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Abstract: Computer Vision Systems (CVS) represent a contactless and non-destructive tool to 
evaluate and monitor the quality of fruits and vegetables. This research paper proposes an 
innovative CVS, using a Random Forest model to automatically select the relevant features for 
classification, thereby avoiding their choice through a cumbersome and error-prone work of human 
designers. Moreover, three color correction techniques were evaluated and compared, in terms of 
classification performance to identify the best solution to provide consistent color measurements. 
The proposed CVS was applied to fresh-cut rocket, produced under greenhouse soilless cultivation 
conditions differing for the irrigation management strategy and the fertilization level. The first aim 
of this study was to objectively estimate the quality levels (QL) occurring during storage. The second 
aim was to non-destructively, and in a contactless manner, identify the cultivation approach using 
the digital images of the obtained product. The proposed CVS achieved an accuracy of about 95% 
in QL assessment and about 65–70% in the discrimination of the cultivation approach. 

Keywords: Diplotaxis tenuifolia L.; automatic configuration of the CVS; color correction models; non-
destructive contactless quality evaluation; fertilization and irrigation recognition from digital 
images 
 

1. Introduction 
Recently, there has been growing interest in contactless, non-destructive, rapid and 

accurate techniques for the evaluation of the quality of fruits and vegetables to replace the 
traditional sensory and conventional destructive methods. These methods are generally 
time-consuming, expensive, polluting and are not suitable for the application in an 
industrial line [1,2]. Moreover, it has been observed that more than in other agri-food 
sectors, consumers are particularly attentive to the sustainability of the vegetable 
production process as an important issue influencing their perception of quality [3]. 
Furthermore, the increasing sensibility of modern consumers toward the environmental 
impact of production processes has been the impetus for many researchers to develop 
non-destructive tools for the discrimination of production origin and agricultural 
practices, in order to better support the added value of the products. 
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Nowadays, the emerging non-destructive methods in food technology, include near 
infrared spectroscopy (NIR), hyperspectral imaging (HSI) and computer vision system 
(CVS). In relation to vegetables, most of the research have applied hyperspectral or 
multispectral techniques [4–8]. The complexity of spectroscopy and hyperspectral 
imaging, both in terms of time and costs required for the acquisition and for the following 
processing, makes the application of these techniques more difficult in a pervasive way 
along the supply chain to enable a continuous monitoring of the parameters of interest. 
On the contrary, CVS is simpler and can hopefully exploit cameras that are already 
available along the path from harvest to final consumers. 

Increasing interest has been observed in the last few years in CVSs to automatically 
evaluate several properties of different products: They involve optical instrumentation, 
electromagnetic sensing, and digital image processing technologies [9]. This technology 
mimics human visual evaluation of quality, acquiring images of the whole visible surface 
of products. These digital images are analyzed by extracting the most discriminative 
colors among the large set of possible visual characteristics (such as shape, color, and 
defects) and processing the data through suitable regression or classification models and 
algorithms [1]. 

Normally, human designers exploit previous experiences and use a trial-and-error 
process to select the features used by the classification/regression methods or a vocabulary 
of features out of which algorithms can extract the most effective subset. In many recent 
research, CVS have been used to evaluate the quality level (QL) of fresh and fresh-cut 
fruits, such as table grape [10], fresh-cut nectarines [11] and apples [12]. As reported by 
many authors, CVS have also been used to evaluate the QL, chlorophyll and ammonium 
content of leafy vegetables. The authors in [13] demonstrated that two color features 
detected by the CVS were able to evaluate the QL and the ammonium content (considered 
an indicator of senescence) in iceberg lettuce. Moreover, an innovative and automatic 
procedure, applied for the quality evaluation of fresh-cut radicchio allows a self-
configuration of the CVS by optimizing its performance and limiting the subjective human 
intervention, was reported by [14]. The authors in [15] proposed a procedure to predict 
total chlorophyll content of rocket leaves using CVS and a machine learning model 
(Random Forest Regression) applied to manually selected features, obtaining higher 
performance (R2 = 0.90) than the SPAD-meter (R2 = 0.79). This work supports the relevance 
of the color information. The consistency of color information must be enforced using 
color correction methods based on the color reference provided by a color-chart inserted 
in the scene. 

In machine learning, random forests represent an ensemble (a set) of tree predictors 
that can be used for both classification and regression. They exploit the principle that a 
group of weak learners can globally provide better results than a strong learner [16] and 
can reduce the risk of overfitting. Therefore, several instances of the selected models 
(trees) are trained, and the final predictions are made by combining the outputs of the 
models by voting (classification) or mean (regression). Specifically, random forest consists 
of an extension of bagging (bootstrap aggregating) ensemble [17], whereby each model is 
trained on a different set of training examples randomly sampled with repetition from the 
available data. Moreover, this method builds each tree using a randomly selected subset 
of the available features. This makes possible to use a quite large vocabulary of features 
without seriously impact on the efficiency of the method and without requiring the critical 
and often subjective choice of the most relevant features. The final performance of the 
random forest depends on the strength of the individual classifiers and on their 
independence from each other [16]. 

To the best of our knowledge, there is no general agreement regarding the best 
method to correct the colors and make them consistent among different acquisitions: This 
paper compares three different color correction methods, with different power and 
complexity. Their performance was measured, in terms of their effects on the classification 
accuracy. The simplest method (white balance) provided poor performance. The two 
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other methods (linear correction and polynomial correction) provided similar 
performance with the second having a greater computational complexity. The linear 
correction is proposed as the best trade-off between efficacy and efficiency. 

Moreover, the paper proposes the complete color histogram in the CIEL*a*b* color 
space as the vocabulary of features for the machine learning Random Forest model: This 
represents a relevant simplification of the CVS design that do not require the designer to 
select the features through a cumbersome and error-prone trial and error process. 

Finally, the paper proposes to apply the same innovative approach to CVS design to 
different tasks: To obtain a non-destructive contactless and objective evaluation of the QL 
of rocket leaves during storage and to identify different fertilization levels (sustainable or 
not) using two irrigation management approaches applied during the cultivation. To the 
best of our knowledge, there are no previous application of CVS to the latter task. It is 
relevant that the same framework can be used to solve these two different tasks without 
changes in the architecture of the CVS: The only difference is in the final Random Forest 
classification. This final phase uses the same model for the two tasks but learns proper 
parameters for each of them by providing different expected values as input data.  

2. Materials and Methods 
2.1. Plant Material, Growing System, Water and Fertilizers Use Efficiency 

Rocket (Diplotaxis tenuifolia L. cv Dallas) was cultivated under soilless cultivation 
growing system in the autumn-winter (2019–2020) period in an unheated greenhouse at 
the experimental farm ‘La Noria’ of the Institute of Sciences of Food Production (CNR-
ISPA), located in Mola di Bari (Puglia, South of Italy). A randomized blocks experimental 
design was adopted with 3 replications; each block consisted of 4 sub-blocks, each one 
hosting one of the four cultivation treatments under comparison. Plastic pots, 20 per each 
sub-block, were filled with a 3:1 (v:v) peat (Brill 3 Special, Brill Substrate GmbH & Co., 
Georgsdorf, Germany): perlite (Agrilit 3, Perlite Italiana, Corsico, MI, Italy) mixture as a 
substrate. 

Two irrigation management strategies (Timer and Sensor) and two fertilization levels 
(FL_1 and FL_2) were applied, following a factorial combination resulting in four 
agronomic treatments (Timer–FL_1; Timer–FL_2; Sensor–FL_1; Sensor–FL_2). In detail, in 
Timer the irrigation was empirically managed with a timer providing a fixed irrigation 
schedule, periodically adjusted on the basis of the amount of the drainage fraction (about 
35% according to the common practice). Whereas, in Sensor the irrigation was 
automatically applied through dielectric sensors (GS3, Decagon Devices, Pullman, WA, 
USA) based on real time measurement of the substrate volumetric water content 
variations, thus reflecting plant water consumption and needs and resulting in a more 
sustainable use of irrigation water. A 0.35 m3 m−3 volumetric water content irrigation set-
point was adopted, corresponding to a moisture level slightly lower than substrate 
maximum water holding capacity. The sensor-controlled automatic irrigation system, 
composed by a CR1000 datalogger and a SDM16AC/DC relay driver (Campbell Scientific, 
Logan, UT, USA), turned on irrigation valves based on real-time sensor readings and 
maintained substrate volumetric water content close to the irrigation set-point. 
Tensiometers (one per experimental unit) were used to monitor the substrate matric 
potential, which showed a mean value of −25 hPa over the growing cycle with similar 
values in all the experimental units. In relation to fertilization, a mix of Osmocote Exact 
and Osmocote CalMag, (ICL Specialty Fertilizers, Treviso, Italy) was used in the substrate 
in a dose of 3.75 and 1 g L−1, respectively, for FL_1, while a 40% reduced dose was provided 
in FL_2.  

The doses of fertilizers (FL_1 and FL_2) were selected according to the standard 
recommendations provided in the label of the fertilizer products used in the experiment, 
reporting indications for “high dosage” or “low dosage”, respectively. Water Use 
Efficiency (WUE) was calculated at crop level as yield (expressed as grams of product 
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marketable fresh weight) per liter of applied irrigation water [18]. Similarly, Fertilizers 
Use Efficiency (FUE) was calculated as grams of product fresh weight per grams of 
applied fertilizer. 

Three harvests were carried out at 62 (H1), 104 (H2) and 132 (H3) days after sowing, 
respectively. 

After each harvest time the fresh-cut rocket leaves were immediately transported in 
refrigerate conditions to the Postharvest laboratory. 

2.2. Sensory Classification of Rocket Leaves Visual Quality Level during Storage 
Rocket leaves at each harvest time, separated for each treatment, were selected in 

order to avoid damaged samples and put in 50 × 30 cm open polyethylene bags (Orved, 
Musile di Piave (VE), Italy) containing each one about 350 g of product. In total, 12 bags 
(3 replicates × 4 agronomic treatments) were prepared after each harvest and stored at 10 
°C (as commonly occur in the market) for 12 days for the H1 and for 18 days for the H2 
and the H3. The length of storage was defined by the number of days required to reach 
the lowest QL, as reported in [10]. Therefore, at a proper time during storage, the amount 
(about 70 g) of sample to analyze was taken from each bag and subjected to a sensory 
evaluation by a group of 6 panelists using the following 5 to 1 QL scale (Figure 1): 5 = very 
good (very fresh, no signs of yellowing, bright, dark and uniform green, no defects), 4 = 
good (fresh, slight signs of yellowing, light green, slight loss of texture), 3 = fair (slight 
wilting, moderate signs of yellowing, slight discoloration, minor defects, loss of texture), 
2 = poor (wilting, evident yellowing, discoloration, severe loss of texture), 1 = very poor 
(unacceptable quality due to decay, severe wilting and yellowing, complete loss of texture 
and other evident defects). A score of 3 was considered to be the limit of marketability, 
while a score of 2 represented the limit of edibility. 

 

Figure 1. The figure shows the quality level (QL) scale used for the sensory evaluation of rocket 
leaves. 

Images of rocket leaves at each QL were acquired and processed by CVS and the 
same samples were subjected to postharvest quality evaluation. 

2.3. Computer Vision System Color Analysis 
For the H1 and the H2, images of the samples of products were taken at 0, 4, 7 and 

12 days, corresponding to QL from 5 to 2. For the H3, images of the samples were taken 
at 0, 4, 7, 12 and 18, corresponding to QLs from 5 to 1. At each acquisition, a sample of 
about 60 g of product was taken from each of the 12 bags prepared for that harvest (3 
replications for each agronomic treatment). The 12 samples were analyzed by the CVS. 
Two images were acquired for each sample, by stacking randomly the leaves before each 
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acquisition to maximize the surface seen by the CVS as reported in Figure 2. Therefore, 24 
images were available at each time (2 images for each of the 3 replications for each of the 
four agronomic treatments).  

 
Figure 2. The figure shows the flow chart of the processing done on the images. It is possible to 
appreciate the effects of each step on the input image and the results provided to the following steps. 
Data extracted from the patches of the color chart have been used to evaluate the parameters of the 
three different correction models compared. For each of them, a histogram was evaluated, such as 
the one shown for the linear model, which provides the best trade-off between efficacy and compu-
tational complexity. 

The final dataset was composed by 96 images for each of the H1 and H2, and by 120 
images for the H3. The complete collection was composed by 312 images. We did not dis-
tinguish the images coming from different harvests. Therefore, the final image dataset was 
composed by 72 images for each quality from 5 to 2 and 24 images for quality 1. In relation 
to the irrigation and fertilization management, the image dataset were composed by 78 
images for each combination of IS and FL. These data are reported in the Table 1. 

The following paragraphs will describe all the processing steps used by the CVS. All 
the software was developed using Matlab 2019a (Mathworks Inc., Natick, Massachusetts, 
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United States). A flowchart of these processing steps, along with examples of their effects, 
is shown in Figure 2. 

Table 1. Composition of the training set of images with respect to harvests (H1, H2 and H3), irriga-
tion management strategies (Timer, Sensor) and doses of fertilizers (FL_1, FL_2). 

Harvest Replication 
Number of Images 

Total 
VQ5 VQ4 VQ3 VQ2 VQ1 

                
H1               

Timer-FL_1 3 6 6 6 6   24 
Timer-FL_2 3 6 6 6 6   24 
Sensor-FL_1 3 6 6 6 6   24 
Sensor-FL_2 3 6 6 6 6   24 

Total H1 12 24 24 24 24   96 
                

H2               
Timer-FL_1 3 6 6 6 6   24 
Timer-FL_2 3 6 6 6 6   24 
Sensor-FL_1 3 6 6 6 6   24 
Sensor-FL_2 3 6 6 6 6   24 

Total H2 12 24 24 24 24   96 
                

H3               
Timer-FL_1 3 6 6 6 6 6 30 
Timer-FL_2 3 6 6 6 6 6 30 
Sensor-FL_1 3 6 6 6 6 6 30 
Sensor-FL_2 3 6 6 6 6 6 30 

Total H3 12 24 24 24 24 24 120 
                

Total 
H1+H2+H3 

36 72 72 72 72 24 312 

2.3.1. Acquisition of Calibrated Color Images 
To acquire calibrated color images, color changes due to environment conditions 

(lighting, geometry, sensor instability) were evaluated and reduced to the minimum. Im-
ages were acquired using the set-up reported in [14,15,19,20], using a 3CCD (with a dedi-
cated Charged Coupled Device for each color channel) digital camera (JAI CV-M9GE) 
having a resolution of 1024 × 768 pixels. The imaged area is about 32 × 24 cm. A 3CCD 
sensor has been used to avoid the artifacts introduced by the demosaicing methods re-
quired to record color information using a single CCD. The optical axis of the LinosMeVis 
12 mm lens system was perpendicular to the black background. Two DC power suppliers 
delivered current to eight halogen lamps, placed along two rows at the two sides of the 
imaged area and oriented at a 45° angle with respect to the optical axis. All the images 
were saved using the uncompressed TIFF format to avoid the artifacts introduced by com-
pression algorithms. 

2.3.2. Color-Chart Processing and Foreground Segmentation 
A small X-Rite color-chart with 24 patches of known colors was placed into the scene 

to measure color variations due to environmental conditions and sensor characteristics by 
comparing the expected numerical values released by the manufacturer with the ones ac-
quired by the camera. The color-chart was automatically detected regardless of its position 
and orientation [15]. Its white patch was used by the white-balance algorithm. All the 
colors in the color-chart were used to estimate the linear and polynomial transformations 
used for color correction. 

Image processing worked only on the part of each image belonging to the product at 
hand (foreground). The background was discarded. The CVS automatically separated 
foreground and background without any human intervention: Two thresholds were 
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derived from the analysis of the whole image in the HSV color space, as described in [15]. 
The segmentation was identified the region belonging to the product as a whole and did 
not separate its different parts, and neither discarded any region of the leaves. It was de-
signed to be conservative, that is to discard all the background pixels even at the cost of 
removing some marginal borders of the product. It removed also background area inside 
the stack of leaves as long as part of the leaves are too dark (for example for self-shadow-
ing of the product) to provide meaningful color information. 

2.3.3. Color Correction 
Color correction needs to be effective (to provide consistent color measurements) and 

efficient (computationally simple enough to be suitable for real applications along the 
supply chain). Three different color correction models, with increasing level of complex-
ity, were compared to compensate the change in color rendering due to acquisition envi-
ronment. Let it be ሾ𝑟௘௜ 𝑔௘௜  𝑏௘௜ ሿ் and ሾ𝑟௠௜  𝑔௠௜  𝑏௠௜ ሿ்   the expected and the measured RGB val-
ues respectively for the i-th patch i = 1,…,24. Let it be ሾ𝑟௪௘  𝑔௪௘  𝑏௪௘ሿ் and ሾ𝑟௪௠ 𝑔௪௠ 𝑏௪௠ሿ் 
the expected and measured whites respectively. The simplest model was white balance 
(WB). Using the white patch in the color chart, a different correction coefficient was eval-
uated for each channel, as reported below (1): 𝑐௥ = 𝑟௪௘𝑟௪௠      𝑐௚ = 𝑔௪௘𝑔௪௠      𝑐௕ = 𝑏௪௘𝑏௪௠ (1)

The three correction coefficients were used to correct the corresponding channel by 
multiplying the corresponding color component of each foreground pixel. A linear cor-
rection (LC) (a 3 × 3 matrix) was evaluated to reduce the distance between the expected 
and the measured values on the color chart (2): 

൥ 𝑟௖𝑔௖𝑏௖൩ =  ൭𝑚ଵଵ 𝑚ଵଶ 𝑚ଵଷ𝑚ଶଵ 𝑚ଶଶ 𝑚ଶଷ𝑚ଷଵ 𝑚ଷଶ 𝑚ଷଷ൱ ൥𝑟௠𝑔௠𝑏௠൩ (2)

where ൥ 𝑟௖𝑔௖𝑏௖൩  are the colors corrected using the matrix whose elements were evaluated us-

ing a least-square approach applied on all the patches of the color-chart. The same matrix 
was therefore used to correct all the foreground pixels of the image. 

The last transformation was a polynomial correction (PC) (with degree 2) where all 
the linear and quadratic elements were considered (r, g, b, rg, rb, gb, r2, g2, b2). The coeffi-
cients of such transformation were again evaluated using a least-square approach (3). 

൥𝑟௖𝑔௖𝑏௖൩ =  ൭𝑚ଵଵ 𝑚ଵଶ 𝑚ଵଷ   𝑚ଶଵ 𝑚ଶଶ 𝑚ଶଷ𝑚ଷଵ 𝑚ଷଶ 𝑚ଷଷ   𝑚ଵସ 𝑚ଵହ 𝑚ଵ଺      𝑚ଶସ 𝑚ଶହ 𝑚ଶ଺    𝑚ଷସ 𝑚ଷହ 𝑚ଷ଺   𝑚ଵ଻ 𝑚ଵ଼ 𝑚ଵଽ𝑚ଶ଻ 𝑚ଶ଼ 𝑚ଶଽ𝑚ଷ଻ 𝑚ଷ଼ 𝑚ଷଽ൱
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 𝑟௠𝑔௠𝑏௠𝑟௠𝑔௠𝑟௠𝑏௠𝑔௠𝑏௠𝑟௠ଶ𝑔௠ଶ𝑏௠ଶ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤
 (3)

All the foreground pixels were corrected using the same matrix. 
The transformations provided by the three methods were different for each image 

(they were evaluated from the color-chart appearance in each specific image) to adapt to 
the specific conditions of each acquisition. 

The time required by the three-color correction methods is different. Using the 
MATLAB code used in the experiments, without specific optimization or the use of special 
hardware, the application of the white balance to an image takes 70 ms. The linear correc-
tion requires 73 ms while the polynomial correction requires 89 ms. In an industrial 
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application of the system, the difference between linear and polynomial corrections can 
negatively affect the maximum speed achievable by the production. Therefore, it is im-
portant to evaluate if the performance gain justifies the loss of productivity. 

2.3.4. Features Extraction 
On the base of previous experiences, the device independent and perceptually uni-

form CIE L*a*b* color space was chosen to accomplish color analysis. Given that the L* 
component is fragile, being too sensible to not uniform illumination levels across the 
scene, the complete histogram in the a* b* plane of the foreground pixels was used as fea-
ture set for the classification. The color histogram represents the number of occurrences 
of each color, that is of each (a*, b*) pair, in all the foreground pixels. It represents the 
property of the whole observed product. The continuous (a*, b*) plane has been discre-
tized using 30 bins for each axis (a* and b*): therefore, the complete histogram was a matrix 
with 900 elements. This representation is more detailed than statistical measures, such as 
mean, median or standard deviation: it describes completely the palette of colors present 
in the scene and their relative relevance. The hypotheses were that such information was 
able to represent the appearance of new colors due to senescence as far as the effects of 
the cultivation management on product appearance, if any. To achieve the goal of avoid-
ing any human intervention in the identification of proper color features, the complete 
matrix containing all the values of the bins of this histogram was reshaped as a vector and 
passed to the classification phase. The use of a quite large vector (900 elements in our case) 
was feasible as the ensemble method used for classification can sample for each tree a 
subset of features from even a quite large set. This approach automatically identifies their 
best use, while keeping reasonable the computational complexity. Even if it is not possible 
to identify few specific colors suitable to discriminate product quality or cultivation man-
agement, the ensemble of trees exploits a quite large subset of the provided features, that 
is (a*, b*) pairs, which globally achieve the desired classification. 

2.3.5. Classification 
Random Forest models were trained to assign the QL to the product and to identify 

the treatment used. The values of the cells of the histogram in the a* b* plane (of the CIE 
L*a*b* color space) of each image provided the vocabulary of features used for training 
the models. The approach for training each tree involved randomly sampling the available 
training data (to select the training examples) and then randomly selecting a set of features 
(in this case randomly selecting which values of the histogram to use to build the tree at 
hand). Each tree of the forest allows a maximum of 10 branches. Due to the limited number 
of samples, a 10-fold cross validation approach was used. The available data were divided 
into 10 groups (folds), each having approximately the same number of elements. The par-
tition was made with stratification. Therefore, each group approximated the same distri-
bution of classes of the whole training set. According to the 10-folds validation strategy, 
the training was done 10 times. At each round, a different fold was separated for testing 
the results while the other nine folds were used for training. The average of the results 
obtained in the ten rounds estimated the performance of the method. Accuracy is used as 
a quick indication of the performance of classification in the results’ section but, to provide 
a complete description of the obtained results, the confusion matrices are provided. In 
fact, they provide all the information needed to describe the behavior of the method. To 
increase the robustness of performance measures, the 10-fold cross-validation process was 
repeated 20 times. The confusion matrices and accuracy values represent the average of 
the values over these 20 different repetitions. At each repetition, a new stratified partition 
of training data into 10 folds was randomly generated. That increases the significance of 
the obtained results by making less relevant the effects of chance in sampling training data 
and features. In spite of the significative number of trees in the resulting forest (200 trees 
were allowed for each forest) the increase in accuracy provided by their combination does 
not require high computational costs. The code, written in Matlab without any specific 
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optimization, requires about 25 s for building the Random Forest model and about 0.13 s 
to apply the model to a new sample and to classify it. 
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2.4. Postharvest Quality Parameters 
2.4.1. Color Analysis by Colorimeter 

Color parameters (L*, a* and b*) were measured, for each replicate, on 3 random 
points on the surface of 10 rocket leaves using a colorimeter (CR400, Konica Minolta, 
Osaka, Japan) in the reflectance mode and in the CIE L* a* b* color scale. Colorimeter was 
calibrated with a standard reference having values of L*, a* and b* corresponding to 97.44, 
0.10 and 2.04, respectively. To measure color variations on each sensory evaluation, ΔE* 
was calculated according to the following equation (4) [21]: 

ΔE* = ඥሺ𝐿଴∗ − 𝐿∗ሻଶ + ሺ𝑎଴∗ − 𝑎∗ሻଶ + ሺ𝑏଴∗ − 𝑏∗ሻଶ (4)

where L*0, a*0 and b*0 represents color parameters detected on fresh samples. Yellowness 
index (YI) was calculated from primary L*, a* and b* readings, while the degreening index 
(DI) was obtained by the Hunter L a b values (obtained converting the CIE L* a* b* read-
ings), according to the following equations (5,6) [22,23]: 

YI = (ଵସଶ.଼଺×௕∗)௅∗  (5)

DI = (ଵ଴଴଴×௔)(௅×௕)  (6)

2.4.2. Respiration Rate, Electrolyte Leakage and Total Chlorophyll Content 
The respiration rate of rocket leaves was determined at 10 °C initially and at each 

sampling time using a closed system as reported by [24]. In particular, about 50 g of prod-
uct for each replicate were put into 3.6 L sealed plastic jar (one jar for each replicate) where 
CO2 was allowed to accumulate up to 0.1% as the concentration of the CO2 standard. The 
time taken to reach this value was detected by taking CO2 measurements at regular time 
intervals. The CO2 analysis was conducted by taking 1 mL of gas sample from the head 
space of the plastic jars through a rubber septum and injecting it into a gas chromatograph 
(p200 micro GC-Agilent, Santa Clara, CA, USA) equipped with dual columns and a ther-
mal conductivity detector. Carbon dioxide (CO2) was analyzed with a retention time of 16 
s and a total run time of 120 s on a 10-m porous polymer (PPU) column (Agilent, Santa 
Clara, CA, USA) at a constant temperature of 70 °C. The respiration rate was expressed as 
µmol CO2 kg−1 s−1. 

To determine electrolyte leakage, the method reported by [25] was used with slight 
modifications. About 2.5 g of disks obtained using a cork borer (ø8 mm) were placed in 
plastic tubes and immersed in 25 mL of distilled water. After 30 min of storage at 10 °C, 
the conductivity of the solution was measured using a conductivity meter (Cond. 51+-XS 
Instruments, Carpi, Italy). Then, the tubes with samples and solution were frozen at–20 
°C and, after 48 h, the conductivity was detected after thawing and considered as total 
conductivity. Electrolyte leakage was calculated as the percentage ratio of initial over total 
conductivity. 

The total chlorophyll content was detected according to the spectrophotometric 
method reported by [26]. In detail, 5 g of chopped rocket leaves was extracted in ace-
tone/water (80:20 v/v) with a homogenizer (T-25 digital ULTRA-TURRAX®-IKA, Staufen, 
Germany) and then centrifuged at 15,000 rpm for 5 min. To remove all pigments, the ex-
traction was repeated 5 times and extracts were combined. The absorbance was read im-
mediately after the extraction procedure on extracts proper diluted using a spectropho-
tometer (UV-1800, Shimadzu, Kyoto, Japan) at three wavelengths, at 663.2 nm, 646.8 nm, 
and 470 nm. The total chlorophyll content was expressed as mg per 100 g of fresh weight 
using the equation reported by [27]. 
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2.5. Statistical Analysis 
The relationship among QLs and the postharvest quality parameters (color, respira-

tion rate, electrolyte leakage and total chlorophyll content of rocket leaves) was tested by 
performing a one-way ANOVA. Then, a multifactor ANOVA was performed with the aim 
to evaluate the effects of fertilization levels (FL_1 or FL_2) and irrigation management 
approach (Timer or Sensor) on WUE, FUE, visual quality, color parameters, respiration 
rate, electrolyte leakage and total chlorophyll content. 

The mean values were separated using the Student-Newman-Keuls (SNK) test and 
Statgraphics Centurion (version 18.1.12, Warrenton, VA, USA) was used for statistical 
analyses. 

3. Results and Discussion 
3.1. Effects of Agronomic Treatments on Water and Fertilizers Use Efficiency and Postharvest 
Quality Parameters 

Treatments resulted in a substantial differentiation of the sustainability of the pro-
duction process expressed in terms of resources (water and fertilizers) use efficiency. 
Mean values of WUE were 21.4 and 34.4 g L−1, on average, in Timer-based and Sensor-
based irrigation treatments respectively, with no effects of the fertilization level. On the 
other hand, treatments showed a significant interaction on FUE, as reported in Figure 3. 

 
Figure 3. Fertilizer use efficiency (FUE), of greenhouse soilless rocket (Diplotaxis tenuifolia L.) sub-
jected to different irrigation strategies (timer-based or sensor-based) and two fertilization levels 
(FL_1, high fertilization level; FL_2 low fertilization level). “Irrigation management strategy × Fer-
tilization level” interaction significant at p < 0.001. Different letters above the columns indicate sig-
nificant difference between the treatments (p < 0.05, means separation performed with SNK test). 

Greenhouse soilless production can boost intensive cropping systems with impres-
sive efficiency on water and nutrients use, and very high product yield and quality [28]. 
Both sensor-based irrigation management [29–31] and the rational application of fertiliz-
ers [32,33] have been identified as promising approaches in combining high product qual-
ity with sustainable use of resources in greenhouse soilless vegetables production. 

In relation to the effects of fertilization levels (FL_1 or FL_2) using the Timer or Sensor 
irrigation management approach, results obtained from the multifactor ANOVA showed 
that all factors (irrigation management strategies, fertilization levels and their interaction) 
did not influence the visual quality, the respiration rate, the color parameters and the total 
chlorophyll content of rocket leaves While, the electrolyte leakage was affected only by 
the irrigation management strategies (Table 2). In detail, fresh-cut rocket irrigated with 



Agronomy 2021, 11, 1353 12 of 18 
 

 

the Sensor approach showed a mean value slightly higher (23.3 ± 5.2%, on average) than 
that reported in samples irrigated with the Timer strategy (19.7 ± 6.2%, on average), prob-
ably as a result of the lower water availability [34]. 

Table 2. Effects of irrigation management strategies (Timer or Sensor), fertilization levels (FL_1 or FL_2) and their inter-
action on visual quality, physical and chemical parameters of rocket leaves stored at 10 °C. 

Parameters 
VQ 

Physical Parameters Chemical Parameters 

Respiration Rate 
ΔE* 

Yellowness In-
dex 

Degreening In-
dex 

Electrolyte 
Leakage 

Total Chlorophyll 
Content 

(5-1) (µmol CO2 kg−1 s−1) % (mg 100 g−1) 
Irrigation manage-
ment strategies (A) ns ns ns ns ns **** ns 

Timer 3.25 30.43 7.19 80.19 −20.69 19.66 b 46.96 
Sensor 3.27 29.68 5.78 78.02 −21.24 23.35 a 48.52 

Fertilization levels 
(B) ns ns ns ns ns ns ns 

FL_1 3.25 29.81 6.90 79.61 −20.69 22.16 47.80 
FL_2 3.26 30.29 6.07 78.60 −21.24 20.85 47.67 
A × B ns ns ns ns ns ns ns 

ns: not significant; **** significant for p ≤ 0.0001. 

A 5 to 1 rating scale was used for visual quality, where 5 = very good (very fresh, no 
signs of yellowing, bright, dark and uniform green, no defects), 4 = good (fresh, slight 
signs of yellowing, light green, slight loss of texture), 3 = fair, limit of marketability (slight 
wilting, moderate signs of yellowing, slight discoloration, minor defects, loss of texture), 
2 = poor, limit of edibility (wilting, evident yellowing, discoloration, severe loss of tex-
ture), 1 = very poor (unacceptable quality due to decay, severe wilting and yellowing, 
complete loss of texture and other evident defects). The results are provided as the mean 
values of 6 samples for irrigation management strategies and fertilization levels (3 repli-
cates × 2 irrigation management strategies or 2 fertilization levels). The mean values fol-
lowed by different letters (a, b) are significantly different (p ≤ 0.05), according to Student-
Newman-Keuls test. 

3.2. Relationship among Rocket Visual Quality Levels and Postharvest Quality Parameters 
The color parameters (YI and DI), obtained by the colorimeter, were able to discrim-

inate four QL: leaves very good (QL5) and good (QL4) from fair (QL3), poor (QL2) and 
very poor (QL1) (Table 3). As for YI, that indicates the degree of yellowness, rocket leaves 
on QL1 showed values 31% higher (YI = 94.1 ± 6.5) than samples on QL5 (YI = 71.9 ± 9.7) 
and the same statistical differences between levels were observed for DI. In QL1 samples 
DI parameter resulted about 40% higher (DI = −14.7 ± 2.4) than rocket leaves belonging to 
QL5 (DI = −24.2 ± 2.0), indicating a gradual decrease of green color from QL5 to QL1. In 
the case of ΔE*, three class were separated, QL 5-4-3 (mean value 1.6 ± 1.4) from QL2 (11.3 
± 5.1) and QL1 (20.1 ± 8.1). Similar results were reported by [13], in which ΔE* discrimi-
nated the 80% of the QLs in fresh-cut lettuce, separating the QL5 from QL4-3, QL2 and 
QL1. 
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Table 3. Respiration rate, color parameters, electrolyte leakage and total chlorophyll content in rocket leaves stored at 10 
°C, at each quality level (QL). 

Parameters 
QL 

5 4 3 2 1 p-Value 
Respiration rate (µmol CO2 kg−1 s−1) 35.5 a 30.2 bc 27.0 bc 25.9 c 31.5 b **** 

ΔE* 0 d 2.0 cd 2.8 c 11.3 b 20.1 a **** 
Yellowness Index 71.9 d 70.0 d 77.4 c 86.6 b 94.1 a **** 
Degreening Index −24.2 d −24.0 d −22.2 c −17.7 b −14.7 a **** 

Electrolyte leakage (%) 19.3 c 18.4 c 22.2 b 22.5 b 25.9 a **** 
Total chlorophyll content (mg 100 g−1) 54.1 a 53.1 a 48.4 b 45.9 b 34.0 c **** 

For each parameter the mean values followed by different letters (a, b, c, d) are significantly different (p-value < 0.05) 
according to Student-Newman-Keuls (SNK) test. Significance: **** = significant at p-value ≤ 0.0001. 

In the present study, the respiration rate of rocket leaves at harvest (QL5) was 35.52 
± 5.7 µmol CO2 kg−1 s−1 and it remained rather low in all QLs, showing a slight decrease 
from QL5 to QL2 and increasing in QL1 rocket leaves, discriminating only the QL5 from 
the other levels (Table 3). The authors in [35] reported values of respiration rate in Diplo-
taxis tenuifolia L. stored at 4 °C of about 8.5 µmol CO2 kg−1 s−1, while in [36] the respiration 
rate in wild rocket stored at 17 °C was about 32.8 µmol CO2 kg−1 s−1. According to [37], the 
differences on this parameter in rocket are related to the storage temperature and to the 
maturity of the leaves at harvest: they reported that young wild rocket leaves at 10 °C had 
higher (79.8 µmol CO2 kg−1 s−1) respiration rate than the old ones (47.7 µmol CO2 kg−1 s−1). 

In the present research, electrolyte leakage was able to discriminate the marketable 
samples (QL5 and QL4) from the QL3 and the waste (QL2 or QL1) ones. Furthermore, 
these two classes of waste were well discriminated by electrolyte leakage (Table 3). 

The same discrimination was observed in the case of total chlorophyll content, that 
showed a decrease of about 37% from the QL5 to QL1 (Table 3). In particular, this param-
eter well separated the marketable samples (QL5 and QL4) from the QL3 and QL2; more-
over, the waste samples (QL1) were well discriminated from the edible ones. The authors 
in [38] reported that the chlorophyll degradation, which causes yellowing leaves, is re-
lated to the quality loss of the product. Indeed, the total chlorophyll content is considered 
a good objective parameter for the QL assessment. 

3.3. Application of Self-Configuring CVS to Objectively Attribute the Visual Quality Level of 
Rocket Leaves and to Discriminate Them According to Preharvest Practices 

The goal of the CVS was to reproduce the QL sensory evaluation of rocket leaves and 
to identify agronomic treatments in an objective, non-destructive and contactless way by 
simply imaging the product in proper conditions. Since color is the key information aspect 
used by the CVS, it was necessary to make its measurement as consistent as possible. 

The color-chart, introduced in the scene, provided a reference that was used to meas-
ure, and then minimize the effects of any uncontrolled change in the acquisition environ-
ment. This was carried out by correlating the 24 expected color values provided by the 
manufacturer with the values measured in each image. This correlation was used to de-
termine the parameters of the model that was used for correcting all the colors of the im-
age. The three previously presented color correction models were applied and quantita-
tively compared to point out the best model for such kind of application. Two metrics to 
measure the effectiveness of color corrections models were considered. The first one eval-
uated their ability to reduce the distance between expected and measured color on the 24 
patches of the color chart. The second one measured their effects on final classification 
accuracy, keeping unchanged all the following processing on images. The former method 
evaluated the correction on the same data used to estimate the parameters of the model: 
This made the response weaker and less reliable. 

This paper proposes the latter method to achieve a better evaluation using the accu-
racy of the classification process applied to the images corrected using the three different 
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color correction models. In this way, the data (the colors of the product) on which the 
models are compared are different from the ones used during the model construction. 
Moreover, the effectiveness of color correction is evaluated on the task of interest. The 
experiments pointed out that the two metrics do not provide always the same answer. As 
shown in Figure 4, the global distance between the expected and the measured values on 
the color chart patches was still large for WB, much smaller for LC and minimum for the 
PC. This was a natural result of the higher degrees of freedom of the PC that made easier 
to correct the 24 colors of the color-chart. When applied to the evaluation of QL of rocket 
leaves and to the identification of the Timer and Sensor approaches, the differences be-
tween LC and PC were small and could be considered negligible. 

 
Figure 4. Average difference (Euclidean distance) between the expected colors and the measured 
values over the dataset of images corrected using White Balance (blue), Linear Correction (orange), 
Polynomial Correction (yellow). In abscissa there are the different color patches of the color chart. 

In the experiments, all the images were corrected using all the three exposed models. 
Three different image datasets were generated, each associated to a different color correc-
tion model. The same subsequent processing and classification process, which was based 
on a Random Forest approach, was applied to the histograms associated with the three 
datasets. The corresponding performances were then measured. The classification was 
accomplished using two different resolutions of practical relevance. In the first case, the 
product completely marketable (QL5-QL4-QL3) was separated from the product just be-
low the marketable limit (QL2) and from the not edible items. This may be useful because 
the leaves belonging to QL2 might be reusable to reduce waste. In the second case, the 
marketable product (QL5-QL4-QL3) was separated from unmarketable leaves (QL2-QL1): 
this might be a valid solution for commercial applications where it is important only to 
recognize the unmarketable product to remove it from the shelves. 

Moreover, the classification was tried on the task of recognizing leaves from the 
Timer vs Sensor and those from FL_1 vs FL_2 treatments. The Table 4 shows the Confu-
sion Matrices obtained by the Random Forest applied to the problem of distinguishing the 
marketable product (QLs 5–4–3) from the edible one (QL 2) and from the waste (QL 1). 
The accuracy obtained by applying WB was 93%, by applying LC was 96%, by applying 
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the PC was 95%. In this case the PC behaved slightly worse than LC even if on the color-
chart the results were opposite. 

Table 4. Confusion Matrices obtained by the classification working on the datasets coming from the 
three different color correction models and with the task of separating marketable product (QL 5-4-
3) from the edible (QL 2) and from the waste (QL 1) ones. 

  White Balance Linear Correction Polynomial Correction 
  Predicted QL Predicted QL Predicted QL 

Real QL 1 2 3–4–5 1 2 3–4–5 1 2 3–4–5 
1 24 0 0 23 1 0 22 2 0 
2 0 58 14 0 62 10 3 60 9 

3–4–5 0 8 208 0 2 214 0 1 215 

The Table 5 shows the Confusion Matrices obtained by applying the classification to 
the task of separating marketable product (QL5-4-3) from non-marketable product (QL 2–
1). The accuracy obtained by applying WB was 93%, by applying LC was 96%, by applying 
the PC was 97%. 

Table 5. Confusion Matrices obtained by the classification working on the datasets coming from the 
three different color correction models and with the task of separating marketable product (QL 5–
4–3) from non-marketable product (QL 2–1). 

  White Balance Linear Correction Polynomial Correction 
  Predicted QL Predicted QL Predicted QL 

Real QL 1–2 3–4–5 1–2 3–4–5 1–2 3–4–5 
1–2 80 16 87 9 87 9 

3–4–5 7 209 2 214 1 215 

There was a light improvement in the accuracy of LC and PC while the difference 
between them was still negligible. In this case, PC slightly outperformed LC in accord 
with the results on the color-chart but with a much smaller difference. The experiments 
pointed out that the two models produce mostly the same effects on the task. Therefore, 
is natural to use the LC model, which exhibits a lower computational complexity. The 
proposed self-configuring CVS used for the QL classification of rocket leaves allowed an 
objective system to be obtained, that can reproduce the human sensory evaluation, that 
consider a set of descriptors (such as color, defects and texture) as reference (Figure 1). 
Therefore, the proposed system, based on the extraction of color features, classified rocket 
leaves miming the end users involved in the visual QL assessment [1]. 

Tables 6 and 7 show the Confusion Matrices associated to the tasks of recognizing 
the fertilization levels (FL_1 vs FL_2) using the irrigation management approach Timer 
and Sensor, respectively. The accuracies were quite low; approximately 70% using Timer 
and 66% using Sensor. LC and PC behaved similarly on irrigation management approach 
while LC outperformed PC on FL. 
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Table 6. The table shows the Confusion Matrices obtained by the classification working on distin-
guishing the different fertilization levels (FL_1 vs. FL_2) using the timer-based irrigation manage-
ment from datasets provided by the three different color correction methods. 

  White Balance Linear Correction Polynomial Correction 
  Predicted FL Predicted FL Predicted FL 

Real FL FL_1 FL_2 FL_1 FL_2 FL_1 FL_2 
FL_1 107 49 109 47 100 56 
FL_2 54 102 46 110 44 112 

Table 7. The table shows the Confusion Matrices obtained by the classification working on distin-
guishing the different fertilization levels (FL_1 vs. FL_2) using the sensor-based irrigation manage-
ment from datasets provided by the three different color correction methods. 

  White Balance Linear Correction Polynomial Correction 
  Predicted FL Predicted FL Predicted FL 

Real FL FL_1 FL_2 FL_1 FL_2 FL_1 FL_2 
FL_1 102 54 105 51 106 50 
FL_2 46 110 52 104 50 106 

The results obtained by recognizing the differences in the fertilization treatments 
(sustainable or conventional) were weaker. Nonetheless, these results were in accord with 
the indications provided by the statistical analysis of the measures supplied by the color-
imeter and by the destructive tests made in laboratory. The performance is due to the 
small differences between products obtained by different treatments. This substantially 
uniform product quality confirmed that reducing water and fertilizer supply to exactly 
match real plant needs, without excesses, provides adequate growing conditions. 

4. Conclusions 
The experiments proved that the adopted agronomic treatments significantly im-

proved the sustainability of the production process. This is demonstrated by the high val-
ues of WUE and FUE, obtained using sensors and reducing fertilizer inputs, while guar-
anteeing high product quality in all treatment conditions. 

The proposed CVS was based on calibrated color images: Linear color correction 
proved to represent the best trade-off between efficacy and efficiency in making consistent 
color measurements. The proposed new form of integration of the Random Forest model 
in the color analysis was able to define and select color features suitable for classification 
without any human intervention. This new CVS achieved a high accuracy (about 95%) in 
evaluating the rocket quality levels during storage. The same system was used to recog-
nize traits related to the sustainability of the cultivation management with specific refer-
ence to water and nutrients use. In this second task, performance was lower and not rele-
vant for practical application. However, it was fully in accord with the results provided 
by the standard methods currently used (colorimeter and destructive analytical tests in 
laboratory). Therefore, the different cultivation approaches did not significantly affect the 
characteristics of the product. For this last task, further investigations are needed. 

The proposed computer vision system is cheap, fast and can be easily moved to an 
industrial production line. Given that the system is non-destructive and contactless, it en-
ables an extended monitoring of products along the whole supply chain, thereby provid-
ing the opportunity for timely detection quality change and a reduction in economic losses 
and production waste. 
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