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Abstract
Software maintenance and evolution can introduce defects in software systems. For this reason, there is a great interest to

identify defect prediction and estimation techniques. Recent research proposes just-in-time techniques to predict defective

changes just at the commit level allowing the developers to fix the defect when it is introduced. However, the performance

of existing just-in-time defect prediction models still requires to be improved. This paper proposes a new approach based

on a large feature set containing product and process software metrics extracted from commits of software projects along

with their evolution. The approach also introduces a deep temporal convolutional networks variant based on hierarchical

attention layers to perform the fault prediction. The proposed approach is evaluated on a large dataset, composed of data

gathered from six Java open-source systems. The obtained results show the effectiveness of the proposed approach in

timely predicting defect proneness of code components.
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1 Introduction

Due to the necessity of always more complex systems,

software maintenance and evolution are critical and con-

tinuous activities that likely introduce new defects [7].

Consequently, an increasing interest is pointed toward the

analysis and prediction of the effort and cost required for

bug fixing since it can reduce resource waste and support

decision-making. Some techniques allow checking if new

software changes introduced new defects in the source

code. For example, in the last years, several studies propose

test cases [51] and code reviews [1]. While other approa-

ches are based on statistical models exploiting source code

and development process data identifying the software

components that are more prone to be defective [52].

Specifically, there are two main types of component

defectiveness prediction techniques: long-term and just-in-

time (JIT). The long-term prediction uses information

accumulated along software releases to identify the arti-

facts that are more prone to be defective. For example,

some authors [10] propose and evaluate Object-Oriented

metrics [23] to predict post-release defects, while other

authors propose process metrics [6, 33]. A drawback of

long-term defect prediction models is that in real scenarios

they are poorly useful since they do not timely support [41]

the developers when they are committing defectiveness

code into the repository. Differently, JIT techniques exploit

the characteristics of a code-change and eventually mark it

as a fix-inducing change. This allows developers to deal

with the defects as soon as they are introduced, indeed,

recover design decisions later may be more and more dif-

ficult and the inspection activities require more effort.

Overall, JIT approaches reduce this effort allowing early

identification of the problems. With these approaches, the

developers can reduce the time required to diagnose

problems since they focus on the committed artifacts only

[41].
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This study, differently from the existing JIT defect

prediction models [22, 35, 41, 52, 69, 70, 72], introduces a

variant of the temporal convolutional networks (TCN), that

exploits hierarchical attention layers, to predict which code

changes are fix-inducing (i.e., are more prone to introduce

defects into the software components). We supposed that

the TCNs are particularly suitable to address the JIT-SDP

(software defect prediction) problem that is characterized

by a huge amount of data (extracted at the commit level)

organized as multivariate time-series. TCN can look very

far into the past to make a prediction using a combination

of deep networks (augmented with residual layers) and

dilated convolutions. The underlying hypothesis is that

since TCN is characterized by casualness in the convolu-

tion architecture design and sequence length [8], they are

more suitable for the software defect prediction scenario.

The reason lies in the need to learn, during software evo-

lution analysis, causal relationships between quality and

process metrics and the presence of defects. Moreover, the

basic architecture of TCN is customized by adding a

hierarchy of attention layers able to capture both low and

high frequency change patterns of metrics time series over

time. Finally, the adoption of TCN is also suitable given

the availability of a huge number of data for several sys-

tems (since data extraction is performed at the commit

level).

Summarizing, if compared to other JIT models proposed

in the literature, our model is characterized by the fol-

lowing novelties:

– it is based on a mix of source code quality and process

metrics (instead of using Mockus and Weiss’s model)

that is suitable to measure the quality of both the source

code elements and of the activities performed around

each commits; our findings show that the proposed

metrics are effective in predicting the probability of

changes inducing a fix;

– fine-grained analysis for both time and space: using

historical data gathered from the repository, it can

predict specific classes (instead of components) as

defect-prone in the next commit (instead of releases);

– exploits a variant of TCN adding a hierarchy of

attention layers to better capture relationships of

product and process metrics over time.

The performance comparison (for both effectiveness and

efficiency) between the proposed approach and the existing

JIT models are discussed in the results.

This work extends the preliminary study proposed in [4]

adding the following contributions:

– it exploits a set of ad-hoc process metrics. The

experiments highlight that extending the features model

with the proposed process metrics improves final end-

to-end prediction;

– more in-depth experimentation discussing four research

questions that cover:

– performance assessment of the TCN on both the

original and the extended model;

– comparison with other neural networks architectures

(LSTM, CNN-1D, CNN-2D);

– comparison with the most relevant approaches in

the literature;

– a study of how buggy revisions ratio (i.e., imbal-

ance) impacts final end-to-end prediction

performance;

– a higher number of systems (six instead of four)

including two larger systems for size (i.e., LOC and

number of classes). For all systems also the history size

is extended, studying a higher number of commits

related to a longer time frame.

The paper is structured into eight sections. Section 2,

reports a description and a comparison with the main

related work. Section 3 contains some background infor-

mation while a discussion of the proposed approach is

reported in Sect. 4. Section 5 describes the experiment

carried out whose results are reported and discussed in

Sect. 6. Threats to validity are discussed in Sect. 7 and,

finally, the conclusions are drawn in Sect. 8.

2 Related work

Several works applied deep-learning techniques to boost

defect prediction performances at change-time. In [70], the

authors applied the deep belief network for the first time to

the just-in-time software defect prediction. The authors

evaluated their approach on datasets taken from 6 large

open-source software projects achieving average recall and

F1-score of 69% and 45%. Besides, for cost-effectiveness,

this approach can identify over 50% defective changes by

reviewing only 20% of lines of code. In a recent work [54],

authors proposed a prediction model based on graphs

representing program execution flows and deep neural

networks for automatically learning defect features. Since

control flow graphs are built from the assembly instructions

the whole source code is first compiled. This implies that

this model applies only when the source code is available

and compilable. In some studies [26, 66], DBN and LSTM

have been used to extract features from the project’s source

code while in another work [68], a deep neural network

with a new hybrid loss function is used to train a DNN

learning top-level feature representation. The extensive

empirical investigation carried out on a benchmark data-set
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with 27 defect data demonstrates the superiority of the

proposed approach in detecting defective modules when

compared with 27 baseline methods. In [44], a genetic

algorithm is used as a feature optimization model selecting

a set of features as input of a DNN. The authors evaluated

this model on five projects belonging to the well-known

PROMISE data-set obtaining the best accuracy in the lit-

erature (98%), to the best of our knowledge. Anyway, at

least two important limits are necessary to highlight: firstly,

it is not possible to explore the source code, secondly, the

contextual data are not comprehensive (e.g., no data on

maturity are available).

Recently research on JIT techniques applied to SDP has

increased rapidly. All the JIT models are designed based on

the assumption that past code change properties are similar

to future ones or, in other terms, that ‘‘the predictive power

of JIT models does not change by time’’ [38]. To identify

the defect-inducing changes in [41] authors proposed a

prediction model based on JIT quality assurance. Later on,

the authors carried out an empirical investigation on 11

open source projects to evaluate how JIT models perform

in the context of cross-project defect prediction [40]. Their

main findings report that JIT models learned using other

projects are a viable solution for projects with limited

historical data and only when the data used to learn them

are carefully selected.

In [69] Yang et al., still using the same basic change

features used by Kamei et al’s [40], uses a combination of

data preprocessing and a two-layer ensemble of decision

trees to improve the performance of JIT defect prediction.

In the inner layer, they combine Decision Tree and Bag-

ging to build a Random Forest while in the outer layer they

use random under-sampling to train many different Ran-

dom Forest models and ensemble them once more using

stacking. The results of the empirical investigation carried

out on data of six open-source projects, show that on

average across the six datasets, the approach achieves an

average F1-score of close to 50%.

Afterward, the authors replicated their study in [72]. The

goal of replication was to verify the results of the original

study [70] and investigate whether diversifying the set of

classifiers, optimizing the weights of the classifiers when

combining them and additional layers in the ensemble, can

enhance performance in predicting defects. For this reason,

the authors applied a new deep ensemble approach

assessing the depth of the original study and achieving that

the F1 score is statistically significantly higher at an alpha

of 0.05 for the new approach across all projects compared

to the original approach.

Chen et al. [22], believing that supervised methods

should have better prediction performance, designed a new

supervised method for JIT-SDP. This method applied a

multi-objective optimization algorithm to software defect

prediction. Experimental results, carried out on six open-

source projects, show that the proposed method is superior

to all state-of-the-art prediction models for Accuracy and

Popt (the normalized version of the effort-aware perfor-

mance indicator). They also found, for example, that the

proposed method for F1, average value, can obtain 24%,

45%, 18%, and 9% on average when compared to the

supervised methods that gave the best results.

Pascarella et al. [52] proposed a fine-grained prediction

model, based on the Random Forest technique, to predict

commit by commit the specific file that is defective. The

empirical investigation shows that 43% of defective com-

mits are mixed by buggy and clean resources, obtaining a

maximum value of 71% for the F-measure and stable per-

formance across the considered projects. It is important to

note that authors used 24 basic features representing a

modified version, to work at file-level in a commit, of those

previously proposed by Kamei et al. [41] and Rahman and

Devanbu [57].

Hoang et al. [35] proposed a prediction model based on

Convolutional Neural Network, whose features were

extracted from both commit messages and code changes.

Empirical results show that the proposed approach, eval-

uated in three different settings: cross-validation, short-

term and long-term, achieved improvements of 8.96%,

7.00%, and 8.05% in terms of AUC compared to the best

baseline. Results also indicate that code changes are more

important to detect buggy commits than commit messages.

Cabral et al. [20] propose a novel class imbalance

evolution approach for the specific context of JIT-SDP.

Their approach managed to produce up to 63.59% more

balanced recalls on the defect-inducing and clean classes

than state-of-the-art class imbalance evolution approaches.

In [27] authors propose a new software defect prediction

method based on the improved histogram-based isolation

forest able to mitigate some side-effects caused by the

imbalanced training dataset and enhance prediction per-

formance. The authors experimented on ten imbalanced

NASA software defect datasets and to validate the effec-

tiveness of the proposed method make comparisons with

traditional ensemble learning methods such as Boosting,

Bagging, and Random Forest. The best performances of the

F-measure are under the 87% value.

To date, all the JIT models are based on the software

prediction model introduced by Mockus and Weiss [48].

This model is made up of a set of 14 software changes,

grouped in five dimensions, whose effectiveness to predict

the introduction of a defect was empirically shown by

authors [48] and in [41] where authors validated it through

a ‘‘large-scale study of six open-source and five commer-

cial projects from multiple domains’’ [41].

Concerning the described approaches, our study pro-

poses a JIT defect-prediction technique using different
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metrics as features and a different neural model, based on a

TCN variant, as a predictor. It allows the developers to fix

and check the defects just at the time they are introduced

achieving the following advantages:

– predicting where defects will be located in focused code

components provides large effort savings over coarser-

grained predictions;

– predicting defect ahead of the time help to focus the

testing effort on the right part of the system saving

resources;

– only properties related to change are considered for

predictions. Therefore, the prediction can be performed

immediately ensuring that the design decisions are still

in the minds of developers.

3 Background

This section provides the essential notions needed to follow

the deep neural networks based approach description.

3.1 Just-in-time software defect prediction

The existing techniques to evaluate the defectiveness of

software can be categorized into long-term predictions and

short-term predictions. Long-term techniques pertain to

models able to analyze the historical data stored in software

releases to identify the artifacts that are more prone to

defect in future. These techniques were applied using

Object-Oriented metrics [24] or process metrics (e.g., the

entropy of changes [33]). The main limitation of the long-

term prediction models is that they do not provide devel-

opers with immediate feedback. To overcome this limita-

tion, short-in-time prediction models exploit the

characteristics of a commit to perform at check-in time

predictions of the likelihood of a commit introducing a

defect. These models offer at least three advantages: first,

the granularity of predictions is fine, developers need to

check only code modified by commit to locate the defec-

tive code; second, the programmer who made the commit

still keep in mind the details of the development and this

can increase the efficiency of defects detection and repair;

third, the expert to perform code checking on the defect-

prone modules is known and immediately available. Main

short-term prediction models focused on just-in-time

quality assurance techniques. This technique [41] tries to

reduce the effort of a reviewer focusing on ‘‘identifying

defect-prone (’risky’) software changes instead of files or

packages’’. In this way ‘‘developers can review and test

these risky changes while they are still fresh in their

minds’’ [41]. Later on, authors of [70] and [9] proposed the

usage of alternative techniques for just-in-time quality

assurance, such as cached history, deep learning, and tex-

tual analysis, reporting promising results. Other approaches

proposed the use of deep-learning [70], textual analysis [9],

and unsupervised methodologies [71].

3.2 Machine learning and deep learning
algorithms

Machine learning (ML) is the study of algorithms that

allow computer programs to automatically improve

through experience [47]. One of the most important factors

for the performance of machine learning methods concerns

data representation (or features) on which they are applied.

At present, among the various ways of learning represen-

tations, the most interesting ones are the Deep Learning

(DL) methods. These methods are formed by the compo-

sition of multiple nonlinear transformations, to yield more

abstract and more useful representations [12]. DL takes

inspiration, by the way, biological nervous systems process

information (artificial perceptrons can be seen as human

neurons).

The architecture of the DL methods consists of con-

structing multiple levels of representation or learning a

hierarchy of features. The depth of a circuit is the length of

the longest path from an input node of the circuit to an

output node of the circuit. The crucial property of a deep

circuit is that its number of paths, i.e., ways to re-use dif-

ferent parts, can grow exponentially with its depth. DL

promotes the re-use of features and leads to progressively

more abstract features at higher layers of representations

(more removed from the data). DL has been successfully

applied in the complex domain since it allows us to grad-

ually improve overall performance by adopting black-box

models. DL applications are increasingly growing in the

fields of speech recognition, image recognition, bioinfor-

matics, financial fraud detection, computer vision, natural

language processing, health informatics, audio recognition,

social network filtering, and machine translation.

Among networks, deep neural networks consist of sev-

eral hidden layers where each layer represents hierarchies

of concepts used to perform pattern classification and

feature learning. Similarly to the training of a traditional

neural network, for the DL network, the forward and

backward phases are expected. In the forward step, the

nodes’ activation signals flow from the input to the output

layer. In the backward step, the biases and the weights are

eventually adjusted to improve the network performance.

In this study, we adopt TCN networks, a class of deep

neural networks, and propose a variant of them. Moreover,

we compare the performance obtained by using the pro-

posed TCN network with the ones obtained using other

alternative neural networks: LSTM, CNN-2D.
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3.2.1 LSTM networks

Long Short-Term Memory (LSTM) networks [61] are a

type of Recurrent Neural Network (RNN) architectures

used in the field of DL.

A common LSTM unit includes a cell, an input gate, an

output gate and a forget gate. LSTM networks are able of

learning over long time sequences and retaining memory

[36] because the cell remembers values over arbitrary time

intervals and the three gates regulate the flow of informa-

tion into and out of the cell. Therefore, the application of

LSTM as a prediction task in the area of software defect

prediction allows looking back to the history of fine-

grained quality metrics.

The LSTM classifier architecture is described in [5]. It is

made up of three types of layers: the input, the hidden, and

the output layers.

The input layer is a prototype bringing the data into the

network for further processing. It requires a 3D tensor with

shape: number of samples, number of time steps, and

number of features. Next, the hidden layer seeks to con-

struct the relation between the input and the output. It

represents the principal part of the network and can contain

one single or multiple layers. LSTM units return all of the

outputs from the unrolled LSTM units through time

allowing learning sequences of observations and well-

suiting to time series problems. To prevent the overfitting

problem the dropout regularization method is used for

every LSTM layer to improve the model performance.

Finally, the output layer is used as a prototype between the

network and the output. It contains a feed-forward neural

network that is a regular fully connected layer and allows

transforming the 3D tensor at the hidden layer output to a

1D array at the classifier output. The LSTM training

requires the definition of the objective function as ‘‘cate-

gorical cross-entropy’’, a logarithmic loss function spe-

cially used to solve the multiple mutually-exclusive class

problem.

This function returns the cross-entropy H(p, q) between

a predicted probability distribution (p(x)) and a true prob-

ability distribution (q(x)). It is given by:

Hðp; qÞ ¼ �
X

x

qðxÞlogðpðxÞÞ

3.2.2 CNN

A Convolutional Neural Network (CNN) is based on a

feed-forward architecture consisting of several stages, each

specializing different functionalities [2].

In particular, the layers of a CNN have neurons arranged

in 3 dimensions: width, height, depth; where neurons

belonging to one layer are connected only to a small region

of the layer before it, rather than to all neurons in a fully

connected way. The architecture of CNN is shown in

Fig. 1. Each CNN is made up of a chain of ordered blocks,

where each block identifies one level of the network that

transforms one volume of activations into another through

a differentiable function. It consists of the following levels:

– Input level: represents the set of data in the form of

numbers to be analyzed.

– Convolutional level (Conv): extracts the main features

through the use of filters.

– ReLU level (Rectified Linear Units): introduces non-

linearity to a system that is essentially calculating linear

operations during convolutional levels, through the

scalar product between the filter and the receptive field.

It cancels all negative values, increasing the nonlinear

properties of the model and the global network without

affecting the receptive fields of the convolutional level.

The ReLU level applies the function f (x) = max (0,

x) to all values in the input volume.

– Pool level: allows identifying if the study characteristic

is present in the previous level and drastically reduces

both height and width, that is the spatial dimension, of

Fig. 1 Convolutional neural network
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the input volume, and also the computational require-

ments for future levels.

– FC level (Fully Connected level): connects, first, all the

neurons of the previous level to establish the various

identification classes displayed in the previous levels

according to a certain probability and, then, performs

the classification. It takes an input volume (whatever

the output of the convolutional level or of the ReLU or

of the pool level that precedes it) and generates a vector

whose dimension is N that is the number of classes

from which the program must choose.

There are CNNs of 1, 2, or 3 dimensions. These CNNs

work always, in the same way, the only differences are the

structure of the input data and how the filter, also known as

a convolution kernel, moves across the data. In our work,

we have considered CNN-2D because it is suitable for our

data structure.

With a 2D convolution level, a 3� 3 convolution win-

dow contains 3� 3 = 9 feature vectors. With the 1D con-

volution level, a size 3 window contains only 3 feature

vectors making convolution windows of bigger sizes a

viable choice.

3.2.3 Temporal convolutional networks (TCN)

The temporal convolutional network (TCN) is a type of

network with two distinguishing characteristics: 1) the

convolutions in the architecture are causal to ensure that

only the current and passing samples are considered in the

evaluation of the output at a given instant of time; 2) the

architecture can take a sequence of any length and map it to

an output sequence of the same length. Beyond this, it is

important to highlight the ability for the TCNs to look very

far into the past to make a prediction using a combination

of very deep networks (augmented with residual layers)

and dilated convolutions.

The TCN architecture to perform the classification uses

the last sequential activation of the last layer because it can

summarize in a single vector the information extracted

from the complete input sequence.

4 Approach

In this section, the proposed software defect prediction

approach is described focusing on the following aspects:

– an improved granularity of the prediction in space and

time;

– the set of fine-grained metrics exploited as features;

– the adopted deep neural network architecture.

Concerning the granularity, the proposed approach aims at

predicting the software defectiveness at a class level across

software project commit events. The analysis at the com-

mit-level makes available a greater amount of training data

and allows leveraging deep learning approaches.

Time granularity is equally important. Indeed, the

sampling at each release makes the prediction less useful in

practice. Developers need just-in-time information on

defect-proneness to react quickly directing the testing

effort toward the components that are most likely to exhibit

defects. In addition, coarse-grained predictions usually

increase the effort spent by developers in locating the

software defects within large files or components.

Looking at the selected features, two classes of metrics

are largely used to predict software defects:

– product metrics, describing the source code internal

structure quality;

– process metrics, modeling the development process and

developers interactions quality.

The proposed approach adopts a mix of these metrics.

Another critical aspect is the prediction technique to

adopt. Looking at existing literature, deep learning tech-

niques have been exploited for the tasks using neural

machine translation approaches but the results are still not

satisfying. Given the higher volume of data available using

commit level analysis, the goal of this work is to investi-

gate to what extent a just-in-time metric-based approach is

effective in predicting software defects and which neural

network architecture is the best choice for the task. From

the architectural point of view, we propose a variant of

Temporal Convolutional Networks. Since they imply

casualness in the architecture design [8], they are suit-

able to our prediction problem where the causal relation-

ships among the metrics evolution and software defect

presence needs to be learned. The proposed variant

includes a hierarchy of attention layers more efficient to

capture the complex relationships of product and process

metrics over time.

4.1 The feature model

One of the most commonly used metrics suites is that

proposed by Chidamber and Kemerer (CK) [24]. It origi-

nally consisted of 6 metrics that were later extended by

adding missing aspects. In particular, Abreu [19] intro-

duced a set of metrics called Method Hiding Factor (MHF)

to measure the information hiding aspects of a class.

Several studies discussed the strong correlation of these

metrics to software faults [18, 62]. For this reason, we also

included these metrics in the features model used to train

our classifiers.
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Moreover, several additional factors contribute to

introduce software defects. For example, the development

process followed by developers can strongly influence

software defectiveness. This allows us to introduce the

process metrics that explore the kind of performed changes

and the characteristics of authors and committers involved

in the changes. The process metrics considered in this study

are:

– Developer Seniority (SEN): It measures the seniority

of the software developer in days, at each commit. We

calculated its author’ seniority as the difference with

the commit date of its first commits in the repository

using the following formula:

SENðcj;diÞ ¼ CdðcjÞ � FcðdiÞ

where:

cj: the commit for which we want to evaluate the

author’s seniority.

di: the developer who authored the commit c j.

CdðcjÞ: the date of the commit c j.

FcðdiÞ: the date of the first commit authored in the

source code repository by developer d i.

– Owned Commit (OC): It is based on the definition of

code ownership [17] which considers a file owner as a

committer that performed, a given percentage of the

total number of occurred commits on the file.

In our context, we consider as owners the developers

that collectively performed at least half of the total

changes on that file. This assumption is in line with the

literature [31] that evaluates the ownership as the

percentage of changes of the contributor with the

highest number of changes.

More formally, we define the set of owners of the file

fj at commit ck as follows:

Oðfj; ckÞ ¼ fo1; . . .; oIg ð1Þ

The set contains the committers that, overall, per-

formed the 50% of the changes on fj in the commits

interval ½cs; . . .; ck� satisfying the following condition:

XjOðfj;ckÞj

i¼1

Rðoi; fj; ckÞ� 0:5 � Tcðfj; ckÞ ð2Þ

where cs is the starting point of our period of obser-

vation and Rðoi; fj; ckÞ is the number of changes per-

formed by developer oi on file fj in the time interval

½cs; ck�, and Tcðfj; ckÞ is the total number of changes

performed on fj in the time interval ½cs; ck� by all

developers that worked on it. To compute the set

Oðfj; ckÞ, we build an ascending sorted list of commit-

ters according to the number of changes performed on fj
in the time interval ½cs; ck�, and select the minimum set

of topmost committers in the ranked list that satisfies

the above constraint. With the above definition, it is

possible to define the Owned Commit (OC) binary

predicate as follows. Let be Oðfj; ckÞ the set of owners

of file fj at commit ck. OC indicates if the developer di
authoring the changes on fj at commit ck is one of the

owners of the file and is defined as follows:

OCðdi; fj; ckÞ ¼ di 2 Oðfj; ckÞ

– Number of File Owners (NFOWN): Given the

definitions above, this can be defined, for a file fj and

a commit ck, as the cardinality of the set Oðfj; ckÞ:
NFOWNðfj; ckÞ ¼ jOðfj; ckÞj

– Owned File Ratio (OFR): for a developer di, a file fj
and a commit ck, this is the ratio Rðdi; fj; ckÞ of changes
performed by di with respect to the total changes

performed by all developers on file fj from the start of

the observation period (i.e., in the commits interval

[cs,. . .,ck]).

The last three metrics are file or developer properties and

can be easily computed using VCS logs. The Time since

last commit (TSLC), for a given file fj and a commit ck, is

the number of days passed since last commit on fj. For a

given developer di, the Commit Frequency (CF) is the

number of commits by month authored by di whereas the

Mean time between commits (MTBC) is the average time

(in days) between all subsequent commits authored by di.

The complete features set are a combination of the above

product and process metrics as described in Table 1. The

table reports each metric in a row along with an acronym

and a short description (last column).

The process deployed for the feature extraction and

training/test datasets generation is described in Fig. 2a. The

process starts when all the commits logs are gathered by

the VCS to evaluate the process metrics. From the VCS

also the CK and MOOD metrics are evaluated. However,

for each commit, the corresponding source code has been

downloaded and analyzed to check the evolution of the CK

and MOOD metrics of Table 1.

The open-source tool JaSoMe1 (Java Source Metrics) is

used to evaluate metrics. It is an open-source tool to mine

internal quality metrics from systems source code and does

not require source code to be compiled. The metrics are

calculated also by using other existing tools [3, 60] to

ensure the correctness of the obtained results. These met-

rics are then cleaned (incomplete and wrong samples are

removed) and normalized (min-max normalization).

Similarly, all information about the bugs (issue logs) is

extracted by the tracking system (BTS). In particular, for

1 https://github.com/rodhilton/jasome/.
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Table 1 The Metrics included in the prop features model

Type Acronym Description

Product metrics (CK and

MOOD)

Number of Attributes Inherited (Ai) Attributes inherited but not overridden

Number of Attributes Defined (Ad) Attributes defined within class

Number of Attributes Overridden (Ao) Attributes in class that override an otherwise-inherited attributes

Number of Attributes Inherited Total (Ait) Attributes inherited overall

Class Relative System Complexity

(ClRCi)

avg(Ci) over all methods in class

Number of Public Attributes Defined (Av) Number of defined attributes that are public

Depth of Inheritance Tree (DIT) The maximum depth of the inheritance hierarchy for a class

Class Total System Complexity (ClTCi) sum(Ci) over all methods in class

Number of Hidden Methods Inherited

(HMi)

Number of inherited (but not overridden) methods that are non-public

Number of Hidden Methods Defined

(HMd)

Number of defined methods that are non-public

Lack of Cohesion in Methods (LCOM*) It indicates whether a class represents a single abstraction or multiple

abstractions

Number of Methods Inherited Total (Mit) Methods inherited overall

Number of Methods Defined (Md) Methods defined within class

Number of Methods Inherited (Mi) Methods inherited but not overridden

Number of Methods Overridden (Mo) Methods in class that override an otherwise-inherited method

Number of Attributes (NF) The number of fields/attributes

Number of Methods (NM) The number of methods

Number of Methods Added to Inheritance

(NMA)

The number of methods a class inherits adds to the inheritance hierarchy

Number of Inherited Methods (NMI) The number of methods a class inherits from parent classes

Number of Ancestors (NOA) Total number of classes that have this class as a descendant

Number of Children (NOCh) Number of classes that directly extend this class

Number of Descendants (NOD) Total number of classes that have this class as an ancestor

Number of Links (NOL) Number of links between a class and all others

Number of Parents (NOPa) Number of classes that this class directly extends

Number of Public Attributes (NPF) The number of public attributes

Number of Static Attributes (NSF) The number of static attributes

Number of Static Methods (NSM) The number of static methods

Polymorphism Factor (PF) PF measures the degree of method overriding in the class inheritance tree

Number of Public Methods Defined (PMd) Number of defined methods that are public

Raw Total Lines of Code (RTLOC) The actual number of lines of code in a class

Specialization Index (SIX) How specialized a class is, defined as (DIT * NORM) / NOM;

Total Lines of Code (TLOC) The total number of lines of code, ignoring comments, whitespace

Inheritance Factor (MIF) Mi / Ma

Method Hiding Factor (MHF) PMd / Md

Number of Methods (All) (Ma) Methods that can be invoked on a class (inherited, overridden, defined as Ma

= Md ? Mi

Weighed Methods per Class (WMC) The sum of all of the cyclomatic complexities of all methods on a class

Process metrics Commit Frequency (CF) The authoring frequency of the developer authoring the change

Developer Seniority (SEN) The seniority of the developer authoring the changes

Number of File Owners (NFOWN) The total number of owners of the changed file

Owned Commit (OC) A predicate indicating if an author is among the file owners or not.

Owned File Ratio (OFR) The ratio of file lines owned by the developer authoring the change.

Time since last commit (TSLC) The days passed since last authored commit

Mean time between commits (MTBC) The mean time between two commits of the developer authoring the commit
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each class, the number of commits and bugs is evaluated

from the log gathered from the BTS repository. For each

commit, the extracted information regards the changed files

(i.e., their names and the total number) and the commits

(i.e., their ID, timestamp, commit parent, and commit

note). This information allows identifying each change that

induces a fix. To this aim, an approach inspired to [29] is

used: for each ID registered in the BTS of the analyzed

project, the corresponding changes (basing on the matching

of the commit note) are selected. The extracted issues are

then classified on their type attribute (issues analysis and

filtering) and the issues that are not classified as bug fixes

(e.g., improvement, enhancements, feature additions, and

refactoring tasks) are filtered out.

The traceability between the VCS and the BTS reposi-

tories is ensured by the issue ID. This allows identifying,

for each class, all the issues that are related to bug fixes

since they are used to tag the faulty revisions associated

with each class. Moreover, the issues are selected by their

status: the CLOSED and the DONE statuses are considered.

However, CLOSED and the DONE statuses suggest that the

changes are committed in the repository and applied to the

components (a commit is performed). In this way, the

bugged classes for each commit registered in the VCS

repository can be identified. The final dataset, for each

class of the system, contains the evolution, by commits, of

the calculated process and product metrics integrated with

bug presence information (bugs data). The integrated

metrics and bugs data are then used to build the training

and testing datasets.

4.2 Deep neural network-based classifiers

The classifier is based on a TCN network that is compared,

for what concerns the obtained performances, with differ-

ent deep neural network architectures: LSTM, CNN. The

Fig. 2 Overall process and classifier architecture
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classification is performed in three steps: (i) data samples

pre-processing, (ii) training, and (iii) testing.

The first step allowed cleaning the raw dataset: the

incomplete and wrong sampled data sessions are removed

and the attributes are normalizing using a min-max nor-

malization approach. The second step allowed defining a

set of labeled traces (the structure of the traces depends on

the kind of considered network).

The starting point is the VCS direct acyclic graph

(DAG) integrated with data extracted from the BTS system

using information extracted from VCS logs. The lin-

earization algorithm performs a graph traversal to generate,

for each class in each branch, a commit sequence where

commits are marked with bugs opening and fixing events.

This step generates a set of commit windows that are used

to drive metrics and label calculation. Figure 3 shows a

small running example clarifying how training windows

are generated. The process starts in Fig. 3a where a small

DAG made of seven commits (from C1 to C7) belonging to

two branches (i.e., master and B1) is shown. This DAG

reports the evolution of four files over time. Let us focus on

the Server class for which a bug is opened in C3, on the

master branch, and fixed in C4, on the B1 branch. The

traversal produces, for the Server class, two linear windows

(W1 and W2) one for each branch in which the class is

present including information on when the bug is open and,

later, closed. Looking at the exemplified scenario, the

Server bug affects just one commit on the B1 branch as

reported in window W2 (since it is fixed in the fork at C4).

However, the same bug affects two commits on the master

branch since the fix is not applied until the merge commit

at C7. The linearization is a determining step since allows

to follow opening and fixing along the DAG paths, prop-

agating information on where a bug is alive, for a given

class, onto the linear windows used for training. Figure 3c

reports, for each window W1 and W2, the sequence of

metrics vectors evaluated for each commit of the window

and associated to the correct label that indicates bug

presence at that commit. These windows are collected and

used to generate training and test data.

(b) (c)

Fig. 3 A small running example showing training and test windows generation
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Specifically, to perform validation during the training

step, nested cross-validation is used [65].

It exploits an outer loop and an inner loop respectively

for error estimation and for parameter tuning. The inner

loop splits the training set into a training subset (the model

is trained on this subset) and a validation set (the param-

eters that minimize error on the validation set are selected).

In the outer loop, the dataset is divided into multiple dif-

ferent training and test sets, on each split the average error

is computed to obtain a robust estimate of model error. The

evaluation of the trained classifier is carried out using real

data that is never seen before by the classifier.

The classifiers proposed in this paper are constructed by

using the python deep learning library, Keras2. In the fol-

lowing, more details on how training is performed are

provided for each classifier.

4.2.1 Temporal convolutional network with hierarchical
attention layers

In the proposed TCN, we added a hierarchical attention

mechanism through the network levels introduced by [71],

because we believed that the representation just explained

could be too reductive for complex relationships, such as

those present in multivariate time series of quality metrics

internal bugs.

The following types of layers are considered:

– Input level: it is the neural network entry point and

includes a node for each set of considered features at a

given time;

– Hidden layers: they include the artificial neurons. The

output of each neuron can be calculated as a weighted

sum of its inputs and can be transmitted through an

activation function (in this study Mish, Swish, and

ReLu functions are used) or through a soft-plus

function;

– Attention layers: they model (both in input and in

output) the relationships regardless of their distance;

– Batch normalization: it allows to improve the training

performance of deep feed-forward neural networks;

– Layer output: it gives the required output.

The proposed TCN architecture can be parametrized by the

number of hidden layers, all having the same length as the

input layer. To impose the layers’ length coherence, suit-

able padding of length (kernel size-1) is used. This archi-

tecture ensures that at each evaluation, the output is

calculated looking only at current or previous samples. The

network exploits dilated convolutions allowing an expo-

nentially wide receptive field that depends on a dilation

factor df between every two adjacent filters (similar to a

fixed step). As the layer number increases, the dilation

factor raises at an exponential rate. When the kernel size

becomes kl, the data enabled at the lower layer is ðkl � 1Þd
and still rises at an exponential rate by the number of the

network layers. The prediction is performed on the last

sequential activation of the last layer (i.e., the output layer)

which summarizes data from the input time series into a

single feature vector that is used to generate the final

output.

However, this model can be unable to mine the high

number of complex and long-living relationships among

metrics and issues. For this reason, a hierarchical attention

approach [71] is used adding two levels of hidden layers

across the network as already done in [15, 16]. Attention

layers help to learn the relationships among items regard-

less of their remoteness in the input or output sequences.

This TCN-based architecture is depicted in Fig. 2b for n

hidden layers, the matrix of weights Li 2 RK�m defined as:

Li ¼ ½li1; :::; lim�; ð3Þ

where K is the filters’ number at each layer and m is the

length of the window and i is the number of the convolu-

tional activations layer (where i ¼ 1; . . .; n).

Moreover, we can define the layer attention weight mi 2
R1�m as:

mi ¼ softmaxðtanhðwT
i LiÞÞ ð4Þ

where wi 2 RK�1 are the trainable parameter vectors. For

the layer i, the corresponding set of convolutional activa-

tions is computed as ai 2 RK�1 ¼ f ðLib
T
i Þ where f ð�Þ is

one activation function among ReLU, Mish and Swish [46]

and bi are the weights of the attention layer. Finally, the

convolutional activations A 2 RK�n ¼ ½a1; :::; ai; :::; an� of
the hidden layers allow to compute the representation of

the last sequence to ensure the final classification:

a ¼ softmaxðtanhðxTAÞÞ ð5Þ

y ¼ f ðAaTÞ ð6Þ

where x 2 RK�1 and a 2 R1�n are respectively the vector

of weights and the output of the high-level attention layer,

and y 2 RK�1 is the neural network final output. Finally, a

batch normalization layer [37] is included to enhance the

training process.

Figure 2b also shows the data used by the network in the

training step. The dataset is composed of a set of labeled

traces Tr ¼ ðM; lÞ.
Each system development instant is represented as a row

M and is associated with a binary label l that allows pre-

dicting the presence of design smell. For each, a vector Vf

function is sent to the classifier during the training phase.

In the same way, data has been used by the input layer of
2 https://keras.io.
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the LSTM networks. For both the adopted networks (TCN

and LSTM), it is important to carefully select the time

series sliding window size hyperparameter, the number of

layers that depends on the duration of the dynamics that the

neural network must learn from data.

4.2.2 Convolutional neural networks training

Figure 1 describes the architectures of CNN models used to

predict software defects. Inspiring to typical CNN archi-

tecture applied in image classification, it includes a feature

extraction subnet that is followed by a classification subnet.

The first subnet is made up of a sequence of hidden layers

(convolution, batch normalization, and max-pooling layers)

with variable lengths where sizes and numbers as driven by

the hyper-parameter optimization process. The batch nor-

malization reduces the effects of different input distribu-

tions across training mini-batches, optimizing the entire

training process allowing convergence for deeper net-

works. Following the last max-pooling layer, the dropout is

also executed to avoid over-fitting. The figure also shows

that to drive CNN 2D, metrics data needs to be reshaped. In

particular, the evaluated metrics vectors are organized, for

each commit, as a matrix that needs to be dimensioned.

This allows ensuring sufficient space for the systems under

study and the features set adopted.

5 Experiment description

The experimentation is conducted by using the approach

described in Sect. 4 on a dataset composed of six open-

source systems.

In the following, the research questions, the dataset

description and the experiment settings are reported.

5.1 Research questions

The goal of the experiment is to study the performance of

the proposed approach for continuous just-in-time defects

prediction in the context of open-source software projects.

Specifically, we investigated the following research

questions:

RQ1: Is the proposed TCN-based approach effective for

just-in-time defect prediction? This research question aims

to evaluate. the F1 measure of the proposed TCN variant

on the described set of features, to predict the presence of

software defects for each investigated system. These

measures are compared with the best results present in the

literature.

RQ2: Is the proposed TCN variant more effective than

other deep neural network architectures used in the liter-

ature for just-in-time defect prediction? This research

question aims to compare, for each investigated system, the

accuracy and F1 measure of the proposed TCN variant to

predict the presence of software defects, with those

obtained from different permutations of alternative net-

works such as LSTM, CNN-2D.

RQ3: Does the proposed approach provide a perfor-

mance benefit from both product and process metrics?

What is the impact of the newly proposed process metrics?

This research question aims to assess the value of each

family of features independently from the others. To

answer this question, we build two different software pre-

diction models relying on (i) only product metrics, (ii) both

product and process metrics.

RQ4: What is the effect of imbalanced classes on the

performances of the TCN-based approach to predict buggy

Vs not buggy changes when trained on the proposed met-

rics? This research question aims to analyze the effect of

imbalanced data on the performances, evaluated in terms of

F-measure, of the TCN-based approach for just-in-time

software defects prediction using both product and process

metrics.

5.2 Dataset

In this study, we used datasets from six open-source pro-

jects. In order to perform projects sampling for our study,

we adopted criteria widely recognized in the literature

[25, 55]. Specifically, we queried GitHub enforcing the

following criteria:

1. the programming language, coherently with the pro-

duct metrics used, is Object-Oriented (in all cases it is

Java);

2. the Git repository is neither archived nor private;

3. the history stored on the Git repository, the minimum

history among the considered systems is 20 releases

and more than 1000 commits (filtering trivial projects);

4. the projects differ in application domains, sizes,

revisions (number of files);

5. the history spans over a large time frame, at least 8

years long;

6. the number of committers must be significant (� 20).

We obtained a list of thousand systems sorted by

decreasing number of community adoption metrics (i.e.,

number of forks, number of watches and number of stars).

Table 2 reports the names of the final selected projects

(first row), the dates of the first and the last considered

commit (second row), the total number of commits for each

system (third row), and the number of revisions for each

system (fourth row). Finally, in the last row for each sys-

tem is reported the number of buggy revisions.
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5.3 Experimental setting

For each research question, one or more experiments are

conducted. Starting from RQ1, for all the projects described

in Table 2, the set of features reported in Table 1 are

computed. Therefore, a TCN classifier is built to predict the

presence of software defects on the analyzed systems. The

performance of the TCN variant is evaluated to answer

RQ1. Moreover, to answer RQ2, the performance of TCN is

also compared to the performances obtained by using

alternative networks like LSTM and CNN-2D. Referring to

RQ3, an additional TCN classifier is built. It uses only

product metrics as features. Finally, to investigate the RQ4,

we calculated the distribution of clean and buggy revisions

for each project as reported in Table 2.

In all the classifications, a hyper-parameters optimiza-

tion [11] is performed (all the possible parameters’ com-

binations are evaluated, considering later only the best) to

obtain the suitable performance of the considered

classifiers.

The architecture parameters evaluated in the hyper-pa-

rameter optimization step as reported in Table 3 are the

network size, the activation function, the learning rate, the

number of layers, the batch size, the optimization algo-

rithm, and sliding window size (for TCN and LSTM

classifiers). The selection of the best parameters is per-

formed with an SBMO (Sequential Bayesian Model-based

Optimization) approach implemented through the use of

the TPE (Tree Parzen Estimator) algorithm [13, 14].

Looking at Table 3, the ranges evaluated for all the con-

sidered parameters are reported:

– Network size. Three groups of network sizes are

considered: small, medium, and large. The small size

network includes many learning parameters lower or

equal to 1.5 million. For the medium size, the included

number of parameters is between 1.5 million and 7

million. Finally, for the large, the included number of

parameters is between 7 million up to 12 million

parameters.

Table 3 Overview of the

evaluated hyper-parameters
CBCEFB hyperparameter Considered values

Network size Small, Medium, Large

Optimization algorithm SGD, Adam, RmsProp, Nadam, Adamax, Adagrad

Activation function Mish, ReLu, Swish

Learning rate [0.05, 0.015]

Dropout rate [0.10, 0.25]

Batch size { 16, 32, 64, 128, 256, 512 }

Number of layers { 5, 6, 7, 8, 9 }

Sliding Window Size (TCN/LSTM) { 16, 32 }

Table 2 Characteristics of the considered systems

Systems ZooKeeper3 Xerces2 Java4 JFreeChart5 Jackson Data

Format6
Jackson Core7 Commons

Imaging8

from-to dates Nov 2007—Mar

2020

Nov 1999—Mar

2020

Jun 2007—Feb

2020

Jan 2011—Mar

2020

Dec 2011—Feb

2020

Oct 2007—Feb

2020

Revisions 1,264,735 486,371 403,467 253,176 3,058,530 3,684,838

Commits 2101 5510 3786 1901 2103 1233

Buggy

revisions

105,210 10,514 31,752 19,383 137,074 812,263

3https://github.com/apache/zookeeper

4https://github.com/apache/xerces2-j

5https://github.com/jfree/jfreechart

6https://github.com/FasterXML/jackson-dataformat-xml

7https://github.com/FasterXML/jackson-core

8https://github.com/apache/commons-imaging
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– Activation function. Three activation functions are

evaluated: Relu, Swish and Mish [58].

– Learning rate. The evaluated learning rate is between

5 to 15, normalized on the base of the used optimization

algorithm. For example, when the optimization algo-

rithm is SGD, it is between 0.005 and 0.015.

– Number of layers: The considered number of layers is

between 5 and 9.

– Batch size. The considered batch size is between 16

and 512.

– Optimization algorithm. The more used optimization

algorithm is the stochastic gradient descent (SGD) [59].

Other evaluated algorithms are: Adam [43], RmsProp

[67], Nadam [67], Adamax [64] and Adagrad [64].

Notice that, coherently to [63], the optimization algo-

rithms are configured (when it was possible) by using

the accelerated gradient correction Nesterov (NAG).

This allows to (i) avoid excessive and unnecessary

changes in the parameter space, and (ii) improve

learning performance.

– Dropout rate: The dropout rate ranges between 0.10

and 0.25.

The neural network training is then performed by using as a

loss function the cross-entropy [45].

Moreover, to improve the classification performance,

great attention is paid at avoiding over-fitting. However,

the regularization is ensured through an early stopping:

when the validation loss of the trained model remains

constant for ten consecutive epochs, the training is stopped.

Successively, the best-obtained model is persisted, stored,

and used in the testing.

The network architecture is implemented by using

Tensorflow3 and Keras4.

Tensorflow is an open-source software library for high-

performance numerical calculations. Keras is a high-level

neural networks API based on Python (the network is

developed with Python language).

Finally, the accuracy of the classifiers is evaluated by

using the F1 score defined as the harmonic average of the

precision (p) and the recall (r). In particular, p is the ratio

between the number of corrected positive results and the

number of all positive results returned by the classifier and

r is the ratio between the number of corrected positive

results and the number of all relevant results.

6 Discussion of results

In the following sub-sections, the obtained results for each

research question described in Sect. 5.1 are reported. The

last sub-section also reports a possible application scenario

of the proposed approach.

6.1 RQ1: TCN performance

The best F1 measures for the proposed TCN variant are

reported in Table 6. The table reports, for each evaluated

project, the permutation providing the best F1 value.

Looking at this table, we observe that the best F1 is

obtained when networks with six and seven layers are used.

The F1 is between 0.9462 (for Commons Imaging) and

0.9615 (for ZooKeeper) while the best optimization algo-

rithm is always SGD. As a remark, we state that the

obtained F1 scores are in almost all cases and for all ana-

lyzed projects greater than the best values known in the

literature. However, in Table 4 we report the F-measure

obtained by existing alternative approaches. In the first

column of the table, the name of the approaches and their

reference are reported. In the second column, for each

considered approach, the language of the analyzed projects

is displayed while the third column described the adopted

prediction model. Finally, in the last column, the F-mea-

sure range for the approach is reported. Referring to the

F-measure, notice that in all the cases our obtained values

are higher if compared with existing approaches. The only

exception is represented by the approach proposed in [44].

This approach, differently from ours, uses high-level data

extracted from the PROMISE dataset and does not exploits

commit-level historical data. As a consequence, in a real

scenario, this approach allows performing defect prediction

only across releases resulting less flexible and useful. This

consideration can be also extended to [27] where the

authors have conducted the study on ten real-world datasets

from NASA projects. However, the extracted high-level

data is not usable to evaluated the approach capability to

predict defects at the commit level.

Another consideration regards the adopted metrics. The

approaches in Table 4 never include process metrics that

should be useful to monitor the activities performed in the

frame of each commit also taking into account the context

in which they occur. Moreover, in all the cases no quality

metrics are used. This limits the capability to predict if a

given change induces a fix since there isn’t any information

about the quality of both the changed source code elements

and the activities performed around each commit.

3 https://www.tensorflow.org.
4 https://keras.io.
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6.2 RQ2: LSTM and CNN-2D performance

Tables 7 and 8 respectively report the best F1 scores

obtained by all LSTM and CNN-2D permutations. Even if

both the LSTM and the CNN-2D give good results, the

accuracy and the F1 values obtained by the TCN are

always greater for all the systems. There is only one

exception represented by the Jackson DF project where the

values of F1 and accuracy for LSTM and TCN are almost

equivalent but for the LSTM a larger network is required

(seven layers instead of six) leading to slightly worse

training times (eight seconds per epoch instead of six

seconds, in our experimental environment). The worst

performances are always obtained by the CNN-2D classi-

fier. Finally, in the last column of tables 6, 7 and 8 we

report the average training times (seconds per epoch).

These values show that the training times for TCN, LSTM,

and CN-2d are quite comparable. Generally, TCN requires

lower time and CNN-2D higher time. Consider that the

times are strongly conditioned by the adopted parameters,

for example, the very low value obtained for Jackson Core

using LSTM (Table 7) is due to the batch size fixed to 64.

Similarly, the higher value obtained in Table 6 for

JFreeChart can be motivated by the fact that the batch size

is fixed to 16. To better investigate this aspect, Fig. 4

shows the boxplots of times obtained for TCN (green box

plots) and LSTM (yellow box plots) when the same com-

binations of the number of layers and batch size are used.

Observing this figure some useful considerations can be

made. First of all, it shows that batch size value strongly

influences the times: greater is the batch size lower are the

times, in particular when the batch size is fixed to 64 the

times are the lowest ones. Secondly, it highlights how the

box plots are similar and, as consequence, also the times

they represent. Concerning the overall data spread only in

one case the box plots significantly differ, for configuration

6–64, where the LSTM presents more scattered data than

TCN.

It should be noted that also in the case of LSTM and

CNN-2D the obtained results are better in all cases and for

all projects than the best ones known in the literature. In

our view, these good results could depend not only on the

networks used but also on how we built the moving win-

dow over the complete time series as well as the features

used.

6.3 RQ3: Product and process metrics evaluation

Our research aims at predicting the software defectiveness

at a class level granularity across software project commits,

Table 4 Comparison with alternative approaches

Reference Language Prediction model F-measure

range

Intra-projects defect prediction

Deeper [70] C, Java DBN 0.22–0.63

Manjula et al.

[44]

C, C?? DNN 0.79–0.98

Kamei et al.

[41]

C, C??, Java Logistic Regression 0.10–0.60

TLEL [69] C, C??, Java Decision Tree, Random Forest 0.10–0.68

DSL [72] C, C??, Java Logistic Regression, k-nearest neighbors, Random Forest, Extremely

Randomized Trees, XGBoost

0.25–0.67

Pascarella et al

[52]

C, C??, Java, JavaScript,

Ruby, Perl

Random Forest 0.60–0.73

PHIForest [27] C, C?? Random Forest-based 0.50–0.87

Hoang et al.

[35]

C??, Python CNN Not

available

Cross-projects defect prediction

Kamei et al.

[40]

C, C??, Java, JavaScript,

Ruby, Perl

Random Forest 0.18–0.70

Cong [39] C, C??, Java, JavaScript,

Ruby, Perl

DA-KTSVM 0.18–0.63
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using both process and product metrics. In the literature,

about the combined use of both types of metrics, there are

controversial results. Some investigations, experimented

with both product and process metrics for bug prediction,

finding that product metrics are poorer [30]. Other inves-

tigations, instead, stated that process features can comple-

ment the capabilities of product predictors for bug

prediction [49, 50]. Finally, an extensive comparison of

bug prediction approaches relying on both product and

process metrics, finding that no technique works better in

all contexts [28].

For this reason, in the context of RQ3, we build another

class-level bug prediction model relying on only product

metrics to investigate if these metrics provide or not a

significant contribution when used with process metrics. In

Table 9 the best F1 score, obtained by using TCN and only

product metrics as features, is reported. Comparing the

results reported in Table 9 with those reported in Table 6,

we observe that, first of all, the only use of product metrics

provide in itself good results and, secondly, that the com-

bined use of product and process metrics in the feature

model ensures both higher accuracy and F1.

6.4 RQ4: Impact of data imbalance

To face the problem of data imbalance there are several

techniques already exploited (for example Correlation-

based Feature Selection [32] and Random Over-Sampling

algorithm [21]). In our work, we did not use any technique

to face this problem but, differently, we investigated if the

data imbalance affects or not the results in a significant

way. For this reason, we calculated the distribution of clean

and buggy revisions for each project as reported in Table 5.

This table shows that all the datasets are imbalanced. The

most imbalanced dataset, JFreeChart, contains only 0.78%

defects, while the most balanced dataset, Commons

Imaging, contains 22.04% defects. Figure 5, instead, shows

the box-plots of the F-measure values for each permutation

generated using TCN, where the systems are shown on the

X-axis, in ascending order of the imbalance, and the

F-measure values on the Y-axis. The box plots, except in

the case of JFC, are all comparatively shorts. This suggests

that overall permutations have a low degree of dispersion

of the F-measure scores. The distributions of F-measure

values are symmetric in the case of JC, ZK, CI, while a bit

asymmetrical are the distributions in the case of X2J and

JDF. The low degree of dispersion of the F-measure sug-

gests that hyper-parameter optimization converges quickly

and that, as consequence, is not necessary to run many

permutations to achieve a good F result using the TCN.

Only in the case of JFC, the highest imbalanced project

(below 1% of buggy revision ratio), there is a significant

dispersion and skewness of the F-measure values through

the permutations with the interquartile range wider than the

others, and the worst F1 value less than 0.9. As a conse-

quence, for the JFC system, the above considerations are

not valid. Finally, observing Tables 5 and 6, we also note

LSTM−6−16 TCN−6−16 LSTM−6−32 TCN−6−32 LSTM−6−64 TCN−6−64 LSTM−7−16 TCN−7−16 LSTM−7−32 TCN−7−32 LSTM−7−64 TCN−7−64
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Fig. 4 Box plots of the times for different TCN and LSTM configurations by number of layers and the batch size (the x labels are in the format

\network-kind[–\number-of-layers[–\batch-size[)

Table 5 Distributions of clean and buggy revisions for each project

Project Label %Clean revisions %Buggy revisions

JFreeChart JFC 99.21 0.78

Xerces2 Java X2J 97.83 2.16

Jackson Core JC 95.51 4.48

Jackson DF JDF 92.34 7.65

ZooKeeper ZK 91.68 8.31

Commons Imaging CI 77.95 22.04
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that the imbalance affects more the process of optimization

of the hyper-parameters than the performance.

All the best F-measure values, in fact, are very close,

thickening in the range [0.9462, 0.9615] and suggesting

that the proposed TCN variant, even when the hyper-pa-

rameters optimization process is more unstable and less

predictable due to the class imbalance, exhibits a robust

behavior.

6.5 Application scenario

Finally, we assessed of the applicability of the proposed

model in a real-world scenario, usually characterized by

missing or limited historical data (we assume that it is the

typical situation of a new project) [73]. In this scenario, the

proposed approach can be successfully applied by using

cross-project defect prediction (CPDP) ([53]), consisting of

transferring prediction models from one or more projects to

another. According to this, we applied our approach in a

CPDP context training a classifier on all the systems of our

study excluding one that is used as a test (i.e., the Zoo-

Keeper project). This means that in this scenario we sup-

pose to perform our prediction on a new project

(ZooKeeper) by using historical data extracted from other

existing projects (all other projects used in the previous

experiment).

The obtained results show an Accuracy of 0.951 and an

F-measure of 0.9173. This result is satisfying since in the

cross-project defect prediction literature [56, 73], a pre-

dictive model is generally evaluated as having good per-

formance when the accuracy is greater than 0.75. However,

according to the survey proposed in [42], the existing

approaches never achieve 0.75 for F1-score and accuracy

simultaneously. Table 4 also reports, in the last two rows,

two existing CPDP approaches. The F-measure range

shows that in the best case the obtained F-measure is �0.7.

JFC X2J JC JDF ZK CI

0.
80

0.
85

0.
90

0.
95

Dataset

F
−
M
ea

su
re

Fig. 5 Box plots of the F-measure for each model configuration using TCN

Table 6 Permutations providing the best F1 for each project using TCN

Project Activation

function

Learning

rate

No.

Layers

Batch

size

Optimization

Algorithm

Dropout

rate

Accuracy Loss F1 Average Training Time

per epoch (sec)

ZooKeeper mish 3 6 16 SGD 0.2 0.9613 0.1060 0.9615 35

Xerces2

Java

relu 3 6 32 SGD 0.1 0.9463 0.1825 0.9469 6

JFreeChart mish 6 7 16 SGD 0.15 0.9610 0.0966 0.9610 47

Jackson DF relu 6 6 32 SGD 0.2 0.9461 0.1878 0.9466 6

Jackson

Core

relu 6 7 16 SGD 0.1 0.9508 0.1433 0.9489 22

Commons

Imaging

relu 3 7 32 SGD 0.1 0.9449 0.1947 0.9462 11
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7 Threats to validity

In this section, the threats to the validity of the investiga-

tion are discussed.

Construct Validity: A threat to construct validity con-

cerns the reliability of the source code measurement tool

our study is based on. Since we are not able to establish the

degree to which a tool yields consistent results we decided

to use three different tools [3, 34, 60]. In this way, we are

able to check whenever possible and necessary, if the

measures obtained from one tool are different from those

calculated by the other ones. Moreover, all the three tools

used are publicly available to make it possible to replicate

the measurement task in other studies.

Internal Validity: The threat to internal validity concerns

factors that can influence our observations. Particularly,

whether the metrics are meaningful to our conclusions and

Table 7 Permutations providing the best F1 for each project using LSTM

Project Activation

Function

Learning

Rate

No.

Layers

Batch

size

Optimization

Algorithm

Dropout

Rate

Accuracy Loss F1 Average Training Time

per epoch (sec)

ZooKeeper mish 3 6 16 SGD 0.2 0.9441 0.1955 0.9443 38

Xerces2

Java

relu 6 7 32 SGD 0.1 0.9446 0.2096 0.9449 8

JFreeChart relu 6 7 32 SGD 0.2 0.9449 0.1827 0.9456 10

Jackson DF relu 6 7 32 SGD 0.1 0.9463 0.1655 0.9468 8

Jackson

Core

relu 3 6 64 SGD 0.2 0.9447 0.2050 0.9450 2

Commons

Imaging

relu 3 7 16 SGD 0.1 0.9449 0.1896 0.9453 15

Table 8 Permutations providing the best F1 for each project using CNN-2D

Project Activation

function

Learning

rate

No.

layers

Batch

size

Optimization

algorithm

Dropout

rate

Accuracy Loss F1 Average training time

per epoch (sec)

ZooKeeper relu 6 7 16 SGD 0.15 0.8884 0.4876 0.8852 69

Xerces2

Java

relu 3 6 64 Nadam 0.15 0.9259 0.2753 0.9261 15

JFreeChart relu 3 6 64 Nadam 0.15 0.9125 0.3252 0.9453 21

Jackson DF relu 3 6 64 Nadam 0.15 0.8793 0.4961 0.8872 20

Jackson

Core

swish 3 6 64 Nadam 0.15 0.9450 0.1479 0.9450 24

Commons

Imaging

relu 6 6 64 SGD 0.2 0.8033 0.7746 0.8137 18

Table 9 Permutations providing the best F1 for each project using TCN and only product metrics

Project Activation

function

Learning

rate

No.

layers

Batch

size

Optimization

algorithm

Dropout

rate

Accuracy Loss F1

ZooKeeper relu 3 7 32 SGD 0.15 0.8636 0.3518 0.9063

Xerces2 Java relu 3 7 32 SGD 0.15 0.9138 0.2853 0.9056

JFreeChart relu 3 7 32 SGD 0.15 0.8640 0.7337 0.8642

Jackson DF relu 3 7 32 SGD 0.15 0.9166 0.4769 0.9166

Jackson Core relu 3 7 32 SGD 0.15 0.9239 0.3251 0.9268

Commons

Imaging

relu 3 7 32 SGD 0.15 0.9072 0.5826 0.9453
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whether the measurements are adequate. To this aim, an

accurate process for the data gathering has been performed.

External Validity: the threat to external validity con-

cerns the generalization of our results. Although we

investigated six well-known OSS systems different for

dimensions, domain, size, timeframe, and the number of

commits, we are aware that a further empirical validation

on commercial systems would be beneficial to better sup-

port our findings. Commercial systems differ from OSS

systems for the nature of reported defects. In commercial

systems, the defects are reported only by customers for

released versions while in OSS systems the defects can be

reported by developers during development activities and

by customers, for stable releases. Another limit of our work

is that we considered only systems written in Java because

the tools used work only on Java programs. Thus, we

cannot claim generalization concerning systems written in

different languages as well as to projects belonging to

industrial environments.

8 Conclusions and future work

The proposed study describes an approach based on deep

learning for just-in-time defect prediction. It specifically

considers a variant of temporal convolutional networks to

predict changes that will introduce software defects. The

features model used is based on a set of fine-grained quality

metrics. For the empirical experimentation, a data-set has

been obtained collecting the data from six open-source

software projects, specifically through the assessment of 36

class level source code metrics and 7 process metrics, all

detected commit by commit. Results for the performed

evaluation highlight that the predictions obtained using the

proposed approach are satisfying, indeed, the F-measure

obtained is always greater than the 0.94, achieving the 0.96

value in the case of the ZooKeeper and JFreeChart pro-

jects. To our knowledge, it is the best result in related

literature for the JIT technique. Moreover, our approach

provides an interesting result of data-set imbalance. It

always gives good results with a data-set whose proportion

of minority class is at least 1%. In these cases, the TCN

converges quickly to the best F1 result. Only when the

degree of imbalance is extreme, i.e., the proportion of the

minority class is lower than 1% of the data-set, the TCN

does not quickly converge to the best result.

The main limitation of the proposed model is related to

the large amount of historical data required to train it to

perform well. However, this limitation is common to all

predictive approaches. In practice, training data may not be

available for projects in the initial development phases, or

for legacy systems where historical data are often not

stored. For this reason, as future work, we aim to validate

the applicability of the proposed model in a cross-project

context, that is, a model trained using historical data from a

project and tested on other projects. The preliminary

evaluation carried out in this work, performed on just one

model, seems to be promising and deserving further stud-

ies. Of course, we intend to extend the set of metrics

considered as features also including process metrics.

Finally, we plan to conduct a controlled study with prac-

titioners to evaluate the efficacy of our model in-field. This

could allow to make defect prediction more usable in

practice and support in real-time development activities,

for example during code review activities and/or code

writing.
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