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1 Introduction

Contact (k, 11)-spaces constitute a relevant class of objects studied in contact
metric geometry; these spaces were introduced by Blair, Koufogiorgos and Pa-
pantoniou in [2] as a generalization of Sasakian manifolds. Indeed, a contact
metric (k, ) manifold is a contact metric manifold (M, ¢, &, n, g) such that

R(X,Y)E = k(n(Y)X —n(X)Y) + p(n(Y)hX —n(X)nY), (1)

where X,Y € X(M), k, pu are real numbers and h := 3L¢. Here L¢p denotes
the Lie derivative of ¢ in the direction of £. Recall that Sasakian manifolds are
characterized by the above equation with £ =1 and h = 0.

Looking at contact metric manifolds as strongly pseudo-convex (almost) CR
manifolds, Dileo and Lotta showed that the (k, u)—condition is equivalent to the
local C' R-symmetry with respect to the Webster metric g (see [9] and section
2.2). In this context, another characterization was given by Boeckx and Cho
and in terms of the parallelism of the Tanaka—Webster curvature and torsion
[5]. Another link with CR geometry is provided by a recent result of Cho
and Inoguchi stating that every orientable contact metric real hypersurface of
a non-flat complex space form is a (k, u) space [8].

Boeckx gave a crucial contribution to the problem of classifying these mani-

folds; after showing that every non-Sasakian contact (k, p1)-space is locally homo-
geneous and strongly locally p—symmetric [3], in [4] he defined a scalar invariant
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I which completely determines a contact (k, u)—space M locally up to equiv-
alence and up to a D-homotetic deformation of its contact metric structure.

A standard example is the tangent sphere bundle T3 M of a Riemannian
manifold M with constant sectional curvature ¢ # 1. Being an hypersurface of
TM, which is equipped with a natural strictly almost Kéhler structure (J, G),
where G is the Sasaki metric, T3 M inherits a standard contact metric structure
(for details, see for instance [1]). In particular, the Webster metric g of Ty M is
a scalar multiple of G. The corresponding Boeckx invariant is given by:

14+c¢
It v = |17j0|
Hence, as ¢ varies in R \ {1}, I, as assumes all the real values strictly greater
than —1.

The case I < —1 seems to lead to models of different nature. Namely, Boeckx
found examples of contact metric (k, ) spaces, for every value of the invariant
I < —1, namely a two parameter family of Lie groups with a left-invariant
contact metric structure. However, he gave no geometric description of these
examples.

The purpose of this paper is to show that, actually, one can construct the
models with I < —1 simply by replacing a Riemannian space form (M, g) with
a Lorentzian one, taking instead of T3 M the so-called tangent hyperquadric
bundle:

T M ={(pv)eTM: gy(v,v)=—1}.

Indeed, the formula for the Boeckx invariant changes as follows:

c—1
Ir =,
M ]
where ¢ varies in R \ {—1}, so that for ¢ < 0, these examples cover all possible
values of the Boeckx invariant in (—oo, —1].

We remark that, as in the Riemannian case, T_1 M is again a strictly pseudo-
convex C'R hypersurface of (T'M,J) (see also [14] for a recent study of these
manifolds from the point of view of CR geometry). However, in this case the
Webster metric g is no longer a scalar multiple of the (semi-Riemannian) Sasaki
metric of TM.

2 Preliminaries

2.1 Contact metric (k, ) manifolds

In this section we recall some basic results concerning the class of contact met-
ric manifolds under consideration. As a general reference on contact metric
geometry, we refer the reader to Blair’s book [1].



Theorem ([2]). Let (M,¢,&,m,9) be a contact metric (k, ) manifold. Then
necessarily k < 1. Moreover, if k =1 then h = 0 and (M, ¢, £, 1, g) is Sasakian.
If kK < 1, the contact metric structure is not Sasakian and M admits three mu-
tually orthogonal integrable distributions D(0), D(A) and D(—A) corresponding
to the etgenspaces of h, where A = /1 — k.

Non-Sasakian contact metric (k, ) manifolds was completely classified by
Boeckx in [4]. We have that & < 1 and the real number

14

1-—

Iy =

)

o

is an invariant for the (k, u) structure; moreover:

Theorem ([4)). Let (M;, i, &,m5,9:), © = 1,2, be two non-Sasakian (k;, p;)-
spaces of the same dimension. Then In, = In, if and only if, up to a D-
homothetic transformation, the two spaces are locally isometric as contact metric
spaces. In particular, if both spaces are simply connected and complete, they are
globally isometric up to a D-homothetic transformation.

Finally we recall how the Boeckx invariant Ip; of a non-Sasakian (k, 1) man-
ifold is linked with the behavior of the Pang invariants of the Legendre foliations
determined by D(A\) and D(—\). The Pang invariant of a Legendre foliation F
on a contact manifold (M, n) is the symmetric tensor:

II7(X,Y) := =(Lx Lyn)(§) = 2dn([¢, X],Y), (2)

where X, Y are vectors fields tangent to F (cf. [13]). The Legendre foliation
F is called positive, negative or flat according to the circumstance that the
bilinear form IIr is positive definite, negative definite or vanishes identically,
respectively.
In our case the explicit expressions of IIp(y) and IIp_ ) are (see [1, p. 127
or [7]):
2
Ipny = A+1) 3 i M)\gn|D()\)><D(>\)7 (3)

—A=1)2+k—puX
IIp_yy = ( ))\ gn|D(f)\)><D(f>\)- (4)

Using the previous equations one gets (see [6]):

Theorem. Let (M,¢,&,n,g) be a non-Sasakian contact metric (k, u) manifold.
Then one of the following must hold:

(a) both D(\) and D(—M\) are positive definite;
(b) D(N) is positive definite and D(—X) is negative defined;
(¢) both D(X\) and D(—X) are negative definite;
(d) D(N) is positive definite and D(—N\) is flat;



(e) D(N) is flat and D(—)) is negative defined.

Furthermore, M belongs to the class (a), (b), (¢), (d), (e) if and only if Iny > 1,
1<y <-—1,In<-—1, I =1, If = —1, respectively.

2.2 Locally symmetric pseudo-Hermitian manifolds

Let M™t* be a smooth manifold. A partial complex structure of C R-codimension
k is a pair (HM,J) where HM is a smooth real subbundle of real dimen-
sion 2n of the tangent bundle TM, and J is a smooth bundle isomorphism
J:HM — HM such that J? = —1I.
An almost CR structure on M is a partial complex structure (HM, J) on
M satistying:
(X, Y]-[JX,JY]eH,

for every X, Y € H , where H denotes the module of all the smooth sections of
HM. If moreover the following equation

holds for every X, Y € H , then (HM,J) is said to be a CR structure on M,
and (M, HM,J) is a CR manifold.

If (HM,J) is an almost C'R structure of C'R-codimension 1 on a orientable
manifold M, one can also represent HM as

HM = ker(n),

where 7 is a globally defined nowhere vanishing one form. If, for some choice of
7, the corresponding Levi form

Ly(X,Y):= —dp(X,JY), X,YeH

is positive definite, then the almost CR structure (HM, J) is a called strongly
pseudo-convez, and we shall refer to (M, HM, J,n) as a strongly pseudo-convex
almost CR manifold. When the underlying almost C'R structure is also inte-
grable, M is usually termed a pseudo-Hermitian manifold. See for example [11]
for more information on this subject.

It is well known that any strongly pseudo-convex structure almost C'R struc-
ture (HM, J,n) on a manifold M canonically determines a contact metric struc-
ture (p,€,1,9,). Indeed, n is a contact form, so that there exists a unique
nowhere vanishing globally defined vector field £ transverse to HM (the Reeb
vector field), such that

n€) =1, dn(X)=0

for every X € X(M). The Levi form L, and the bundle isomorphism J can be
canonically extended respectively to a Riemannian metric g,), called the Webster
metric, and to a (1, 1)-tensor field ¢:

gn(X,Y)::Ln(X,Y), gn(Xag):()a gn(f,f)zl,



X =JX, p&:=0,

where X,Y € H . One can check that (¢,,7,g,) is a contact metric structure
on M in the sense of [1].
Conversely, if (¢,£,n,g) is a contact metric structure on M, then setting

HM :=Im(p), J:=¢|lgm,

one gets a strongly pseudo-convex almost C'R structure, whose Webster metric
gy coincides with g.

Let (M, HM, J,n) be a strongly pseudo-convex almost C'R manifold. A CR
symmetry at a point p € M is a CR diffeomorphism

oc: M — M,
which is also an isometry with respect to the Webster metric g,, and such that
(dU)p|Hp]W = —IdeM.

If M admits a CR symmetry at p for every p € M, then M will be called a
symmetric pseudo-Hermitian manifold. Since the symmetry at p in uniquely
determined, it makes sense also to define locally symmetric pseudo-Hermitian
manifolds in a natural manner. Observe that, since the local C' R symmetries are
CR maps, for these manifolds the integrability condition (5) is automatically
satisfied (see [9]).

Finally, we recall that it was showed in [9, Theorem 3.2] that a non Sasakian
contact metric manifold satisfies the (k,p) condition (1) if and only if it is a
locally symmetric pseudo-Hermitian manifold.

2.3 Tangent bundles and tangent hyperquadric bundles

Here we recall some notions and properties concerning the tangent bundle of
a manifold. The definition and some properties of the tangent hyperquadric
bundle of a Lorentzian manifold will be also recalled.

Let M be a smooth manifold. The wvertical lift XV of a vector field X on
M, is the vector field on T'M defined by

XYw=w(X)om,

where w is any 1-form on M and w : TM — M is the canonical projection.
Furthermore, if D is an affine connection on M, the horizontal lift of X with
respect to D, is defined by

XHy = Dxw,

where w is any 1-form on M. The local expression of X with respect to
the local coordinates system (q*,v*) on T'M associated to a local system of
coordinates (z*) on M is:

8—X%@ka

XH = Xt~ .
oq’ 7 vk (6)




We denote by H; and V; the span of the horizontal and vertical lifts at t € TM
respectively. We have that:

T{(TM)=H; & V;.

The canonical vertical vector field N on TM and the geodesic flow ¢ on TM
are defined by:
-/\[t:uy7 Ct:ufv t:(p,u)ETM

The tangent bundle of an affine manifold (M, D) admits a canonical almost
complex structure J : TTM — TTM such that:

JXT =xV  JXV=-X" XecxM).
Observe that: y ;
JN = ¢, JC=N.

For the Lie brackets between horizontal and vertical lifts of the vector fields
X,Y on M, the following formulas hold (see [1]):

XV, vVl=0, X", YV]=(DxY)",
[XHvYH}t = [X7Y]1£H - (R(va)u)iqv (7)
where R denotes the curvature tensor of D on M.

In all that follows, we consider a Lorentzian manifold (M,g). The Sasaki
metric G on TM is defined according to:

ét(XHaYH) :gP(XP7Yp)7 ét(XVaYV) :gp(X]”}/P)? ét(XHvYV) :07

where X, Y € X(M), t = (p,u) € TM, and X, Y are the horizontal lifts of
X,Y with respect to the Levi-Civita connection of g. Observe that the Sasaki
metric G has index 2 (see [10] for more details). It is known that the 1-form on
TM:

Bi(Xy) i= Ge(Xp,ull) = gp(me X, u), X € X(TM), t = (p,u) € TM,

satisfies
2dB(X,Y) = G(X, JY), (8)

for every X,Y € X(TM) (see for instance [1, p. 171] or [10]), so that (T'M, J, G)
is an indefinite almost Kéahler manifold.

Now we consider the tangent hyperquadric bundle
T M := {(p7 ’LL) €TM | gp(uvu) = _1}7

which is an orientable hypersurface of T'M, being N a unit normal vector field
to T_1 M. We have that:

Gi(Ne,Ny) =—1, H, C T,(T_ M),



T(T_ M) ={XF +VY | X,Y € T,M, g,(Y,u) =0},

for every t = (p,u) € T_1 M. Being a hypersurface of (T'M,.J), T_; M inherits
a canonical partial complex structure (H(T_1 M), J), where

H(T_1M):={X € T(T_ M) | JX € T(T_1M)},

and
J:H(T_1M)— H(T_1M),

is the restriction of the almost complex structure J. Observe that for every
t=(p,u) e T_1M:

Hy(T_ M) ={X"+VY | X,Y € T,M, g,(X,u) =0, g,(Y,u) =0}
=X +Y | X,Y € T,M}

where, for every X € X(M), we introduce the following vector fields tangent to
TflMZ 5
X0 .= X" L Q(XV,N),

XT =XV + GXV,N)N.

Finally, we consider the 1-form 7 := %ﬁ onT_1 M, whose kernel is H(T_1 M).
Equation (8) implies that the Levi form L, is positive definite and the Reeb

vector field € of 7 is
& =—-2¢, teT_1M. 9)

Hence (H(T-1M),J,n) is a strongly pseudo-convex almost C'R structure on
T 1M, that we shall call the standard pseudo-convex structure. The associ-
ated contact metric structure, also named standard contact metric structure, is
determined according to:

p(XO) =XT, p(XT)=-X% o) =0,
g (X,7) = {GX.T), (K. =0, g6 =1,

where X € X(M) and X,Y are any smooth sections of H(T_1M).

3 Contact metric (k,p) structures on tangent
hyperquadric bundles

In this section we prove our main results.

Theorem 1. Let (M, g) be a Lorentzian manifold. Then T_1 M is a locally sym-
metric pseudo-Hermitian manifold if and only if (M, g) has constant sectional
curvature.



Proof. Suppose first that (M, g) has constant sectional curvature. Let t = (p, u)
any point on T_; M. We have that the linear mapping

L:XeT,M——-X—2g,(u,X)ueT,M,

is an orthogonal transformation that preserves the Riemannian curvature tensor.
Thus, there exists an isometry

f:U—=>U,

where U is an open neighborhood of p, such that d, f = L (cf. [12, Chapter 8]).
Since f is an isometry, we see that the induced diffeomorphism

F=df:TU - TU
satisfies:
(dF)(XI) = (Afe(X)Eey,  (AF)(XY) = (dfe(X)) sy (10)

for every X € X(M) and s = (z,v) € T_1M NTU, hence F is a local isometry
with respect to the Sasaki metric G on T'M, preserving the almost complex
structure J. It follows that F restricts to a local CR diffeomorphism of T_; M.
Moreover, (10) and (9) imply that (dF)s({s) = p(s), yielding that F is also a
local isometry with respect to the Webster metric. Moreover, being d,f = L,
we have:

(AF) el g, (r_, 00y = —1d,

and thus F is a local CR symmetry at ¢.

Viceversa, if T_1 M is a locally symmetric pseudo-Hermitian manifold, then
in particular (H(T-1M),J) is a CR structure and hence, by [14, Theorem 1],
(M, g) has constant sectional curvature. O

Now we determine the Boeckx invariant of T_1 M, where M is a Lorentzian
space form.

Theorem 2. Let (M"! g) be a Lorentzian manifold with constant sectional
curvature ¢. Then, T_1M endowed with the standard contact metric structure
is Sasakian if and only if c = —1. If ¢ # —1 then T_1M is a non-Sasakian
contact metric (k, p)-space, whose Boeckx invariant is:

_ c—1
e+ 1)

Proof. Theorem 1 ensures that the standard contact metric structure (¢, §, 1, g)
of T_1 M is a contact metric (k, 1) structure (eventally a Sasakian one). In the
following we compute the spectrum of the symmetric operator h. Let t =
(p,u) € T_1M and X € T,,M such that g,(X,u) = 0. Then:

2n(XT) = [6, pXT] — pl¢, XT]

— 16, XO) = JI&, XY + (XY, NN, (11)



where we are denoting again with X any extension of the vector X. Let (z*) be
a local coordinate system on M and (¢*,v") the corresponding local coordinate
system on T'M. Since locally

_ _oig 9 \m
5__2U(8$l) )

then using equation (7), by a standard computation (cf. also [9] in the Rieman-
nian case), we obtain:

(€, X ] =2(X{" = (VuX)Y), [6X"])=-2((VuX){ —cX)),  (12)
and hence (11) becomes:
2h(X]) = 2(VuX){' — X)) = 2(X)" + (VuX){) = &(G(XY,N))IN,
2+ )XY — T6(GXY, N
It follows that &(G(XY,N)) = 0, thus

h(X)) = —(c+1)XY,

WOXH) = (X)) = phXY = (c+ DX/, (13

and the spectrum of the operator h is {0,c¢+1, —(c+1)}. It follows that T3 M
is Sasakian iff ¢ = —1.

Suppose ¢ # —1. Let t = (p,u) and X € T, M such that g,(X,u) = 0. Then
using the definition (2) of the Pang invariant and equation (12), we get, being
X9 a global section of D(c + 1):

Ip(er1y (X7, XP) = 2dn([¢, X, XP)

= 2971([57XH + G(XvﬂN)C]taX;T)
= 2gy([¢, XM+ €(G(XY, NG, X (14)
= 29, ([&, X2, X7)
= degy (XY, XT)
- 4an(XtT7XtT)
In particular if ¢ > —1, by equation (3), we obtain
Mper1) (X9, X9) = (2c+ 4 — 1)gy (X2, XO). (15)
Thus comparing (14) and (15) we have that p = 4 — 2¢ and hence
c—1
Iy =——.
M c+1
Finally suppose ¢ < —1. Then by (4):
HD(c+1)(XoaXO) - (2c+47,u)gn(XOaXO)' (16)



Comparing equations (16) and (14) we obtain that u =4 — 2¢ and

c—1
c+1°

M

O

Corollary 1. Every non Sasakian contact metric (k, ) space with Boeckz in-
variant I < —1 is locally equivalent, up to a D-homothetic deformation, to the
tangent hyperquadric bundle T_1M of a Lorentzian manifold M with constant
sectional curvature ¢ < 0, ¢ # —1, endowed with its standard contact metric
structure.
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