖
𝑡+ℎ+1∶𝑡+2ℎ+1 ≤ 𝑆𝑅𝑀 𝑖

𝑡−ℎ−1∶𝑡−1 (10)

𝐻1 ∶ 𝑆𝑅𝑀 𝑖
𝑡+ℎ+1∶𝑡+2ℎ+1 > 𝑆𝑅𝑀 𝑖

𝑡−ℎ−1∶𝑡−1 (11)

Finally, we test whether the systemic risk of the US banking and
insurance sectors observed during the ℎ days after the end of the event,
rom day 𝑡+ ℎ+ 1 to day 𝑡+ 2ℎ+ 1, is greater than that experienced by
he two financial sectors during the event. The associated hypotheses
re as follows:

0 ∶ 𝑆𝑅𝑀 𝑖
𝑡+ℎ+1∶𝑡+2ℎ+1 ≤ 𝑆𝑅𝑀 𝑖

𝑡∶𝑡+ℎ (12)

1 ∶ 𝑆𝑅𝑀 𝑖
𝑡+ℎ+1∶𝑡+2ℎ+1 > 𝑆𝑅𝑀 𝑖

𝑡∶𝑡+ℎ (13)

.3. Investigating the relationship between the performance of green and
rown companies and financial systemic risk

To detect the potential impact of the performance of green and
rown companies on the systemic risk of US banks and insurers, we use
reen and brown market indexes, by accounting for their levels and two
isk measures — i.e., the Value at Risk (𝑉 𝑎𝑅) and the Expected Shortfall
𝐸𝑆). To study the relationship between these indexes and our SRMs,
e use Koenker and Bassett Jr. (1978)’s quantile regression method.
nlike classical linear regression methods, which can only provide

nference on the conditional mean functions, thus losing information
bout the tails of the distribution, quantile regressions allow to estimate
odels for the conditional median function and for the full range of all

he other conditional quantile functions. Therefore, we test whether the
elationship between green and brown indexes and market-based SRMs
s sensitive to different quantiles.

In the simplest terms, we run the following quantile regression:

𝑖 = 𝛼𝜏 + 𝛽𝜏𝑥
′
𝑖 + 𝜀𝜏,𝑖 (14)

here 𝑦𝑖 is the measure for systemic risk — either, 𝛥𝐶𝑜𝑉 𝑎𝑅 or 𝑀𝐸𝑆;
′
𝑖 is the independent variable represented by the level and extreme risk
easures of green and brown indexes; 𝛼𝜏 is the constant; 𝛽𝜏 is the vector

f the estimated relationship coefficients, and 𝜀𝜏 is the error term. The
ubscript 𝜏 ∈ (0,1) represents the quantile. We write the 𝜏𝑡ℎ conditional
uantile function as 𝑄𝜏 (𝑦|𝑥) = 𝛽𝜏𝑥′.

The estimator 𝛽𝜏 is computed by minimizing the weighted sum of
he absolute errors, where the weights are dependent on the quantile
alues:

�̂� = 𝑎𝑟𝑔 𝑚𝑖𝑛

(

∑

′
𝜏||
|

𝑦𝑖 − 𝑥𝑖𝛽𝜏
|

|

|

+
∑

′
(1 − 𝜏)||

|

𝑦𝑖 − 𝑥𝑖𝛽𝜏
|

|

|

)

(15)
6

𝑖=𝑦𝑖>𝑥𝑖𝛽𝜏 𝑖=𝑦𝑖<𝑥𝑖𝛽𝜏
r

Overall, we expect a negative relationship between US banks’ and
insurers’ systemic risk and the level of both green and brown market in-
dexes, since a raise in these latter would be associated with an increase
in the value of the share of their assets represented by investments
in green and brown sectors. Vice versa, SRMs are expected to have
a positive relationship with 𝑉 𝑎𝑅 and 𝐸𝑆 measures calculated on the
market indexes. We estimate non-parametric historical 𝑉 𝑎𝑅 and 𝐸𝑆 at
5% confidence level, using a 1-year moving window. The 𝑉 𝑎𝑅 is the
realized loss of the index at the 95th quantile each day 𝑡; while the 𝐸𝑆
is the average of the worst 5% realizations of the index each day 𝑡.

As previously explained, the quantile regression focuses on esti-
mating the interrelation between the dependent variables and their
predictors at the median level (𝜏 = 0.5 = 50th) and at any other specific
quantile. In our study, we consider estimates at the 5th, 10th, 50th,
90th and 95th quantiles. In the literature, low quantiles (e.g., up to
the 50th) are considered tranquil periods in the market; while high
quantiles (e.g., above the 75th) represent distressed conditions in the
market (see, e.g., Adrian and Brunnermeier, 2016).

4. Data

To estimate our measures of systemic risk, we collect data on
the daily values of the S&P 500 Banks Industry Group GICS Level
2, S&P 500 Insurance Industry Group GICS Level 2 and S&P 500
Financials Sector GICS Level 1 Index, which is used as proxy for the
whole US financial system. We are strongly motivated to consider the
GICS framework7 because it has become widely recognized by market
participants worldwide and enables meaningful comparisons of sectors
and industries. Moreover, MSCI and Standard & Poor’s review the
entire framework annually to ensure an accurate representation of the
marketplace.

We consider the following two green indexes: (i) MSCI USA Se-
lect Green 50 3% Decrement Index, which is designed to track the
performance of the largest 50 stocks from the MSCI USA Investable
Market Indexes that offer products and services that contribute to
an environmentally sustainable economy; and, (ii) the NASDAQ OMX
Green Economy US Index, which aims to track the performance of
companies across the spectrum of industries most closely associated
with the economic model around sustainable development through
every economic sector and involved in the reduction of fossil-sourced
fuels, products, services, and lifestyles domiciled in the United States.

We calculate three capitalization weighted indexes of listed US
polluters, as identified by the Political Economy Research Institute at
the University of Massachusetts Amherst, defined as the Greenhouse
100 Polluters Index, Toxic 100 Air Polluters Index and Toxic 100 Water
Polluters Index. They comprise the top greenhouse gas emitters and
the top corporate air and water polluters using the most recent data
available from the US Environmental Protection Agency.8

Market data are all downloaded from Bloomberg. As argued by
Monasterolo and De Angelis (2020) and Ehlers et al. (2022), financial
markets started paying attention to climate issues only after the 2015
Paris Agreement. For this reason, we study both green and brown
indexes over the period from December 12, 2015, when the final
wording of the Paris Agreement was adopted by consensus by the 195
states and the European Union, to July 31, 2022.

We select climate-induced disasters from the list of billion-dollar
weather and climate disasters published by the National Centers for
Environmental Information (NCEI). As part of its responsibility of mon-
itoring and assessing the climate, NCEI tracks and evaluates climate

7 For a detailed description of the GICS methodology, readers can refer
o: ‘‘Global Industry Classification Standard (GICS) Methodology’’, Standard &
oor’s, 2009; or, https://www.msci.com/gics.

8 For a detailed description of the Top 100 Polluter indexes, readers can
efer to: https://peri.umass.edu/top-100-polluter-indexes.

https://www.msci.com/gics
https://peri.umass.edu/top-100-polluter-indexes
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Table 1
Descriptive statistics of the market-based SRMs and the green and brown indexes.

Mean Median Std. dev. Skewness Min Max 1 percent Stress

𝛥𝐶𝑜𝑉 𝑎𝑅𝐵𝑎𝑛𝑘𝑠 4.12 2.72 4.04 2.32 0.62 21.08 17.24
𝛥𝐶𝑜𝑉 𝑎𝑅𝐼𝑛𝑠𝑢𝑟𝑒𝑟𝑠 3.01 1.91 3.25 2.65 0.54 15.07 14.22
𝑀𝐸𝑆𝐵𝑎𝑛𝑘𝑠 3.17 2.46 2.28 1.44 0.57 11.63 11.01
𝑀𝐸𝑆𝐼𝑛𝑠𝑢𝑟𝑒𝑟𝑠 2.71 2.07 1.99 1.50 0.61 8.52 7.98
MSCI USA Select Green 50 3% Decrement Index 2032.45 1748.22 665.62 0.85 1132.73 3640.92 3527.15
𝑉 𝑎𝑅 1.63 1.60 0.64 0.58 0.66 3.04 3.04
𝐸𝑆 2.34 2.03 1.13 1.24 0.85 4.94 4.94
NASDAQ OMX Green Economy US Index 2949.98 2697.31 920.47 1.59 1493.42 5128.20 5038.38
𝑉 𝑎𝑅 1.92 1.82 0.71 0.52 0.80 3.42 3.42
𝐸𝑆 3.02 2.69 1.27 1.30 1.53 5.87 5.87
Greenhouse 100 Polluters Index 38643.18 38606.48 6018.67 0.01 22373.11 52213.88 28022.08
𝑉 𝑎𝑅 1.87 1.61 0.95 1.66 0.73 4.88 3.44
𝐸𝑆 2.74 2.19 1.56 1.62 0.94 6.94 5.77
Toxic 100 Air Polluters Index 38132.22 38126.31 5803.55 −0.21 20240.48 52267.21 34334.33
𝑉 𝑎𝑅 1.88 1.64 0.93 1.40 0.63 4.63 4.21
𝐸𝑆 2.76 2.25 1.53 1.47 0.85 6.84 6.52
Toxic 100 Water Polluters Index 42875.47 43164.28 6268.94 −0.35 22127.37 58843.82 27990.57
𝑉 𝑎𝑅 1.81 1.63 0.88 1.26 0.64 4.32 4.21
𝐸𝑆 2.69 2.27 1.48 1.46 0.86 6.36 5.35

Notes: The descriptive statistics for the market-based SRMs of the US banking and insurance sectors, and the green and brown indexes. The 1 percent stress corresponds to the
variable realizations in the worst 1 percent of S&P 500 Financials Sector GICS Level 1 Index returns. Note that, as stated in Section 3, market-based SRMs are estimated considering
an equity loss with positive values.
events in the US and globally that have great economic and societal
impacts.9 From this list of weather and climate events that had overall
damages reaching or exceeding 1 USD billion from 1980, we select
those occurred between January 1, 2005 and July 31, 2022 and lasting
more than two and less than thirty days.10 Our selection of climate-
nduced disasters (122 in total) includes 74 severe storms, 20 tropical
yclones, 17 floodings, 6 winter storms, 3 freezes and 2 wildfires,
ith an average cost of 2.3, 30.4, 3.1, 2.1, 1.8 and 11.2 USD billion,

espectively. We use these events to test the hypotheses discussed in
ection 3.2.

Table 1 presents the summary statistics of: (i) the market-based
RMs of the US banking and insurance sectors; and (ii) the level, 𝑉 𝑎𝑅
nd 𝐸𝑆 of both green and brown indexes. The column labelled ‘‘1
ercent Stress’’ shows the value of each variable in the worst 1 percent
ealization of the financial system returns — i.e., S&P 500 Financials
ector GICS Level 1 Index returns. The mean 𝛥𝐶𝑜𝑉 𝑎𝑅 tends to be

larger than the mean 𝑀𝐸𝑆 for both banks and insurance companies.
On average, banks appear to be more exposed to systemic risk than
insurance companies and show a larger difference between minimum
and maximum values for both SRMs.

Green indexes have a positive skewness, which turns negative for
brown indexes, except for the case of the Greenhouse 100 Polluters
Index, which shows a skewness close to zero. In the period we consider,
investing in green companies generates frequent small losses and few
large gains, whereas an investor in brown firms may expect frequent
small gains and few extreme losses. Moreover, both 𝑉 𝑎𝑅 and 𝐸𝑆
referred to brown indexes reach higher mean values and are character-
ized by a greater volatility if compared to the 𝑉 𝑎𝑅 and 𝐸𝑆 calculated
for green indexes.

Table 2 shows the correlation coefficients from the time series of
both green and brown indexes. The two green indexes have a strong
positive and statistically significant correlation among them, with a
Pearson correlation coefficient equal to 97.1%. The same result is found
among brown indexes, where correlation coefficients are greater than
92.4%. Though statistically significant, green indexes show much lower
correlation coefficients with brown ones, with values ranging from
34.9% to 35.5%.

9 For a detailed description of the NCEI, the methodology to identify
limate-inducted disasters and the data sources used, readers can refer to:
ttps://www.ncdc.noaa.gov/billions/. The complete list of climate-induced
isasters is available at: https://www.ncdc.noaa.gov/billions/events.
10 The average length of our sample climate related extreme events is 4 days
7

nd around 95% lasted less than 6 days.
5. Results

In Section 5.1 we present the results of the statistical tests on
US banks’ and insurers’ SRMs reaction to billion-dollar weather and
climate disaster events. Section 5.2 shows how the equity performance
of green and brown indexes affects SRMs of the US banking and
insurance sectors. The issues investigated in these two subsections are
strictly interconnected under the perspective of the adoption of climate
policies, which are meant to combat the increase in the frequency of
extreme weather events and in the damages they produce, on the one
hand, and are going to change the greenness (brownness) of financial
companies’ asset portfolios, on the other.

5.1. Climate-induced catastrophes and financial systemic risk

Table 3 presents the results of the Wilcoxon signed rank sum test
used to verify the hypotheses discussed in Section 3.2, aiming at testing
whether, how and at which speed SRMs of the financial system react to
physical risk.11 For each of the three null hypotheses we calculate the
success ratio — i.e., the percentage of climate catastrophes for which
we reject the hypothesis, by adopting a confidence level of 1%, 5% and
10%, respectively.

Overall, our results show that 51 extreme weather events have an
impact on financial systemic risk considering all the three significance
thresholds. We have also performed a case-by-case control to check
that no other macroeconomic or financial major event has affected
our impact study.12 45 of these events have a cost between 1 and

11 The table containing individual results for each of the 122 climate-
inducted disasters is available upon request.

12 We performed the following testing procedure: 1. We isolated the dates
of potentially relevant events — i.e., main financial and geo-political events,
namely FED’s decisions on monetary policy interest rates and communications
about stress tests results, presidential elections, global financial crisis (GFC),
USA-China trade war and COVID-19 pandemic, for a total of 211 dates (4 for
the GFC, 3 for COVID-19, 11 for stress tests, 142 for interest rates changes,
47 for USA-China trade war, and 4 for presidential elections). 2. For each of
the climate disasters that increased financial systemic risk at least in one of
the hypotheses discussed in Section 3.2, irrespective of the measure (𝛥𝐶𝑜𝑉 𝑎𝑅
vs. 𝑀𝐸𝑆) and of the confidence interval, we performed a matching analysis
on the days each event lasts and the dates of the potentially relevant events
mentioned above. None of such dates is included in the period the climate
disasters able to significantly affect systemic risk measures lasted. The excel
file where we run this procedure is available upon request.

https://www.ncdc.noaa.gov/billions/
https://www.ncdc.noaa.gov/billions/events
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Table 2
Pearson correlation matrix for the green and brown indexes.

MSCI USA Select
Green 50 3%
Decrement Index

NASDAQ OMX
Green Economy US
Index

Greenhouse 100
Polluters Index

Toxic 100 Air
Polluters Index

Toxic 100 Water
Polluters Index

MSCI USA Select Green 50 3% Decrement Index 1 0.9713*** 0.3524*** 0.3496*** 0.3554***
NASDAQ OMX Green Economy US Index 0.9713*** 1 0.3501*** 0.3494*** 0.3554***
Greenhouse 100 Polluters Index 0.3524*** 0.3501*** 1 0.9243*** 0.9284***
Toxic 100 Air Polluters Index 0.3496*** 0.3494*** 0.9243*** 1 0.9816***
Toxic 100 Water Polluters Index 0.3554*** 0.3554*** 0.9284*** 0.9816*** 1

Notes: The Pearson correlation coefficients from the time series of the green and brown indexes. The ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively.
Table 3
Climate-induced catastrophes and US banks’ and insurers’ market-based SRMs.

Panel A: Success ratio of the Wilcoxon signed rank sum test for 𝛥𝐶𝑜𝑉 𝑎𝑅

Banks Insurers

Significance threshold 1% 5% 10% 1% 5% 10%

𝐻0: 𝛥𝐶𝑜𝑉 𝑎𝑅𝑖
𝑡∶𝑡+ℎ ≤ 𝛥𝐶𝑜𝑉 𝑎𝑅𝑖

𝑡−ℎ−1∶𝑡−1 1.64% 9.02% 18.85% 0.82% 7.38% 16.39%
𝐻0: 𝛥𝐶𝑜𝑉 𝑎𝑅𝑖

𝑡+ℎ+1∶𝑡+2ℎ+1 ≤ 𝛥𝐶𝑜𝑉 𝑎𝑅𝑖
𝑡−ℎ−1∶𝑡−1 1.64% 11.48% 18.85% 1.64% 10.66% 18.85%

𝐻0: 𝛥𝐶𝑜𝑉 𝑎𝑅𝑖
𝑡+ℎ+1∶𝑡+2ℎ+1 ≤ 𝛥𝐶𝑜𝑉 𝑎𝑅𝑖

𝑡∶𝑡+ℎ 0.82% 5.74% 9.84% 1.64% 7.38% 10.66%

Panel B: Success ratio of the Wilcoxon signed rank sum test for 𝑀𝐸𝑆

Banks Insurers

Significance threshold 1% 5% 10% 1% 5% 10%

𝐻0: 𝑀𝐸𝑆 𝑖
𝑡∶𝑡+ℎ ≤ 𝑀𝐸𝑆 𝑖

𝑡−ℎ−1∶𝑡−1 2.46% 4.92% 9.02% 2.46% 5.74% 8.20%
𝐻0: 𝑀𝐸𝑆 𝑖

𝑡+ℎ+1∶𝑡+2ℎ+1 ≤ 𝑀𝐸𝑆 𝑖
𝑡−ℎ−1∶𝑡−1 4.10% 9.02% 13.93% 3.28% 8.20% 13.93%

𝐻0: 𝑀𝐸𝑆 𝑖
𝑡+ℎ+1∶𝑡+2ℎ+1 ≤ 𝑀𝐸𝑆 𝑖

𝑡∶𝑡+ℎ 1.64% 4.92% 6.56% 0.82% 3.28% 7.38%

Notes: The Wilcoxon signed rank sum test aims to determine whether the systemic risk of the US banking and insurance sectors during (after) the ℎ days
of the selected climate-induced catastrophes, is greater than the systemic risk ℎ days before (during, before). 𝑡 is the starting date of the climate-induced
catastrophe and ℎ is its length. Rows indicate the null hypotheses tested (𝐻0), which are described in Section 3.2. The success ratio indicates the number
of climate-induced catastrophes for which we reject each null hypothesis, by adopting a confidence level of 10%, 5% and 1%, respectively.
10 USD billion,13 entailing that the size of the event in terms of the
costs it generates is not the only factor explaining its relevance from a
financial systemic risk perspective. Even if not all the extreme events
we consider are able to affect the systemic risk of US banks and
insurers, by highlighting the presence of a significant impact for some
of them, our findings support the prompt adoption of climate policies
able to contrast the potential increase of such events frequency and
severity in the next future.

As far as the speed at which physical risk transmits to the financial
system is concerned, we notice that: (i) relative to the period before
their initial day, the number of the events able to determine a signifi-
cant increase in the SRMs after their final day is equal or higher than
the number of those that produce a significant increase in the SRMs
during the days they last (the success ratios of row n. 1 are not higher
than those of row n. 2 for both Panels A and B). This implies that the
market perceives the impact of an extreme weather event in terms of
financial systemic risk mainly after it terminates, and not necessarily
when it occurs; (ii) there is a smaller number of cases in which SRMs
experience a significant increase after the events end, relative to the
days they last, which signals either a further raise in the financial
systemic risk relative to the period before the events start, or the first
time the market reacts (the success ratios of row n. 3 are never higher
lower than those of rows n. 1 and 2 for both Panels A and B).

Focusing on the 1% confidence level and the 𝛥𝐶𝑜𝑉 𝑎𝑅, the systemic
risk sensitivity of US banks and insurers to climate disasters is driven by
two tropical cyclones, namely, the Southern Tornado Outbreak (March
2022), when the success ratio is at least 0.82%, together with the Hur-
ricane Dorian (September 2019), when the success ratio equals 1.64%.
By measuring systemic risk through the 𝑀𝐸𝑆, three more climate

13 Hurricane Rita (September 2005), Hurricane Katrina (August 2005),
outheast/Ohio Valley/Midwest Tornadoes (April 2011), Hurricane Matthew
October 2016), Hurricane Irma (September 2017) and Hurricane Harvey
August 2017) had a cost higher than 10 USD billion, amounting at 11.1, 12.1,
5.5, 53.5, 133.7 and 172.5 USD billion, respectively.
8

related disasters have an impact on US banks’ systemic risk, namely
Southeast Tornadoes and Severe Weather (March 2021), Arkansas River
Flooding (June 2019) and Missouri and Arkansas Flooding and Central
Severe Weather (May 2017), of which the last two affect also insurers’
𝑀𝐸𝑆. Under the 5% (10%) confidence level, the 𝛥𝐶𝑜𝑉 𝑎𝑅 of both the
US banking and insurance sectors raises 10 (16) times due to severe
storms, 3 (6) times because of tropical cyclones and in just 1 (1) case
of floodings. Correspondingly, the 𝑀𝐸𝑆 increases 5 (15), 3 (6) and 1
(2) time.

The level of systemic risk measured by 𝛥𝐶𝑜𝑉 𝑎𝑅 during a climate-
induced catastrophic event is significantly higher than that observed
before the disaster in 9.02% (18.85%) of our sample events for US
banks and in 7.38% (16.39%) of the cases for US insurance compa-
nies (row n. 1 of Panel A) according to the 5% (10%) significance
threshold, respectively. Measuring systemic risk through the 𝑀𝐸𝑆, the
corresponding values are 4.92% (9.02%) for banks, and 5.74% (8.20%)
for insurers (row n. 1 of Panel B).

As for the hypotheses of a significant increase in the level of SRMs
after the end of the extreme climate event — i.e., in the ℎ-day period
starting after the final day of the event, in comparison with the ℎ-day
period before its initial day (rows n. 2 of both Panel A and Panel B), the
success ratios referred to US banking sector’s 𝛥𝐶𝑜𝑉 𝑎𝑅 are higher than
those of the insurance one according to the 5% and 10% significance
thresholds. When the systemic risk measured during the ℎ-day period
following the event is compared with the ℎ-day period the event lasts
(rows n. 3 of both Panel A and Panel B), US insures’ 𝛥𝐶𝑜𝑉 𝑎𝑅 is higher
than that observed for the banking sector under both 5% and 10%
significance thresholds. US banks’ 𝑀𝐸𝑆 calculated after the end of the
event is also higher than that observed during the ℎ day period the
event lasts (equal to) and before (lower) the event starts under the 5%
(10%) significance threshold.

5.2. Green and brown companies’ performance and financial systemic risk

Policies to combat climate change are expected to have a tremen-
dous impact in the asset portfolios of banks and insurers, presumably
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Table 4
𝛥𝐶𝑜𝑉 𝑎𝑅 and green indexes.

Panel A: 𝛥𝐶𝑜𝑉 𝑎𝑅𝐵𝑎𝑛𝑘𝑠

MSCI USA Select Green 50 3%
Decrement Index

NASDAQ OMX Green Economy
US Index

𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆 𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆

𝑂𝐿𝑆 −0.4312*** 2.9125*** 1.5459*** −0.0710*** 3.2569*** 1.3031***
𝑎𝑑𝑗.𝑅2 21.83% 86.11% 94.75% 20.04% 90.84% 91.74%
Quantile Regression
𝜏 = 5th −0.3710*** 2.7143*** 1.7102*** −0.0312*** 2.6043*** 1.4229***
𝑎𝑑𝑗.𝑅2 15.39% 22.84% 53.38% 21.76% 39.68% 51.12%
𝜏 = 10th −0.2918** 1.9024*** 1.6933*** −0.0314*** 3.0090*** 1.3881***
𝑎𝑑𝑗.𝑅2 16.16% 29.50% 56.77% 20.66% 41.49% 54.94%
𝜏 = 50th −0.3147*** 2.9051*** 1.5402*** −0.0567*** 3.2898*** 1.3208***
𝑎𝑑𝑗.𝑅2 20.33% 51.21% 73.89% 22.41% 62.47% 68.51%
𝜏 = 90th −0.8512*** 2.9792*** 1.4665*** −0.1300*** 3.0966*** 1.0934***
𝑎𝑑𝑗.𝑅2 27.21% 75.84% 82.04% 37.52% 80.27% 73.31%
𝜏 = 95th −0.9333*** 2.9759*** 1.4629*** −0.1271*** 3.0670*** 1.0724***
𝑎𝑑𝑗.𝑅2 38.33% 74.94% 77.85% 32.96% 77.94% 70.61%

Panel B: 𝛥𝐶𝑜𝑉 𝑎𝑅𝐼𝑛𝑠𝑢𝑟𝑒𝑟𝑠

MSCI USA Select Green 50 3%
Decrement Index

NASDAQ OMX Green Economy
US Index

𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆 𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆

𝑂𝐿𝑆 −0.2340*** 1.6492*** 0.8455*** −0.0612*** 1.8269*** 0.7191***
𝑎𝑑𝑗.𝑅2 21.59% 92.45% 94.92% 21.00% 95.71% 93.57%
Quantile Regression
𝜏 = 5th −0.1811** 1.2281*** 0.8929*** −0.0410*** 1.9116*** 0.7491***
𝑎𝑑𝑗.𝑅2 18.34% 65.64% 64.55% 22.82% 74.73% 64.19%
𝜏 = 10th −0.1825*** 1.1909*** 0.8502*** −0.0512*** 1.8823*** 0.7377***
𝑎𝑑𝑗.𝑅2 19.34% 66.57% 67.89% 22.19% 75.32% 67.27%
𝜏 = 50th −0.2642*** 1.5605*** 0.8375*** −0.0981*** 1.8049*** 0.6938***
𝑎𝑑𝑗.𝑅2 24.13% 67.94% 74.08% 21.95% 75.94% 68.82%
𝜏 = 90th −0.4310*** 1.8535*** 0.8769*** −0.1212*** 1.8557*** 0.7131***
𝑎𝑑𝑗.𝑅2 27.45% 79.56% 80.47% 31.64% 80.92% 81.00%
𝜏 = 95th −0.5043*** 1.8632*** 0.8304*** −0.1423*** 1.8091*** 0.7116***
𝑎𝑑𝑗.𝑅2 26.32% 78.07% 77.04% 27.87% 78.98% 77.36%

Notes: The coefficients from the time series regression analysis with the 𝛥𝐶𝑜𝑉 𝑎𝑅 as the dependent variable. The independent variables are
listed in the header of each column. Intercept results are not reported for the sake of space. The ***, **, and * indicate significance at 1%,
5%, and 10% levels, respectively.
with an increase of their exposure towards green companies and a
reduction of their commitment towards brown ones. From a financial
stability perspective, this calls for a more in-depth analysis of the
relationship between green companies’ performance and banks’ and
insurers’ systemic risk. We tackle this issue by investigating whether
and how green indexes affect market-based SRMs of the US banking
and insurance sectors (see Tables 4 and 5). Moreover, we compare
these estimates with those obtained when brown indexes are regressed
against the same SRMs (see Tables 6 and 7). This allows us to draw
policy implications about the potential effects that the prospective
changes in the greenness (brownness) of financial asset portfolios might
have on the stability of the financial system. To perform this analysis,
we implement a classical linear regression model, together with quan-
tile regressions providing detailed and specific information about the
tails of the distribution, where SRMs are the dependent variables and
the level, 𝑉 𝑎𝑅 and 𝐸𝑆 of the green (brown) market indexes are the
xplanatory variables.

Tables 4 and 5 show the estimates of the regressions with 𝛥𝐶𝑜𝑉 𝑎𝑅
and 𝑀𝐸𝑆 as dependent variables, respectively, and with Panel A of
both tables referring to the banking sector, and Panel B to the insurance
one. In the column labelled ‘‘Index’’, we study the relation between the
level of the specific green index and our SRMs; in the columns labelled
‘‘VaR’’ and ‘‘ES’’, we investigate the impact on 𝛥𝐶𝑜𝑉 𝑎𝑅 and 𝑀𝐸𝑆 of
the performance of green indexes, as measured by their 𝑉 𝑎𝑅 and 𝐸𝑆.

Overall, in correspondence of the 90th and 95th quantiles of the ex-
planatory variables distributions, we find higher values of the adjusted-
𝑅2 for both 𝛥𝐶𝑜𝑉 𝑎𝑅 and 𝑀𝐸𝑆, which suggests that systemic risk of
US banks and insurers is more dependent on tail performance of green
9

indexes.
The relationship between the level of green indexes and SRMs is
overall negative for both banks and insurers, with a larger magnitude
observed in the regressions referred to the 90th and 95th quantiles
of the explanatory variables’ distributions. This indicates that, when
green indexes raise, financial systemic risk decreases, both if measured
through 𝛥𝐶𝑜𝑉 𝑎𝑅 and 𝑀𝐸𝑆, and suggests that the better their per-
formance, the stronger is this mitigation effect. In contrast, both the
market-based SRMs are positively related to the 𝑉 𝑎𝑅 and 𝐸𝑆 of green
indexes, with a more intense reaction than that observed for their
levels. Moreover, when comparing the two financial sectors, systemic
risk of the US banks appears to be more affected by green indexes, if
compared to what we observe for the insurers. This seems to imply
that, from a systemic risk perspective, the market perceives banks as
more exposed to a change in the greenness of their asset portfolios.
We argue this is the evidence of the stronger and more direct link, in
comparison with the insurance companies, between banks and green
firms, which might be due to the financial support banks ensure to such
firms through their lending activity.

Following the same structure of Tables 4 and 5, Tables 6 and 7
present the results of the regression models used to detect the impact of
the brown indexes’ performance on 𝛥𝐶𝑜𝑉 𝑎𝑅 and 𝑀𝐸𝑆, respectively.
Again, Panel A and Panel B of both the tables show the estimates
referred to the banking and insurance sectors, respectively.

The evidence we find is qualitatively similar to that discussed for
green indexes, with a negative (positive) relationship between the
level (𝑉 𝑎𝑅 and 𝐸𝑆) of brown indexes and SRMs. Nevertheless, the
coefficients estimated using the level of the indexes as regressor are
always close to zero, indicating that the contribution of an increase in
brown indexes in terms of systemic risk mitigation is not significant

from an economic point of view. As far as the relationship between
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Table 5
𝑀𝐸𝑆 and green indexes.

Panel A: 𝑀𝐸𝑆𝐵𝑎𝑛𝑘𝑠

MSCI USA Select Green 50 3%
Decrement Index

NASDAQ OMX Green Economy
US Index

𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆 𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆

𝑂𝐿𝑆 −0.2341*** 2.9466*** 1.5959*** −0.1111*** 3.3121*** 1.3576***
𝑎𝑑𝑗.𝑅2 21.72% 86.02% 98.57% 22.17% 91.69% 97.22%
Quantile Regression
𝜏 = 5th −0.1097*** 2.2083*** 1.6290*** −0.0712*** 3.2814*** 1.4028***
𝑎𝑑𝑗.𝑅2 23.58% 52.99% 82.38% 22.52% 54.61% 76.34%
𝜏 = 10th −0.2091*** 2.3333*** 1.6216*** −0.0615*** 3.2898*** 1.3890***
𝑎𝑑𝑗.𝑅2 25.65% 52.35% 82.88% 24.79% 54.73% 77.13%
𝜏 = 50th −0.2912*** 2.8609*** 1.5406*** −0.0808*** 3.3469*** 1.3466***
𝑎𝑑𝑗.𝑅2 21.37% 47.08% 83.60% 21.75% 61.44% 76.49%
𝜏 = 90th −0.3511*** 3.1950*** 1.5945*** −0.1501*** 3.2364*** 1.2713***
𝑎𝑑𝑗.𝑅2 23.05% 72.34% 91.28% 33.37% 79.50% 87.55%
𝜏 = 95th −0.4196*** 2.9588*** 1.6063*** −0.2800*** 3.1554*** 1.2521***
𝑎𝑑𝑗.𝑅2 25.96% 68.28% 90.8% 25.51% 75.54% 87.01%

Panel B: 𝑀𝐸𝑆𝐼𝑛𝑠𝑢𝑟𝑒𝑟𝑠

MSCI USA Select Green 50 3%
Decrement Index

NASDAQ OMX Green Economy
US Index

𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆 𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆

𝑂𝐿𝑆 −0.3681*** 2.5391*** 1.3456*** −0.0900*** 2.8334*** 1.1498***
𝑎𝑑𝑗.𝑅2 21.99% 90.17% 98.91% 22.54% 94.73% 98.44%
Quantile Regression
𝜏 = 5th −0.2371*** 1.5140*** 1.4170*** −0.0701*** 2.6672*** 1.2113***
𝑎𝑑𝑗.𝑅2 22.16% 62.30% 82.00% 22.77% 69.87% 72.87%
𝜏 = 10th −0.2551*** 1.6575*** 1.3755*** −0.0600*** 2.8228*** 1.1825***
𝑎𝑑𝑗.𝑅2 22.29% 62.11% 83.58% 24.6% 71.68% 76.72%
𝜏 = 50th −0.3180*** 2.5244*** 1.3388*** −0.1309*** 2.9921*** 1.1280***
𝑎𝑑𝑗.𝑅2 19.91% 58.12% 86.67% 23.62% 69.83% 86.14%
𝜏 = 90th −0.3116*** 2.5778*** 1.3052*** −0.1425*** 2.6827*** 1.0966***
𝑎𝑑𝑗.𝑅2 25.90% 77.64% 93.20% 35.81% 83.29% 92.27%
𝜏 = 95th −0.3122*** 2.5161*** 1.3020*** −0.2254*** 2.6850*** 1.068***
𝑎𝑑𝑗.𝑅2 32.90% 74.37% 92.43% 27.16% 79.37% 90.69%

Notes: The coefficients from the time series regression analysis with the 𝑀𝐸𝑆 as the dependent variable. The independent variables are listed
in the header of each column. Intercept results are not reported for the sake of space. The ***, **, and * indicate significance at 1%, 5%, and
10% levels, respectively.
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SRMs and the 𝑉 𝑎𝑅 and 𝐸𝑆 of the brown indexes is concerned, the
regression coefficients are generally lower than those referred to the
green indexes. This finding turns out to be always verified in tail market
conditions and when the 𝑉 𝑎𝑅 is used as the explanatory variable.

herefore, we argue that if the economic environment gets worse and
verall non-financial firms’ riskiness increases — i.e., higher 𝑉 𝑎𝑅 and
𝑆 calculated on the green and brown market indexes; market might
erceive investments in brown companies systemically safer than those
n green ones.

Different factors can explain this evidence. For example, shifting
usiness practices to be more environmentally friendly can be expen-
ive. To reduce costs, companies have been teaming up with each
ther and with environmentally focused institutions. While this might
e beneficial, allowing companies to grow faster, it might also be a
rawback because the same companies might end up to be exposed to
ommon risks, thus increasing the contagion risk under negative market
onditions. Moreover, it has been also argued that there could be an
xcessive investment in green companies, which could lead to unsus-
ainable levels of debts. In particular, as the interest rate rises many of
he green young companies that are on the market today could fail.14

n turn, losses from green companies could spill over to institutions
roviding financial support, triggering systemic complications within
he financial system.

14 Satoshi Kambayashi (May 21, 2021). ‘‘A green bubble? We dissect the
nvestment boom’’, The Economist. Retrieved from: https://www.economist.

com/finance-and-economics/2021/05/17/green-assets-are-on-a-wild-ride.
10
6. Concluding remarks

In recent years the relationship between climate change and fi-
nancial stability has taken central stage in the policy debate and
academic literature (Roncoroni et al., 2021). Nevertheless, from a
financial systemic risk perspective, further studies are still needed about
the implications stemming from climate-related catastrophes and from
the prospective change in the greenness of financial institutions’ asset
portfolios. We adopt an empirical perspective to tackle these issues by
firstly examining whether, to what extent and how quickly 𝛥𝐶𝑜𝑉 𝑎𝑅
nd 𝑀𝐸𝑆 of US banking and insurance sectors react to billion-dollar
eather and climate catastrophes. Then, we investigate the link be-

ween the systemic risk of US banks and insurers and the performance
f green and brown companies, as proxied by green and brown market
ndexes.

Based on our evidence, even if climate-induced disasters do not
ecessarily have an impact on financial systemic risk, the presence of
statistically significant relation between some of the billion-dollar
eather and climate catastrophes and US banks’ and insurers’ SRMs

onfirms that physical risks caused by climate change might represent
serious threat to financial stability. This stresses the urgency to design
ppropriate policies to avoid further increase in the frequency and
everity of systemically relevant climate events. As for the implications
temming from the potential increase in the greenness of banks’ and
nsurers’ asset portfolios, we observe that higher levels of the green
arket indexes mitigate systemic risk, unlike a raise in brown indexes,
ith an increasing magnitude in the higher quantiles. However, a raise

n the 𝑉 𝑎𝑅 or 𝐸𝑆 of green indexes worsens financial systemic risk more

than an increase in the two risk measures calculated for brown indexes.

https://www.economist.com/finance-and-economics/2021/05/17/green-assets-are-on-a-wild-ride
https://www.economist.com/finance-and-economics/2021/05/17/green-assets-are-on-a-wild-ride
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Table 6
𝛥𝐶𝑜𝑉 𝑎𝑅 and brown indexes.

Panel A: 𝛥𝐶𝑜𝑉 𝑎𝑅𝐵𝑎𝑛𝑘𝑠

Greenhouse 100 Polluters Index Toxic 100 Air Polluters Index Toxic 100 Water Polluters Index

𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆 𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆 𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆

𝑂𝐿𝑆 −0.0001*** 2.4937*** 1.1854*** −0.0001*** 2.3766*** 1.2424*** −0.0001*** 2.2122*** 1.1625***
𝑎𝑑𝑗.𝑅2 9.59% 92.2% 94.33% 10.14% 87.20% 91.75% 7.18% 89.19% 92.30%
Quantile Regression
𝜏 = 5th −0.0001*** 2.0349*** 1.2434*** −0.0001*** 2.6833*** 1.4376*** −0.0001*** 2.7421 1.3092
𝑎𝑑𝑗.𝑅2 5.05% 46.94% 59.79% 14.94% 32.90% 46.89% 3.26% 36.45% 47.00%
𝜏 = 10th −0.0001*** 2.2010*** 1.2899*** −0.0001*** 2.1569*** 1.4064*** −0.0001*** 2.6197 1.3096
𝑎𝑑𝑗.𝑅2 6.34% 48.81% 61.93% 15.39% 33.51% 49.16% 4.59% 38.91% 48.98%
𝜏 = 50th −0.0001*** 2.5238*** 1.1696*** −0.0001*** 2.3873*** 1.2534*** −0.0001*** 2.2684 1.1773
𝑎𝑑𝑗.𝑅2 8.53% 64.76% 71.58% 15.36% 53.80% 65.61% 7.92% 58.58% 67.46%
𝜏 = 90th −0.0003*** 2.4673*** 1.8000*** −0.0002*** 2.3293*** 1.1090*** −0.0001*** 2.1138 1.0406
𝑎𝑑𝑗.𝑅2 15.45% 80.19% 80.08% 16.57% 76.18% 77.14% 10.14% 77.90% 77.30%
𝜏 = 95th −0.0001*** 2.4814*** 2.2583*** −0.0001*** 2.369*** 1.2693*** −0.0001*** 2.1533 1.1688
𝑎𝑑𝑗.𝑅2 15.78% 76.77% 77.48% 16.29% 72.61% 74.55% 11.95% 74.64% 74.46%

Panel B: 𝛥𝐶𝑜𝑉 𝑎𝑅𝐼𝑛𝑠𝑢𝑟𝑒𝑟𝑠

Greenhouse 100 Polluters Index Toxic 100 Air Polluters Index Toxic 100 Water Polluters Index

𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆 𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆 𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆

𝑂𝐿𝑆 −0.0001*** 1.3625*** 1.6506*** −0.0001*** 1.3506*** 0.6940*** −0.0001*** 1.2513*** 0.6466***
𝑎𝑑𝑗.𝑅2 7.63% 92.17% 95.15% 11.51% 94.30% 95.87% 6.64% 95.56% 95.61%
Quantile Regression
𝜏 = 5th −0.0001*** 1.1283*** 1.6656*** −0.0001*** 1.4434*** 0.6889*** −0.0001*** 1.3489 0.6487
𝑎𝑑𝑗.𝑅2 7.10% 65.76% 69.48% 15.78% 68.62% 74.65% 8.69% 71.57% 73.62%
𝜏 = 10th −0.0001*** 1.1193*** 1.6578*** −0.0001*** 1.2151*** 0.6833*** −0.0001*** 1.2702 0.6431
𝑎𝑑𝑗.𝑅2 5.78% 65.06% 71.51% 15.45% 70.23% 77.03% 8.03% 73.04% 75.83%
𝜏 = 50th −0.0001*** 1.3501*** 1.6448*** −0.0001*** 1.2792*** 0.6845*** −0.0001*** 1.2077 0.6473
𝑎𝑑𝑗.𝑅2 8.34% 65.67% 73.47% 16.34% 73.03% 75.48% 10.53% 74.67% 74.73%
𝜏 = 90th −0.0001*** 1.4226*** 1.6495*** −0.0001*** 1.4762*** 0.7112*** −0.0001*** 1.3168 0.6635
𝑎𝑑𝑗.𝑅2 9.75% 78.80% 81.92% 15.05% 80.64% 83.98% 13.43% 83.38% 82.64%
𝜏 = 95th −0.0001*** 1.3809*** 1.6329*** −0.0001*** 1.5698*** 0.7056*** −0.0001*** 1.3779 0.6401
𝑎𝑑𝑗.𝑅2 10.01% 77.35% 79.22% 15.36% 78.34% 79.86% 14.41% 81.40% 78.70%

Notes: The coefficients from the time series regression analysis with the 𝛥𝐶𝑜𝑉 𝑎𝑅 as the dependent variable. The independent variables are listed in the header

of each column. Intercept results are not reported for the sake of space. The ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively.
Table 7
𝑀𝐸𝑆 and brown indexes.

Panel A: 𝑀𝐸𝑆𝐵𝑎𝑛𝑘𝑠

Greenhouse 100 Polluters Index Toxic 100 Air Polluters Index Toxic 100 Water Polluters Index

𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆 𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆 𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆

𝑂𝐿𝑆 −0.0001*** 2.4683*** 1.217*** −0.0001*** 2.4085*** 1.2935*** −0.0001*** 2.2426*** 1.2102***
𝑎𝑑𝑗.𝑅2 8.52% 88.16% 97.04% 10.69% 87.41% 97.08% 7.40% 89.47% 97.64%
Quantile Regression
𝜏 = 5th −0.0001*** 2.0666*** 1.3086*** −0.0001*** 2.7839*** 1.3735*** −0.0001*** 2.6443 1.2806
𝑎𝑑𝑗.𝑅2 6.84% 55.69% 71.18% 12.07% 56.17% 74.16% 9.39% 59.33% 75.51%
𝜏 = 10th −0.0001*** 1.9871*** 1.2924*** −0.0001*** 2.4384*** 1.3680*** −0.0001*** 2.6760 1.2647
𝑎𝑑𝑗.𝑅2 7.38% 54.49% 70.81% 10.06% 56.73% 74.36% 8.35% 59.79% 76.46%
𝜏 = 50th −0.0001** 2.5361*** 1.2035*** −0.0001*** 2.5531*** 1.2625*** −0.0001*** 2.3703 1.1987
𝑎𝑑𝑗.𝑅2 7.24% 54.33% 77.15% 13.02% 51.32% 76.64% 12.86% 55.68% 79.45%
𝜏 = 90th −0.0003*** 2.5611*** 1.158*** −0.0003*** 2.4463*** 1.2566*** −0.0003*** 2.1138 1.1583
𝑎𝑑𝑗.𝑅2 11.69% 74.62% 88.37% 15.42% 71.61% 88.48% 12.83% 73.91% 88.12%
𝜏 = 95th −0.0001** 2.5111*** 1.2212*** −0.0001*** 2.5366*** 1.2854*** −0.0001*** 2.1025 1.1557
𝑎𝑑𝑗.𝑅2 15.41% 69.88% 87.34% 13.17% 66.71% 87.17% 12.71% 69.89% 87.18%

Panel B: 𝑀𝐸𝑆𝐼𝑛𝑠𝑢𝑟𝑒𝑟𝑠

Greenhouse 100 Polluters Index Toxic 100 Air Polluters Index Toxic 100 Water Polluters Index

𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆 𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆 𝐼𝑛𝑑𝑒𝑥 𝑉 𝑎𝑅 𝐸𝑆

𝑂𝐿𝑆 −0.0001*** 2.0848*** 1.0287*** −0.0001*** 2.0771*** 1.102*** −0.0001*** 1.9271*** 1.0285***
𝑎𝑑𝑗.𝑅2 7.29% 88.78% 97.87% 10.63% 91.76% 99.46% 6.57% 93.26% 99.54%
Quantile Regression
𝜏 = 5th −0.0001*** 1.4746*** 1.0914*** −0.0001*** 1.6647*** 1.1389*** −0.0001*** 1.4254 1.0597
𝑎𝑑𝑗.𝑅2 4.85% 55.22% 78.97% 13.65% 69.18% 88.78% 7.80% 69.90% 87.61%
𝜏 = 10th −0.0001*** 1.4462*** 1.0835*** −0.0001*** 1.5547*** 1.1326*** −0.0001*** 1.4544 1.0430
𝑎𝑑𝑗.𝑅2 7.52% 55.17% 81.52% 15.43% 69.20% 89.65% 13.06% 69.71% 89.74%
𝜏 = 50th −0.0001*** 2.1751*** 1.0324*** −0.0001*** 2.226*** 1.0977*** −0.0001*** 1.9994 1.0315
𝑎𝑑𝑗.𝑅2 9.41% 56.49% 80.81% 13.11% 61.52% 90.93% 11.98% 65.85% 91.88%
𝜏 = 90th −0.0003*** 2.1295*** 0.9529*** −0.0002*** 2.0516*** 1.0827*** −0.0002*** 1.8045 0.9930
𝑎𝑑𝑗.𝑅2 11.57% 77.63% 90.17% 14.94% 76.15% 94.19% 12.20% 80.67% 94.86%
𝜏 = 95th −0.0001*** 2.0278*** 0.9777*** −0.0001*** 2.1663*** 1.0866*** −0.0001*** 1.8196 0.9965
𝑎𝑑𝑗.𝑅2 13.34% 72.13% 89.02% 15.02% 70.67% 93.23% 13.00% 76.25% 94.19%

Notes: The coefficients from the time series regression analysis with the 𝑀𝐸𝑆 as the dependent variable. The independent variables are listed in the header of

each column. Intercept results are not reported for the sake of space. The ***, **, and * indicate significance at 1%, 5%, and 10% levels, respectively.
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Overall, our results confirm that climate change and financial sys-
tem are strictly interconnected and that the former might jeopardize the
stability of the latter. Understanding how the systemic risk of the bank-
ing and insurance sectors could be impacted by climate disasters and
changes in the performance of green and brown companies provides
useful insights to prevent potential episodes of financial instability. The
evidence that a significant impact on the systemic risk of US banks
and insurers is produced by only some of the climate disasters taken
into account deserves attention from a policy point of view, due to the
potentially increasingly devastating impacts of global warming in the
long run. Consequences for banks and insurance companies must not be
underestimated since physical risks directly cause losses characterized
by a huge magnitude and the ability to rapidly spread and severely
impact other financial intermediaries.

Again, from a policy perspective, our results are relevant since they
also allow us to argue that, based on the evidence referred to green
and brown market indexes, investing in green companies contributes to
mitigating financial systemic risk when these companies’ performance
gives rise to an increase in the respective market indexes. This result
does not hold for brown companies: changes in the levels of the corre-
sponding market indexes do not affect the systemic risk of US banks and
insurers. When the performance of green and brown companies turns
out in a raise in the 𝑉 𝑎𝑅 and 𝐸𝑆 calculated on the respective market
indexes, green firms contribute more than brown ones to the growth of
financial systemic risk. Even if the performance and health of green and
brown companies might depend on different factors, not necessarily
related to the adoption of climate change policies, our findings suggest
that these policies should be set considering that, from a financial sys-
tem stability perspective, issues may come not only from the reduction
in the value of brown companies’ stranded assets, as mainly pointed out
by prior studies, but also from some specific characteristics of the green
companies (e.g., newer technology, higher financial fragility, and lower
market share), which distinguish them from the brown ones and, under
a negative market environment, might determine a larger increase in
the systemic risk of their financial counterparties.
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