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1 Introduction

Contact (k, µ)–spaces constitute a relevant class of objects studied in contact
metric geometry; these spaces were introduced by Blair, Koufogiorgos and Pa-
pantoniou in [2] as a generalization of Sasakian manifolds. Indeed, a contact
metric (k, µ) manifold is a contact metric manifold (M, Ï, ›, ÷, g) such that

R(X, Y )› = k(÷(Y )X ≠ ÷(X)Y ) + µ(÷(Y )hX ≠ ÷(X)hY ), (1)

where X, Y œ X(M), k, µ are real numbers and h := 1
2 L›Ï. Here L›Ï denotes

the Lie derivative of Ï in the direction of ›. Recall that Sasakian manifolds are
characterized by the above equation with k = 1 and h = 0.

Looking at contact metric manifolds as strongly pseudo-convex (almost) CR

manifolds, Dileo and Lotta showed that the (k, µ)–condition is equivalent to the
local CR-symmetry with respect to the Webster metric g (see [9] and section
2.2). In this context, another characterization was given by Boeckx and Cho
and in terms of the parallelism of the Tanaka–Webster curvature and torsion
[5]. Another link with CR geometry is provided by a recent result of Cho
and Inoguchi stating that every orientable contact metric real hypersurface of
a non-flat complex space form is a (k, µ) space [8].

Boeckx gave a crucial contribution to the problem of classifying these mani-
folds; after showing that every non-Sasakian contact (k, µ)-space is locally homo-
geneous and strongly locally Ï–symmetric [3], in [4] he defined a scalar invariant
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IM which completely determines a contact (k, µ)–space M locally up to equiv-
alence and up to a D-homotetic deformation of its contact metric structure.

A standard example is the tangent sphere bundle T1M of a Riemannian
manifold M with constant sectional curvature c ”= 1. Being an hypersurface of
TM , which is equipped with a natural strictly almost Kähler structure (J, G),
where G is the Sasaki metric, T1M inherits a standard contact metric structure
(for details, see for instance [1]). In particular, the Webster metric g of T1M is
a scalar multiple of G. The corresponding Boeckx invariant is given by:

IT1M = 1 + c

|1 ≠ c|
.

Hence, as c varies in R r {1}, IT1M assumes all the real values strictly greater
than ≠1.

The case I 6 ≠1 seems to lead to models of di�erent nature. Namely, Boeckx
found examples of contact metric (k, µ) spaces, for every value of the invariant
I 6 ≠1, namely a two parameter family of Lie groups with a left–invariant
contact metric structure. However, he gave no geometric description of these
examples.

The purpose of this paper is to show that, actually, one can construct the
models with I 6 ≠1 simply by replacing a Riemannian space form (M, g) with
a Lorentzian one, taking instead of T1M the so-called tangent hyperquadric
bundle:

T≠1M = {(p, v) œ TM : gp(v, v) = ≠1}.

Indeed, the formula for the Boeckx invariant changes as follows:

IT≠1M = c ≠ 1
|c + 1|

,

where c varies in Rr {≠1}, so that for c 6 0, these examples cover all possible
values of the Boeckx invariant in (≠Œ, ≠1].

We remark that, as in the Riemannian case, T≠1M is again a strictly pseudo-
convex CR hypersurface of (TM, J) (see also [14] for a recent study of these
manifolds from the point of view of CR geometry). However, in this case the
Webster metric g is no longer a scalar multiple of the (semi-Riemannian) Sasaki
metric of TM .

2 Preliminaries

2.1 Contact metric (k, µ) manifolds

In this section we recall some basic results concerning the class of contact met-
ric manifolds under consideration. As a general reference on contact metric
geometry, we refer the reader to Blair’s book [1].
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Theorem ([2]). Let (M, Ï, ›, ÷, g) be a contact metric (k, µ) manifold. Then
necessarily k 6 1. Moreover, if k = 1 then h = 0 and (M, Ï, ›, ÷, g) is Sasakian.
If k < 1, the contact metric structure is not Sasakian and M admits three mu-
tually orthogonal integrable distributions D(0), D(⁄) and D(≠⁄) corresponding
to the eigenspaces of h, where ⁄ =

Ô
1 ≠ k.

Non-Sasakian contact metric (k, µ) manifolds was completely classified by
Boeckx in [4]. We have that k < 1 and the real number

IM =
1 ≠

µ
2

Ô
1 ≠ k

,

is an invariant for the (k, µ) structure; moreover:

Theorem ([4]). Let (Mi, Ïi, ›i, ÷i, gi), i = 1, 2, be two non-Sasakian (ki, µi)-
spaces of the same dimension. Then IM1 = IM2 if and only if, up to a D-
homothetic transformation, the two spaces are locally isometric as contact metric
spaces. In particular, if both spaces are simply connected and complete, they are
globally isometric up to a D-homothetic transformation.

Finally we recall how the Boeckx invariant IM of a non-Sasakian (k, µ) man-
ifold is linked with the behavior of the Pang invariants of the Legendre foliations
determined by D(⁄) and D(≠⁄). The Pang invariant of a Legendre foliation F

on a contact manifold (M, ÷) is the symmetric tensor:

 F (X, Y ) := ≠(LXLY ÷)(›) = 2d÷([›, X], Y ), (2)

where X, Y are vectors fields tangent to F (cf. [13]). The Legendre foliation
F is called positive, negative or flat according to the circumstance that the
bilinear form  F is positive definite, negative definite or vanishes identically,
respectively.

In our case the explicit expressions of  D(⁄) and  D(≠⁄) are (see [1, p. 127]
or [7]):

 D(⁄) = (⁄ + 1)2
≠ k ≠ µ⁄

⁄
g÷|D(⁄)◊D(⁄), (3)

 D(≠⁄) = ≠(⁄ ≠ 1)2 + k ≠ µ⁄

⁄
g÷|D(≠⁄)◊D(≠⁄). (4)

Using the previous equations one gets (see [6]):

Theorem. Let (M, Ï, ›, ÷, g) be a non-Sasakian contact metric (k, µ) manifold.
Then one of the following must hold:

(a) both D(⁄) and D(≠⁄) are positive definite;

(b) D(⁄) is positive definite and D(≠⁄) is negative defined;

(c) both D(⁄) and D(≠⁄) are negative definite;

(d) D(⁄) is positive definite and D(≠⁄) is flat;
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(e) D(⁄) is flat and D(≠⁄) is negative defined.

Furthermore, M belongs to the class (a), (b), (c), (d), (e) if and only if IM > 1,
≠1 < IM < ≠1, IM < ≠1, IM = 1, IM = ≠1, respectively.

2.2 Locally symmetric pseudo-Hermitian manifolds

Let M
n+k be a smooth manifold. A partial complex structure of CR-codimension

k is a pair (HM, J) where HM is a smooth real subbundle of real dimen-
sion 2n of the tangent bundle TM , and J is a smooth bundle isomorphism
J : HM æ HM such that J

2 = ≠I.
An almost CR structure on M is a partial complex structure (HM, J) on

M satisfying:
[X, Y ] ≠ [JX, JY ] œ H ,

for every X, Y œ H , where H denotes the module of all the smooth sections of
HM . If moreover the following equation

[JX, JY ] ≠ [X, Y ] ≠ J([JX, Y ] + [X, JY ]) = 0, (5)

holds for every X, Y œ H , then (HM, J) is said to be a CR structure on M ,
and (M, HM, J) is a CR manifold.

If (HM, J) is an almost CR structure of CR-codimension 1 on a orientable
manifold M , one can also represent HM as

HM = ker(÷),

where ÷ is a globally defined nowhere vanishing one form. If, for some choice of
÷, the corresponding Levi form

L÷(X, Y ) := ≠d÷(X, JY ), X, Y œ H

is positive definite, then the almost CR structure (HM, J) is a called strongly
pseudo-convex, and we shall refer to (M, HM, J, ÷) as a strongly pseudo-convex
almost CR manifold. When the underlying almost CR structure is also inte-
grable, M is usually termed a pseudo-Hermitian manifold. See for example [11]
for more information on this subject.

It is well known that any strongly pseudo-convex structure almost CR struc-
ture (HM, J, ÷) on a manifold M canonically determines a contact metric struc-
ture (Ï, ›, ÷, g÷). Indeed, ÷ is a contact form, so that there exists a unique
nowhere vanishing globally defined vector field › transverse to HM (the Reeb
vector field), such that

÷(›) = 1, d÷(›, X) = 0

for every X œ X(M). The Levi form L÷ and the bundle isomorphism J can be
canonically extended respectively to a Riemannian metric g÷, called the Webster
metric, and to a (1, 1)-tensor field Ï:

g÷(X, Y ) := L÷(X, Y ), g÷(X, ›) = 0, g÷(›, ›) = 1,
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ÏX := JX, Ï› := 0,

where X, Y œ H . One can check that (Ï, ›, ÷, g÷) is a contact metric structure
on M in the sense of [1].

Conversely, if (Ï, ›, ÷, g) is a contact metric structure on M , then setting

HM := Im(Ï), J := Ï|HM ,

one gets a strongly pseudo-convex almost CR structure, whose Webster metric
g÷ coincides with g.

Let (M, HM, J, ÷) be a strongly pseudo-convex almost CR manifold. A CR

symmetry at a point p œ M is a CR di�eomorphism

‡ : M æ M,

which is also an isometry with respect to the Webster metric g÷, and such that

(d‡)p|HpM = ≠IdHpM .

If M admits a CR symmetry at p for every p œ M , then M will be called a
symmetric pseudo-Hermitian manifold. Since the symmetry at p in uniquely
determined, it makes sense also to define locally symmetric pseudo-Hermitian
manifolds in a natural manner. Observe that, since the local CR symmetries are
CR maps, for these manifolds the integrability condition (5) is automatically
satisfied (see [9]).

Finally, we recall that it was showed in [9, Theorem 3.2] that a non Sasakian
contact metric manifold satisfies the (k, µ) condition (1) if and only if it is a
locally symmetric pseudo-Hermitian manifold.

2.3 Tangent bundles and tangent hyperquadric bundles

Here we recall some notions and properties concerning the tangent bundle of
a manifold. The definition and some properties of the tangent hyperquadric
bundle of a Lorentzian manifold will be also recalled.

Let M be a smooth manifold. The vertical lift X
V of a vector field X on

M , is the vector field on TM defined by

X
V

Ê = Ê(X) ¶ fi,

where Ê is any 1-form on M and fi : TM æ M is the canonical projection.
Furthermore, if D is an a�ne connection on M , the horizontal lift of X with
respect to D, is defined by

X
H

Ê = DXÊ,

where Ê is any 1-form on M . The local expression of X
H with respect to

the local coordinates system (qi
, v

i) on TM associated to a local system of
coordinates (xi) on M is:

X
H = X

i ˆ

ˆqi
≠ X

i
v

j�k
ij

ˆ

ˆvk
. (6)
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We denote by Ht and Vt the span of the horizontal and vertical lifts at t œ TM

respectively. We have that:

Tt(TM) = Ht ü Vt.

The canonical vertical vector field N on TM and the geodesic flow ’ on TM

are defined by:
Nt = u

V
t , ’t = u

H
t , t = (p, u) œ TM.

The tangent bundle of an a�ne manifold (M, D) admits a canonical almost
complex structure J̃ : TTM æ TTM such that:

J̃X
H = X

V
, J̃X

V = ≠X
H

, X œ X(M).

Observe that:
J̃N = ≠’, J̃’ = N .

For the Lie brackets between horizontal and vertical lifts of the vector fields
X, Y on M , the following formulas hold (see [1]):

[XV
, Y

V ] = 0, [XH
, Y

V ] = (DXY )V
,

[XH
, Y

H ]t = [X, Y ]Ht ≠ (R(X, Y )u)H
t , (7)

where R denotes the curvature tensor of D on M .

In all that follows, we consider a Lorentzian manifold (M, g). The Sasaki
metric G̃ on TM is defined according to:

G̃t(XH
, Y

H) = gp(Xp, Yp), G̃t(XV
, Y

V ) = gp(Xp, Yp), G̃t(XH
, Y

V ) = 0,

where X, Y œ X(M), t = (p, u) œ TM , and X
H , Y

H are the horizontal lifts of
X, Y with respect to the Levi-Civita connection of g. Observe that the Sasaki
metric G̃ has index 2 (see [10] for more details). It is known that the 1-form on
TM :

—t(X̃t) := G̃t(X̃t, u
H
t ) = gp(fiıX̃, u), X̃ œ X(TM), t = (p, u) œ TM,

satisfies
2d—(X̃, Ỹ ) = G̃(X̃, J̃ Ỹ ), (8)

for every X̃, Ỹ œ X(TM) (see for instance [1, p. 171] or [10]), so that (TM, J̃, G̃)
is an indefinite almost Kähler manifold.

Now we consider the tangent hyperquadric bundle

T≠1M := {(p, u) œ TM | gp(u, u) = ≠1},

which is an orientable hypersurface of TM , being N a unit normal vector field
to T≠1M . We have that:

G̃t(N t, N t) = ≠1, Ht µ Tt(T≠1M),
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Tt(T≠1M) = {X
H
t + Y

V
t | X, Y œ TpM, gp(Y, u) = 0},

for every t = (p, u) œ T≠1M . Being a hypersurface of (TM, J̃), T≠1M inherits
a canonical partial complex structure (H(T≠1M), J), where

H(T≠1M) := {X œ T (T≠1M) | J̃X œ T (T≠1M)},

and
J : H(T≠1M) æ H(T≠1M),

is the restriction of the almost complex structure J̃ . Observe that for every
t = (p, u) œ T≠1M :

Ht(T≠1M) ={X
H
t + Y

V
t | X, Y œ TpM, gp(X, u) = 0, gp(Y, u) = 0}

={X
O
t + Y

T
t | X, Y œ TpM}

where, for every X œ X(M), we introduce the following vector fields tangent to
T≠1M :

X
O := X

H + G̃(XV
, N )’,

X
T := X

V + G̃(XV
, N )N .

Finally, we consider the 1-form ÷ := 1
2 — on T≠1M , whose kernel is H(T≠1M).

Equation (8) implies that the Levi form L÷ is positive definite and the Reeb
vector field › of ÷ is

›t = ≠2’t, t œ T≠1M. (9)

Hence (H(T≠1M), J, ÷) is a strongly pseudo-convex almost CR structure on
T≠1M , that we shall call the standard pseudo-convex structure. The associ-
ated contact metric structure, also named standard contact metric structure, is
determined according to:

Ï(XO) = X
T

, Ï(XT ) = ≠X
O

, Ï(›) = 0,

g÷(X̃, Ỹ ) = 1
4 G̃(X̃, Ỹ ), g÷(X̃, ›) = 0, g÷(›, ›) = 1,

where X œ X(M) and X̃, Ỹ are any smooth sections of H(T≠1M).

3 Contact metric (k, µ) structures on tangent

hyperquadric bundles

In this section we prove our main results.

Theorem 1. Let (M, g) be a Lorentzian manifold. Then T≠1M is a locally sym-
metric pseudo-Hermitian manifold if and only if (M, g) has constant sectional
curvature.
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Proof. Suppose first that (M, g) has constant sectional curvature. Let t = (p, u)
any point on T≠1M . We have that the linear mapping

L : X œ TpM ‘æ ≠X ≠ 2gp(u, X)u œ TpM,

is an orthogonal transformation that preserves the Riemannian curvature tensor.
Thus, there exists an isometry

f : U æ U,

where U is an open neighborhood of p, such that dpf = L (cf. [12, Chapter 8]).
Since f is an isometry, we see that the induced di�eomorphism

F = df : TU æ TU

satisfies:

(dF )s(XH
s ) = (dfx(X))H

F (s), (dF )s(XV
s ) = (dfx(X))V

F (s), (10)

for every X œ X(M) and s = (x, v) œ T≠1M fl TU , hence F is a local isometry
with respect to the Sasaki metric G̃ on TM , preserving the almost complex
structure J̃ . It follows that F restricts to a local CR di�eomorphism of T≠1M .
Moreover, (10) and (9) imply that (dF )s(›s) = ›F (s), yielding that F is also a
local isometry with respect to the Webster metric. Moreover, being dpf = L,
we have:

(dF )t|Ht(T≠1M) = ≠Id,

and thus F is a local CR symmetry at t.
Viceversa, if T≠1M is a locally symmetric pseudo-Hermitian manifold, then

in particular (H(T≠1M), J) is a CR structure and hence, by [14, Theorem 1],
(M, g) has constant sectional curvature.

Now we determine the Boeckx invariant of T≠1M , where M is a Lorentzian
space form.

Theorem 2. Let (Mn+1
, g) be a Lorentzian manifold with constant sectional

curvature c. Then, T≠1M endowed with the standard contact metric structure
is Sasakian if and only if c = ≠1. If c ”= ≠1 then T≠1M is a non-Sasakian
contact metric (k, µ)-space, whose Boeckx invariant is:

I = c ≠ 1
|c + 1|

.

Proof. Theorem 1 ensures that the standard contact metric structure (Ï, ›, ÷, g÷)
of T≠1M is a contact metric (k, µ) structure (eventally a Sasakian one). In the
following we compute the spectrum of the symmetric operator h. Let t =
(p, u) œ T≠1M and X œ TpM such that gp(X, u) = 0. Then:

2h(XT ) = [›, ÏX
T ] ≠ Ï[›, X

T ]
= ≠[›, X

O] ≠ J̃ [›, X
V + G(XV

, N )N ],
(11)
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where we are denoting again with X any extension of the vector X. Let (xi) be
a local coordinate system on M and (qi

, v
i) the corresponding local coordinate

system on TM . Since locally

› = ≠2v
i( ˆ

ˆxi
)H

,

then using equation (7), by a standard computation (cf. also [9] in the Rieman-
nian case), we obtain:

[›, X
V ]t = 2(XH

t ≠ (ÒuX)V
t ), [›, X

H ]t = ≠2((ÒuX)H
t ≠ cX

V
t ), (12)

and hence (11) becomes:

2h(XT
t ) = 2((ÒuX)H

t ≠ cX
V
t ) ≠ 2(XV

t + (ÒuX)H
t ) ≠ ›t(G(XV

, N ))J̃N t

= ≠2(c + 1)XV
t ≠

1
4›t(G(XV

, N ))›t.

It follows that ›t(G(XV
, N )) = 0, thus

h(XV
t ) = ≠(c + 1)XV

t ,

h(XH
t ) = h(≠ÏX

V
t ) = ÏhX

V
t = (c + 1)XH

t ,
(13)

and the spectrum of the operator h is {0, c + 1, ≠(c + 1)}. It follows that T≠1M

is Sasakian i� c = ≠1.
Suppose c ”= ≠1. Let t = (p, u) and X œ TpM such that gp(X, u) = 0. Then

using the definition (2) of the Pang invariant and equation (12), we get, being
X

O a global section of D(c + 1):

 D(c+1)(XO
t , X

O
t ) = 2d÷([›, X

O]t, X
O
t )

= 2g÷([›, X
H + G̃(XV

, N )’]t, X
T
t )

= 2g÷([›, X
H ]t + ›(G̃(XV

, N ))’t, X
T
t )

= 2g÷([›, X
H ]t, X

T
t )

= 4cg÷(XV
t , X

T
t )

= 4cg÷(XT
t , X

T
t ).

(14)

In particular if c > ≠1, by equation (3), we obtain

 D(c+1)(XO
, X

O) = (2c + 4 ≠ µ)g÷(XO
, X

O). (15)

Thus comparing (14) and (15) we have that µ = 4 ≠ 2c and hence

IM = c ≠ 1
c + 1 .

Finally suppose c < ≠1. Then by (4):

 D(c+1)(XO
, X

O) = (2c + 4 ≠ µ)g÷(XO
, X

O). (16)
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Comparing equations (16) and (14) we obtain that µ = 4 ≠ 2c and

IM = ≠
c ≠ 1
c + 1 .

Corollary 1. Every non Sasakian contact metric (k, µ) space with Boeckx in-
variant I 6 ≠1 is locally equivalent, up to a D-homothetic deformation, to the
tangent hyperquadric bundle T≠1M of a Lorentzian manifold M with constant
sectional curvature c 6 0, c ”= ≠1, endowed with its standard contact metric
structure.
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