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Abstract. In this paper we model a class of stream and block ciphers as

systems of (ordinary) explicit difference equations over a finite field. We call

this class “difference ciphers” and we show that ciphers of application interest,
as for example systems of LFSRs with a combiner, Trivium and KeeLoq,

belong to the class. By using Difference Algebra, that is, the formal theory of

difference equations, we can properly define and study important properties
of these ciphers, such as their invertibility and periodicity. We describe then

general cryptanalytic methods for difference ciphers that follow from these
properties and are useful to assess the security. We illustrate such algebraic

attacks in practice by means of the ciphers Bivium and KeeLoq.

1. Introduction

Algebraic cryptanalysis concerns the possibility to perform an attack to a cipher
as an instance of polynomial system solving. This idea dates back at least to Shan-
non who in his foundational paper of modern Cryptography [36] wrote that security
can be essentially assumed “if we could show that solving a certain (crypto)system
requires at least as much work as solving a system of simultaneous equations in a
large number of unknowns, of a complex type”. In the last 20 years, these crypt-
analytic ideas have become actual algorithms and implementations by the work
of many cryptographers: see, for instance, the long reference list of the compre-
hensive book of G. Bard entitled “Algebraic Cryptanalysis” [3]. Among this vast
literature, we would like to mention the pioneering work of N. Courtois [12, 13]
and his methods for polynomial system solving, such as XL and ElimLin [11]. It
is important to reference also the role played by the F4-F5 algorithms due to J.-C.
Faugère [21, 22] for providing complexity formulas for Gröbner bases computations
over (semi)regular systems [5, 4]. Indeed, such complexity is much lower than in the
worst case and these systems naturally arise in the context of multivariate cryptog-
raphy. In other words, such complexity formulas provide essential cryptanalysis for
multivariate protocols as Rainbow [7] which is among the three NIST post-quantum
signature finalists.

The usual formalism of algebraic cryptanalysis are systems of polynomial equa-
tions and generally Commutative Algebra (over finite fields) but, as a matter of
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fact, a natural modeling of many stream and block ciphers are systems of (alge-
braic ordinary) explicit difference equations. In fact, such ciphers are defined as
recursive rules determining the evolution of a vector, with entries in a finite field,
which is called the state or register of the cipher. This evolution runs along a
discrete time corresponding to clocks or rounds. Because of their simple struc-
ture, explicit difference systems provide such a recursion, that is, the existence
and uniqueness of solutions once given their initial state. Despite this simplicity,
the solutions of these systems can be extremely involved and hence interesting for
the purposes of Cryptography. We mention, for instance, the complex evolution
of a discrete predator-prey model [1] or the security properties of the stream ci-
pher Trivium [14] where both underlying systems are just few quadratic explicit
difference equations.

The formal theory of algebraic difference equations is called Difference Algebra
and it was introduced by J.F. Ritt [35] as a discrete couterpart of his celebrated
Differential Algebra. This theory provides important insights about the structure of
the solutions of a system of difference equations (see [8, 31, 40, 41]). In particular,
by mimicking Commutative Algebra, one has the notion of difference ideal and
corresponding difference variety, as well the methods of difference Gröbner bases
[16, 30]. The use of difference equations in Cryptography has a long tradition
because of Linear Feedback Shift Registers (briefly LFSRs) which are just linear
difference equations over the field with two elements. These very simple recursive
rules have been used at least since the 1950s to obtain, for instance, pseudorandom
number generators. For a classical reference, see [17]. The problem with LFSRs
is that they are easy to attack because of linearity and hence a standard strategy
to enhance security consists in considering a system of LFSRs together with a
combining (or filtering) non-linear function. Many pseudorandom generators and
stream ciphers are of this kind such as the Geffe generator and the cipher E0 of the
Bluetooth protocol. We reference the book [29] for a detailed guide to them.

Another option consists in having non-linear explicit difference equations govern-
ing the evolution of the internal state of the cipher and a linear function for defining
the keystream output. The prototype of such stream cipher is Trivium. Note that
its explicit system has a state transition function which is invertible. This is a pos-
sible flaw because some opponents may recover the initial state containing the key
by attacking any internal state. Despite many attacks also of this kind [20, 26, 33],
the three quadratic explicit difference equations of Trivium remain inexpugnable.
On the other hand, if an invertible system contains a subsystem that can be used
to evolve independently the keys, this flaw becomes a resource for defining a block
cipher. These ideas appear in the definition of the block cipher KeeLoq which has
been cryptanalized in a critical way [9, 10] because of the short period of the state
transition function of its key subsystem.

The present paper is organized as follows. In Section 2, for any base field, we
introduce the formalism of Difference Algebra for the purpose of providing a precise
definition of systems of (ordinary) explicit difference equations from an algebraic
viewpoint. We introduce then the notion of state transition endomorphism and we
apply the methods of difference Gröbner bases of difference ideals [16, 30] to obtain
a key property contained in Theorem 2.13. This property, together with Theorem
5.4, will be used in Section 5 to obtain the equations satisfied by the keys for a
general algebraic attack to a difference stream cipher.
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In Sections 3 and 4, by means of the notion of state transition endomorphism we
define key properties of explicit systems such as their invertibility and periodicity.
The use of symbolic computation, namely Gröbner bases, provides effective meth-
ods to check invertibility and compute inverse systems which is essential for the
cryptanalysis of difference ciphers. In Section 4 we also review, from an algebraic
point of view, the theory to maximize the period of a system of LFSRs over a prime
finite field.

In Section 5, we finally introduce the class of “difference stream and block ci-
phers” as ciphers that are defined by explicit difference systems over a finite field.
The motivation is that many ciphers of application interests can be easily modeled
in this way and we can provide general methods for the algebraic cryptanalysis of
this class. This theory can be used therefore for developing new ciphers. As already
mentioned, in Section 5 we obtain the equations satisfied by the keys of a difference
stream cipher which are compatible with a known keystream. We show that a finite
number of elements of the keystream are enough to provide these equations. By
means of the invertibility property studied in Section 3, we also suggest how to
reduce the degree of the equations. We discuss then guess-and-determine strategies
for polynomial system solving over a finite field and provide details for the case
that the system has a single solution. Indeed, this is often the case in the crypt-
analysis of stream ciphers once a sufficient amount of elements of the keystream
is known. For difference block ciphers we discuss a general algebraic attack which
follows from the condition that the key subsystem has a short period. This attack
has been introduced for the cipher KeeLoq in the papers [9, 10].

Finally, in Section 6 and 7 we illustrate the above algebraic attacks by applying
them to concrete ciphers, namely Bivium and KeeLoq. Although this is not our
primary goal in the present paper, we are able to obtain speedup with respect to
similar attacks to Bivium [20]. We also improve the previous polynomial system
solving time [9, 10] in the attack toKeeLoq. An interesting comparison of Gröbner
bases vs SAT solvers is also provided in our tests. Some conclusions are draw in
Section 8.

2. Explicit difference system

Let K be any field and fix an integer n > 0. Consider a set of variables X(t) =
{x1(t), . . . , xn(t)}, for any t ∈ N = {0, 1, 2, . . .}. Put X =

⋃
t≥0X(t) and denote

by R = K[X] the polynomial algebra in the infinite set of variables X. Moreover,
consider the injective algebra endomorphism σ : R→ R such that xi(t) 7→ xi(t+1)
for all 1 ≤ i ≤ n and t ≥ 0. We call σ the shift map of R. The algebra R,
endowed with the map σ, is called the algebra of ordinary difference polynomials
(with constant coefficients). We also need the following notations. For any integers
r1, . . . , rn ≥ 0 and t ≥ 0, we define the subset

X̄ = {x1(0), . . . , x1(r1 − 1), . . . , xn(0), . . . , xn(rn − 1)} ⊂ X

and the subalgebra R̄ = K[X̄] ⊂ R.

Definition 2.1. Let r1, . . . , rn ≥ 0 be integers and consider some polynomials
f1, . . . , fn ∈ R̄. A system of (algebraic ordinary) explicit difference equations is by
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definition an infinite system of polynomial equations of the kind
x1(r1 + t) = σt(f1),

...
xn(rn + t) = σt(fn).

(t ≥ 0)

Such a system is denoted briefly as

(1)


x1(r1) = f1,

...
xn(rn) = fn.

A K-solution of the system (1) is an n-tuple of functions (a1, . . . , an) where each
ai : N → K satisfies the equations xi(ri + t) = σt(fi), for all t ≥ 0. The element
ai(t) ∈ K is called the value of the function ai at the clock t ≥ 0.

Definition 2.2. Consider an explicit difference system (1). We define the algebra
endomorphism T̄ : R̄→ R̄ such that, for any i = 1, 2, . . . , n

xi(0) 7→ xi(1), . . . , xi(ri − 2) 7→ xi(ri − 1), xi(ri − 1) 7→ fi.

If r = r1 + . . .+ rn, we denote by T : Kr → Kr the polynomial map corresponding
to T̄. For any polynomial f ∈ R̄ and for each vector v ∈ Kr, one has that

(2) T̄(f)(v) = f(T(v)).

If (a1, . . . , an) is a K-solution of (1), we call the vector

v(t) = (a1(t), . . . , a1(t+ r1 − 1), . . . , an(t), . . . , an(t+ rn − 1)) ∈ Kr

the state of (a1, . . . , an) at the clock t ≥ 0. In particular, v(0) is the initial state
of (a1, . . . , an). Then, the function T maps the t-state v(t) into the (t + 1)-state
v(t+ 1), for all clocks t ≥ 0. We call T̄ the state transition endomorphism and T
the state transition map of the explicit difference system (1).

Example 2.3. Let K = Q and consider the following explicit system{
x(1) = x(0)2 + y(0)2,
y(1) = 2x(0)y(0).

If R̄ = K[x(0), y(0)], the corresponding state transition endomorphism T̄ : R̄ → R̄
is defined as x(0) 7→ x(0)2 + y(0)2, y(0) 7→ 2x(0)y(0). One computes that the K-
solutions of the above system are the functions a, b : N → K such that, for all
t ≥ 0

a(t) =
(a(0) + b(0))2

t

+ (a(0)− b(0))2
t

2
,

b(t) =
(a(0) + b(0))2

t − (a(0)− b(0))2
t

2
.

We have the following existence and uniqueness theorem for the solutions of an
explicit system.

Theorem 2.4. Denote by VK the set of all K-solutions of the explicit difference
system (1). We have a bijective map ι : VK → Kr such that

(a1, . . . , an) 7→ (a1(0), . . . , a1(r1 − 1), . . . , an(0), . . . , an(rn − 1)).

In other words, the system (1) has a unique K-solution once fixed its initial state.
Moreover, the maps ι, ι−1 are both polynomial ones.
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Proof. Consider the state transition map T : Kr → Kr of (1) which is a polynomial
map. Observe that all powers Tt : Kr → Kr (t ≥ 0) are also polynomial maps. If

v(t) = (a1(t), . . . , a1(t+ r1 − 1), . . . , an(t), . . . , an(t+ rn − 1))

denotes the t-state of a K-solution (a1, . . . , an) ∈ VK, the inverse map

ι−1 : v(0) 7→ (a1, . . . , an)

is obtained in the following way. The value a1(t) is the first coordinate of the vector
v(t) = Tt(v(0)), a2(t) is its (r1 +1)-th coordinate and so on. Since projections and
Tt are polynomial maps, we conclude that ι−1 is also such a map. □

Consider the state transition endomorphism T̄ : R̄→ R̄ of the system (1). Note
that all powers T̄t : R̄ → R̄ (t ≥ 0) are also endomorphisms whose corresponding
polynomial maps are the functions Tt : Kr → Kr. For all 1 ≤ i ≤ n and t ≥ 0, we
define the polynomial

fi,t = T̄t(xi(0)) ∈ R̄.

By the argument of Theorem 2.4 and the identity (2), it follows that ai(t) =
fi,t(v(0)), for all K-solutions (a1, . . . , an) ∈ VK.

We briefly introduce now the notion of difference Gröbner basis which provides
very often an alternative way to compute the polynomial fi,t. For a complete
reference we refer to [16, 30].

Definition 2.5. Let I be an ideal of the algebra R. We call I a difference ideal if
σ(I) ⊂ I. Denote Σ = {σt | t ≥ 0} and let G be a subset of R. Then, we define
Σ(G) = {σt(g) | g ∈ G, t ≥ 0} ⊂ R. We call G a difference basis of a difference
ideal I if Σ(G) is a basis of I as an ideal of R. In other words, all elements f ∈ I
are such that f =

∑
i fiσ

ti(gi) where fi ∈ R, gi ∈ G and ti ≥ 0. In this case, we
denote ⟨G⟩σ = ⟨Σ(G)⟩ = I.

Consider an explicit difference system (1) and define the subset

G = {x1(r1)− f1, . . . , xn(rn)− fn} ⊂ R.

If I = ⟨G⟩σ, we have that (a1, . . . , an) is a K-solution of the system (1) if and only
if this is a simultaneous K-solution of all polynomials f ∈ I. In other words, by
substituting the variables xi(t) of each f ∈ I with the elements ai(t) ∈ K, one
always obtains zero. Then, we also say that (a1, . . . , an) is a K-solution of the
difference ideal I and we put VK(I) = VK. For defining Gröbner bases, one needs
to introduce monomial orderings on R.

Definition 2.6. Let ≺ be a total ordering on the setM = Mon(R) of all monomials
of R. We call ≺ a monomial ordering of R if the following properties hold:

(i) ≺ is a multiplicatively compatible ordering, that is, if m′ ≺ m′′ then mm′ ≺
mm′′, for all m,m′,m′′ ∈M ;

(ii) ≺ is a well-ordering, that is, every non-empty subset of M has a minimal
element.

In this case, it follows that

(iii) 1 ≺ m, for all m ∈M,m ̸= 1.

Indeed, from 1 ≻ m and the property (i) it follows that we have an infinite
strictly decreasing sequence

1 ≻ m ≻ m2 ≻ . . .
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which contradicts the property (ii). Even though the variables set X is infinite, by
Higman’s Lemma [25] the polynomial algebra R = K[X] can always be endowed
with a monomial ordering. For the following version of this key result, see for
instance [2], Corollary 2.3 and also the remarks at the beginning of page 5175 of
that reference.

Proposition 2.7. Let ≺ be a total ordering on M which verifies the properties
(i), (iii) of Definition 2.6. If the restriction of ≺ to the variables set X ⊂ M is a
well-ordering then ≺ is also a well-ordering onM , that is, it is a monomial ordering
of R.

To introduce difference Gröbner bases, we need monomial orderings that are
compatible with the shift map.

Definition 2.8. Let ≺ be a monomial ordering of R. We call ≺ a difference
monomial ordering of R if m ≺ m′ implies that σ(m) ≺ σ(m′), for all m,m′ ∈M .

Note that if ≺ is a difference monomial ordering, we have that m ≺ σ(m), for
all m ∈ M,m ̸= 1. Indeed, by assuming m ≻ σ(m) one obtains an infinite strictly
decreasing sequence

m ≻ σ(m) ≻ σ2(m) ≻ . . .

which contradicts the property of ≺ of being a well-ordering.
An important class of difference monomial orderings can be defined in the fol-

lowing way. Recall that all polynomial algebras R(t) = K[X(t)] (t ≥ 0) are in
fact isomorphic by means of the shift map. Then, let us consider the same mono-
mial ordering for all such algebras. Since R =

⊗
t≥0R(t), we can define on R the

product monomial ordering such that X(0) ≺ X(1) ≺ . . .. For any choice of a
monomial ordering on R(0), this is a difference monomial ordering of R that we
call clock-based.

From now on, we assume that R is endowed with a difference monomial ordering.
Let f =

∑
i cimi ∈ R with mi ∈ M and 0 ̸= ci ∈ K. If mk = max≺{mi}, we put

lm(f) = mk, lc(f) = ck and lt(f) = ckmk. Since ≺ is a difference ordering, one
has that lm(σ(f)) = σ(lm(f)) and hence lc(σ(f)) = lc(f), lt(σ(f)) = σ(lt(f)). If
G ⊂ R, we denote lm(G) = {lm(f) | f ∈ G, f ̸= 0} and we put LM(G) = ⟨lm(G)⟩.
Let I be an ideal of R. A polynomial f =

∑
i cimi ∈ R is called normal modulo

I if mi /∈ LM(I), for all i. Since R is endowed with a monomial ordering, by a
reduction process (see [16, 30]) one proves that for each polynomial f ∈ R there is
a unique element NFI(f) ∈ R such that f − NFI(f) ∈ I and NFI(f) is a normal
polynomial modulo I. In other words, the cosets of the normal monomials modulo
I form a K-linear basis of the quotient algebra R/I. We call the polynomial NFI(f)
the normal form of f modulo I.

Proposition 2.9. Let G ⊂ R. Then lm(Σ(G)) = Σ(lm(G)). In particular, if I is
a difference ideal of R then LM(I) is also a difference ideal.

Proof. Since R is endowed with a difference monomial ordering, one has that
lm(σ(f)) = σ(lm(f)), for any f ∈ R, f ̸= 0. Then, Σ(lm(I)) = lm(Σ(I)) ⊂ lm(I)
and therefore LM(I) = ⟨lm(I)⟩ is a difference ideal. □

Definition 2.10. Let I ⊂ R be a difference ideal and G ⊂ I. We call G a differ-
ence Gröbner basis of I if lm(G) is a difference basis of LM(I). In other words,
lm(Σ(G)) = Σ(lm(G)) is a basis of LM(I), that is, Σ(G) is a Gröbner basis of I as
an ideal of R.
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For more details about difference Gröbner bases and an optimized version of the
Buchberger procedure for these bases, we refer to [16, 30].

Proposition 2.11. Consider an explicit difference system (1) and assume that R
is endowed with a difference monomial ordering such that xi(ri) ≻ lm(fi), for all
1 ≤ i ≤ n. Then, the set G = {x1(r1)−f1, . . . , xn(rn)−fn} is a difference Gröbner
basis.

Proof. From the assumption on the monomial ordering it follows that xi(ri + t) =
lm(xi(ri+t)−σt(fi)), for any 1 ≤ i ≤ n and t ≥ 0. By the linearity of these distinct
leading monomials and the Buchberger’s Product Criterion (see, for instance, [18])
we conclude that Σ(G) is a Gröbner basis, that is, G is a difference Gröbner basis.

□

From now on, we assume that xi(ri) ≻ lm(fi), for any i. If I ⊂ R is the
difference ideal generated by the set G = {x1(r1)− f1, . . . , xn(rn)− fn}, the above
result implies that LM(I) = ⟨x1(r1), . . . , xn(rn)⟩σ ⊂ R. In other words, the set
of normal polynomials modulo I is exactly the subalgebra R̄ = K[X̄] where by
definition X̄ = {x1(0), . . . , x1(r1 − 1), . . . , xn(0), . . . , xn(rn − 1)}.

Proposition 2.12. The map η : R→ R̄, f 7→ NFI(f) is an algebra homomorphism.
In other words, one has the algebra isomorphism η′ : R/I → R̄ such that f + I 7→
NFI(f).

Proof. By definition, we have that η is a surjective K-linear map and Ker η = I.
Then, it is sufficient to show that mm′ /∈ LM(I), for all monomials m,m′ /∈ LM(I).
This holds because LM(I) is an ideal which is generated by variables. □

Theorem 2.13. Let T̄ : R̄ → R̄ be the state transition endomorphism of the
system (1) and consider the algebra endomorphism σ′ : R/I → R/I such that
f+I 7→ σ(f)+I. Then, one has that T̄η′ = η′σ′. In particular, for each polynomial
f ∈ R̄ and for all t ≥ 0, we have that T̄t(f) = NFI(σ

t(f)).

Proof. Consider a polynomial f ∈ R̄, that is, f = NFI(f). The polynomial T̄(f) ∈
R̄ is obtained from the polynomial σ(f) ∈ R simply by applying the identities
xi(ri) = fi (1 ≤ i ≤ n). Because xi(ri) − fi ∈ I, we conclude that σ(f) − T̄(f) ∈
I. □

Observe finally that the above result implies that fi,t = T̄t(xi(0)) = NFI(xi(t)).

3. Invertible systems

An important class of explicit difference systems are the ones such that a t-state
can be obtained from a t′-state also for t′ ≥ t.

Definition 3.1. For an explicit difference system (1), consider the state transition
endomorphism T̄ : R̄→ R̄ and the corresponding state transition map T : Kr → Kr

(r = r1 + . . .+ rn). We call the system invertible if T̄ is an automorphism. In this
case, T is also a bijective map.

We state now an algorithmic method to establish if an endomorphism of a poly-
nomial algebra is invertible and to compute its inverse. This important result is
due to Arno van den Essen (see [39], Theorem 3.2.1). Recall that a Gröbner ba-
sis G = {g1, . . . , gr} is called (completely) reduced if the polynomial gi is normal
modulo the ideal generated by G \ {gi}, for all 1 ≤ i ≤ r.
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Theorem 3.2. Let X = {x1, . . . , xr}, X ′ = {x′1, . . . , x′r} be two disjoint variable
sets and define the polynomial algebras P = K[X], P ′ = K[X ′] and Q = K[X∪X ′] =
P⊗P ′. Consider an algebra endomorphism φ : P → P such that x1 7→ g1, . . . , xr 7→
gr (gi ∈ P ) and the corresponding ideal J ⊂ Q which is generated by the set
{x′1 − g1, . . . , x

′
r − gr}. Moreover, we endow the polynomial algebra Q by a product

monomial ordering such that X ≻ X ′. Then, the map φ is an automorphism of P
if and only if the reduced Gröbner basis of J is of the kind {x1 − g′1, . . . , xr − g′r}
where g′i ∈ P ′, for all 1 ≤ i ≤ r. In this case, if φ′ : P ′ → P ′ is the algebra
endomorphism such that x′1 7→ g′1, . . . , x

′
r 7→ g′r and ξ : P → P ′ is the isomorphism

x1 7→ x′1, . . . , xr 7→ x′r, we have that ξ φ−1 = φ′ ξ.

For the context of explicit difference systems, the above criterion implies the
following results.

Corollary 3.3. Let T̄ : R̄→ R̄ be the state transition automorphism corresponding
to an invertible system (1), namely (1 ≤ i ≤ n)

xi(0) 7→ xi(1), . . . , xi(ri − 2) 7→ xi(ri − 1), xi(ri − 1) 7→ fi.

Denote R̄′ = K[X̄ ′] where

X̄ ′ = {x′1(0), . . . , x′1(r1 − 1), . . . , x′n(0), . . . , x
′
n(rn − 1)}

and put Q = R̄ ⊗ R̄′. Consider the ideal J ⊂ Q that is generated by the following
polynomials, for any i = 1, 2, . . . , n

x′i(0)− xi(1), . . . , x
′
i(ri − 2)− xi(ri − 1), x′i(ri − 1)− fi.

With respect to a product monomial ordering of the algebra Q such that X̄ ≻ X̄ ′,
the reduced Gröbner basis of J has the following form

xi(1)− x′i(0), . . . , xi(ri − 1)− x′i(ri − 2), xi(0)− f ′i

where f ′i ∈ R̄′, for all 1 ≤ i ≤ n.

Proof. With respect to the considered monomial ordering of Q, we have clearly that
the set

G =
⋃
i

{xi(1)− x′i(0), . . . , xi(ri − 1)− x′i(ri − 2)} ⊂ J

is the reduced Gröbner basis of the ideal of Q that is generated by it. Since T̄ is an
automorphism, by the Theorem 3.2 we conclude that there are polynomials f ′i ∈ R̄′

(1 ≤ i ≤ n) such that the set

G ∪
⋃
i

{xi(0)− f ′i}

is the reduced Gröbner basis of the ideal J ⊂ Q. □

By the above result, we obtain a sufficient condition to invertibility which is
immediate to verify.

Corollary 3.4. Consider an explicit difference system (1) and assume that fi =
xki

(0) + gi where {x(0)k1
, . . . , x(0)kn

} = X(0) = {x1(0), . . . , xn(0)} and the poly-
nomial gi has all variables in the set X̄ \X(0), for all 1 ≤ i ≤ n. Then, the system
(1) is invertible.
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Proof. With the same notations of Corollary 3.3, consider the set

G =
⋃
i

{xi(1)− x′i(0), . . . , xi(ri − 1)− x′i(ri − 2)} ⊂ J

and assume that the algebra Q = R̄ ⊗ R̄′ is endowed with a product monomial
ordering such that X̄ ≻ X̄ ′. Since the variables of gi are in X̄ \X(0), the normal
form g′i modulo the ideal generated by G is a polynomial with variables in the set

X̄ ′ \ {x′1(r1 − 1), . . . , x′n(rn − 1)}.

Then, the reduced Gröbner basis of the ideal J ⊂ Q is given by the following
polynomials, for any i = 1, 2, . . . , n

xi(1)− x′i(0), . . . , xi(ri − 1)− x′i(ri − 2), xki
(0)− x′i(ri − 1)− g′i.

By Theorem 3.2 we conclude that T̄ is an automorphism, that is, (1) is an invertible
system. □

Definition 3.5. For an explicit difference system (1), consider the ideal J ⊂ Q =
R̄⊗ R̄′ which is generated by the following polynomials, for each i = 1, 2, . . . , n

x′i(0)− xi(1), . . . , x
′
i(ri − 2)− xi(ri − 1), x′i(ri − 1)− fi.

We call J the state transition ideal of the system (1).

From now on, we assume that Q is endowed with a product monomial ordering
such that X̄ ≻ X̄ ′.

Definition 3.6. Consider an invertible system (1) and the corresponding state
transition ideal J ⊂ Q. If the set

G =
⋃
i

{xi(1)− x′i(0), . . . , xi(ri − 1)− x′i(ri − 2), xi(0)− f ′i}

is the reduced Gröbner basis of J , we denote by gi the image of f ′i under the algebra
isomorphism R̄′ → R̄ such that, for any i = 1, 2, . . . , n

x′i(0) 7→ xi(ri − 1), x′i(1) 7→ xi(ri − 2), . . . , x′i(ri − 1) 7→ xi(0).

The inverse of an invertible system (1) is by definition the following explicit differ-
ence system

(3)


x1(r1) = g1,

...
xn(rn) = gn.

Let T̄, S̄ : R̄→ R̄ be the state transition endomorphisms of an invertible system
(1) and its inverse system (3), respectively. Denote by ξ : R̄ → R̄ the algebra
automorphism such that

xi(0) 7→ xi(ri − 1), xi(1) 7→ xi(ri − 2), . . . , xi(ri − 1) 7→ xi(0).

By Theorem 3.2 and Corollary 3.3, we have that ξS̄ = T̄−1ξ.

Proposition 3.7. Let (3) be the inverse system of an invertible system (1). If
(a1, . . . , an) is a K-solution of (1), consider its t-state (t ≥ 0)

v = (a1(t), . . . , a1(t+ r1 − 1), . . . , an(t), . . . , an(t+ rn − 1)).
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Denote by (b1, . . . , bn) the K-solution of (3) whose initial state is

v′ = (a1(t+ r1 − 1), . . . , a1(t), . . . , an(t+ rn − 1), . . . , an(t)).

If the t-state of (b1, . . . , bn) is

u′ = (b1(t), . . . , b1(t+ r1 − 1), . . . , bn(t), . . . , bn(t+ rn − 1)),

then the initial state of (a1, . . . , an) is

u = (b1(t+ r1 − 1), . . . , b1(t), . . . , bn(t+ rn − 1), . . . , bn(t)).

Proof. Denote by T,S : Kr → Kr (r = r1 + . . . + rn) the state transition maps of
the systems (1),(3), respectively. By definition, we have that u′ = St(v′). Since
ξS̄ = T̄−1ξ, we conclude that u = T−t(v). □

Another useful notion is the following one.

Definition 3.8. An explicit difference system (1) is called reducible if there is an
integer 0 < m < n such that we have a subsystem

(4)


x1(r1) = f1,

...
xm(rm) = fm.

In other words, one has that f1, . . . , fm ∈ R̄m = K[X̄m] where by definition X̄m =
{x1(0), . . . , x1(r1−1), . . . , xm(0), . . . , xm(rm−1)}. In this case, the state transition
endomorphism and map of (4) are just the restrictions of the corresponding func-
tions of (1) to the subring R̄m ⊂ R̄ and the subspace Kk ⊂ Kr (k = r1+. . .+rm, r =
r1 + . . .+ rn), respectively.

The following result is obtained immediately.

Proposition 3.9. Let (1) be a reducible invertible system. Then, its subsystem
(4) is also invertible. Moreover, the inverse system of (1) is also reducible with a
subsystem which is the inverse system of (4).

4. Periodic systems

Definition 4.1. For an invertible system (1), consider the state transition map
T : Kr → Kr (r = r1 + . . .+ rn). We call the system periodic if there is an integer
d > 0 such that Td = id. In this case, the period of the map T is called the period
of the system (1).

Proposition 4.2. Consider a periodic system (1) with period d. If (a1, . . . , an) is
a K-solution of (1), then all functions ai are periodic, that is, ai(t) = ai(t+ d) for
all clocks t ≥ 0.

Proof. If v ∈ Kr is the initial state of (a1, . . . , an), by the argument of Theorem 2.4
we have that a1(t) is the first coordinate of the vector T

t(v) ∈ Kr. Since Tt = Tt+d,
one has that Tt(v) = Tt+d(v) and therefore a1(t) = a1(t+ d). In a similar way, we
also prove that ai(t) = ai(t+ d) (1 < i ≤ n). □

Note that if K = GF(q) is a finite field, the symmetric group S(Kr) has finite
order and therefore all invertible systems are in fact periodic. We also observe that
if K is an infinite field, then the state transition endomorphism T̄ is bijective if and
only if the state transition map T is bijective. Moreover, we have that T̄ is periodic
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if and only if T is periodic and in this case these maps have the same period. Such
facts are consequences of the following general result (see for instance [32, 34]).

Proposition 4.3. Consider a polynomial algebra P = K[x1, . . . , xr] and an algebra
endomorphism φ : P → P such that x1 7→ g1, . . . , xr 7→ gr (gi ∈ P ). Denote by
φ̂ : Kr → Kr the corresponding polynomial map, that is, for any (α1, . . . , αr) ∈ Kr

(α1, . . . , αr) 7→ (g1(α1, . . . , αr), . . . , gr(α1, . . . , αr)).

The map φ 7→ φ̂ is a homomorphism from the monoid of algebra endomorphisms
of P to the monoid of polynomial maps Kr → Kr. If K is an infinite field, this
monoid homomorphism is bijective. Otherwise, if K = GF(q) then the map φ 7→ φ̂
induces a monoid isomorphism from the monoid of algebra endomorphisms of the
quotient algebra P/L, where L = ⟨xq1−x1, . . . , xqr −xr⟩ ⊂ P . Note that P and P/L
are the coordinate algebras of the affine space Kr for the case that K is an infinite
or finite field, respectively.

An important and difficult task is to compute, or at least bound, the period of
a periodic explicit difference system. As usual, the task becomes easy in the linear
case.

Definition 4.4. An explicit difference system (1) is called linear if all polynomials
fi (1 ≤ i ≤ n) are homogeneous linear ones. In other words, the state transition
map T : Kr → Kr is a K-linear endomorphism of the vector space Kr.

Restating the Rational (or Frobenius) Canonical Form of a square matrix (see,
for instance, [28]) in terms of K-linear endomorphisms, one has the following result.

Proposition 4.5. Let ψ : Kr → Kr be any K-linear endomorphism. Then, there
is a K-linear automorphism ξ : Kr → Kr such that ψ′ = ξψξ−1 can be decomposed
as a direct sum ψ′ =

⊕
1≤i≤n ψ

′
i where ψ′

i : Kri → Kri (r1 + . . . + rn = r) is a

K-linear endomorphism such that, for any (α0, . . . , αri−1) ∈ Kri

ψ′
i(α0, . . . , αri−2, αri−1) = (α1, . . . , αri−1, gi(α0, . . . , αri−1))

and gi is a homogeneous linear polynomial in ri variables. It follows that if ψ is an
automorphism of finite period d, then d = lcm(d1, . . . , dn) where di is the period of
ψ′
i.

Note that the above result provides that, up to an invertible K-linear change
of variables, any linear difference system can be obtained in a canonical form, say
(1), where fi (1 ≤ i ≤ n) is a linear form which is defined only over the set of
variables {xi(0), . . . , xi(ri − 1)}. In other words, the system is the join of linear
difference equations on disjoint sets of variables. In Cryptography (see, for instance,
[17, 38]), a linear difference equation is called a Linear Feedback Shift Register or
briefly LFSR.

For cryptographic applications, to have a periodic difference system with a large
period d is a useful property. In the linear case, according to Proposition 4.5, to
maximize d one needs that all di are coprime so that d = d1 · · · dn. Then, the
problem reduces to maximize the period of each single periodic linear difference
equation. This problem has a well-known solution (see [17]) when K = GF(p) = Zp

with p a prime number. For the purpose of completeness, we provide this result.
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Proposition 4.6. Consider an invertible linear difference equation

(5) x(r) =
∑

0≤i≤r−1

cix(i) (ci ∈ Zp).

Denote g = tr −
∑

i cit
i ∈ Zp[t] and assume that g is an irreducible polynomial.

Consider the finite field F = GF(pr) = Zp[t]/(g) and the corresponding multiplica-
tive (cyclic) group F∗ = F \ {0}. If the element α = t+ (g) ∈ F∗ is a generator of
F∗, that is, g is a primitive polynomial of Zp[t], then the equation (5) has maximal
period pr − 1.

Proof. The matrix corresponding to the state transition K-linear map T : Zr
p → Zr

p

of (5) with respect to the canonical basis of Zr
p, is indeed the companion matrix A

of the polynomial g, that is

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
c0 c1 c2 . . . cr−1

 .

Consider the algebra Mr(Zp) of all square matrices of order r with entries in the
field Zp and denote by Zp[A] ⊂ Mr(Zp) the subalgebra that is generated by the
matrix A. It is well-known that the minimal polynomial of the companion matrix
A is exactly g and hence F = Zp[α] is isomorphic to Zp[A] by the map α 7→ A.
Since α is a generator, that is, an element of maximal period in the cyclic group
F∗, we obtain that the period of α and A is exactly pr − 1. □

5. Difference stream/block ciphers

From now on, let K = GF(q) be a finite field. It is important to note that in this
case, by Lagrange interpolation, any function Kr → K is in fact a polynomial one.
Moreover, if f ∈ K[x1, . . . , xr] is the corresponding polynomial, we can assume that
f is normal modulo the ideal L = ⟨xq1 − x1, . . . , x

q
r − xr⟩, that is, all exponents in

the monomials of f are strictly less than q.

Definition 5.1. A difference stream cipher C is an explicit difference system (1)
together with a polynomial f ∈ R̄. If (a1, . . . , an) is a K-solution of (1), its initial
state is called the key of (a1, . . . , an). Moreover, if v(t) ∈ Kr (r = r1 + . . . + rn)
is the t-state of (a1, . . . , an), the function b : N → K such that b(t) = f(v(t)) for
all t ≥ 0, is called the keystream of (a1, . . . , an). Finally, we call f the keystream
polynomial of the cipher C.

If (1) is linear, that is, a system of LFSRs, the polynomial f is required non-
linear and it is usually called a combining or filtering function. Observe that a
difference stream cipher can also be defined as a special explicit difference system

x1(r1) = f1,
...

xn(rn) = fn,
y(0) = f.

In fact, by a K-solution (a1, . . . , an, b) of such a system one obtains the keystream
function b : N → K of the K-solution (a1, . . . , an) of (1).
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In Cryptography, a stream cipher (see, for instance, [29]) operates simply by
adding and subtracting the keystream to a stream of plaintexts or ciphertexts. Such
a stream is by definition a function N → K. By a known plaintext attack we
can assume the knowledge of the keystream as the difference between the known
ciphertext and plaintext streams. Note that the keystream is usually provided
by a stream cipher after a sufficiently high number of clocks in order to prevent
cryptanalysis.

Definition 5.2. Let C be a difference stream cipher consisting of the system (1)
and the keystream polynomial f . Let b : N → K be the keystream of a K-solution of
(1) and fix an integer T ≥ 0. Consider the ideal

J =
∑
t≥T

⟨σt(f)− b(t)⟩ ⊂ R

and denote by VK(J) the set of simultaneous K-solutions of all polynomials in J ,
or equivalently, of its generators. An algebraic attack to C by the keystream b
after T clocks consists in computing the K-solutions (a1, . . . , an) of the system (1)
such that (a1, . . . , an) ∈ VK(J). In other words, if we consider the difference ideal
corresponding to (1), that is, I = ⟨x1(r1) − f1, . . . , xn(rn) − fn⟩σ ⊂ R then one
wants to compute VK(I + J) = VK(I) ∩ VK(J).

Since the given function b is the keystream of a K-solution of (1), say (a1, . . . , an),
we have that (a1, . . . , an) ∈ VK(I + J) ̸= ∅. For actual ciphers, we generally have
that VK(I + J) = {(a1, . . . , an)}.
Definition 5.3. With the notation of Definition 5.2, denote by V̄K(I + J) ⊂ Kr

the set of keys, that is, initial states of the K-solutions (a1, . . . , an) ∈ VK(I + J).
By Theorem 2.4, there is a bijective map VK(I + J) → V̄K(I + J) and we have that
V̄K(I) = Kr.

Theorem 5.4. Let T̄ : R̄→ R̄ be the state transition endomorphism of the system
(1) and put f ′t = T̄t(f) ∈ R̄, for all t ≥ 0. Moreover, define the ideal

J ′ =
∑
t≥T

⟨f ′t − b(t)⟩ ⊂ R̄.

Then, we have that V̄K(I + J) = VK(J
′).

Proof. Let (a1, . . . , an) be a K-solution of (1) and denote by v(t) its t-state (t ≥ 0).
By the identity (2), one obtains that

f ′t(v(0)) = T̄t(f)(v(0)) = f(Tt(v(0))) = f(v(t)).

We conclude that the condition f(v(t)) = b(t) (t ≥ T ) is equivalent to the condition
f ′t(v(0)) = b(t). □

By assuming that xi(ri) ≻ lm(fi) for all 1 ≤ i ≤ n, that is, G = {x1(r1) −
f1, . . . , xn(rn)− fn} is a difference Gröbner basis of the difference ideal I = ⟨G⟩σ,
by Theorem 2.13 one obtains that

f ′t = T̄t(f) = NFI(σ
t(f)).

In actual algebraic attacks, we are given a finite number of values of the keystream
b, that is, for a fixed integer bound B ≥ T , we consider the finitely generated ideal

J ′
B =

∑
T≤t≤B

⟨f ′t − b(t)⟩ ⊂ R̄.
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We have that J ′ =
⋃

B≥T J
′
B where J ′

B ⊂ J ′
B+1. Since the polynomial algebra R̄ is

finitely generated and hence Noetherian, one has that J ′
B = J ′ for some B ≥ T . In

other words, we don’t lose any equation satisfied by the keys if a sufficiently large
number of keystream values is provided for the attack.

To compute the set VK(J
′
B) ⊂ Kr one can use essentially Gröbner bases or SAT

solvers when K = GF(2) (see, for instance, [3]). For real ciphers, one generally
has that VK(J

′
B) = VK(J

′) contains a single K-solution, that is, a single key. The
Nullstellensatz over finite fields (see, for instance [24]) implies the following result.

Proposition 5.5. Let K = GF(q) be a finite field and consider the polynomial
algebra P = K[x1, . . . , xr] and the ideal L = ⟨xq1 − x1, . . . , x

q
r − xr⟩ ⊂ P . Moreover,

let J ⊂ P be any ideal and denote by V (J) the set of K̄-solutions of all polynomials
f ∈ J where the field K̄ is the algebraic closure of K. We have that V (L) = Kr and
VK(J) = V (J) ∩ Kr = V (J + L) where J + L ⊂ P is a radical ideal. Moreover, if
VK(J) = {(α1, . . . , αr)} then G = {x1 − α1, . . . , xr − αr} is the (reduced) universal
Gröbner basis of J + L, that is, its Gröbner basis with respect to all monomial
orderings of P .

The above result is very useful for the algebraic attacks because Gröbner bases
computations are very sensitive to the monomial orderings and we are free here to
choose the most efficient orderings such as DegRevLex. Another possible optimiza-
tion when performing the Buchberger algorithm on the ideal J + L ⊂ P consists
in skipping all remaining S-polynomials once each variable xi (1 ≤ i ≤ r) has been
obtained as the leading monomial of an element in the current Gröbner basis. In
some cases, this trick speeds up the computation in a significant way.

Let C be a difference stream cipher which is given by the system (1) and the
keystream polynomial f . The polynomial f ′t = T̄t(f) ∈ R̄ generally has a high
degree if T is large with respect to 0. This is usually the case in actual ciphers where
a high number of clocks is required before the keystream appears. Nevertheless, if
the system (1) is invertible we can always assume that T = 0. In fact, by means of
the notion of inverse system in Definition 3.6, to compute the T -state is completely
equivalent to compute the initial state, that is, the key of a K-solution of (1). This
is a very effective optimization because it drastically reduces the degrees of the
generators of the ideal J ′

B =
∑

T≤t≤B⟨f ′t − b(t)⟩ to those of the generators of the

ideal J ′′
B =

∑
0≤t≤B−T ⟨f ′t − b(T + t)⟩. Recall that we have to compute a Gröbner

basis for obtaining K-solutions and such computations are very sensitive to the
degree of the generators. We apply this strategy when attacking the stream cipher
Bivium in Section 6. If the polynomials f ′t have still high degrees and they are even
difficult to compute, an alternative strategy consists in computing directly the K-
solutions of the system (1) which are also solutions of the fixed degree polynomials
σt(f) − b(T + t) (0 ≤ t ≤ B − T ). Even though the clocks of the variables in X
can be bounded, this strategy has the main drawback that one has to compute a
Gröbner basis over a generally high number of variables.

We have just observed that difference stream ciphers that are defined by invert-
ible systems show some lack of security with respect to algebraic attacks. On the
other hand, invertible systems can be used to define block ciphers.

Definition 5.6. A difference block cipher C is a reducible invertible system (1)
together with an integer T ≥ 0. If (4) is the subsystem of (1), we put k = r1+. . .+rm
and l = rm+1 + . . .+ rn. If a t-state of a K-solution (a1, . . . , an) of (1) is denoted
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as the pair (u(t), v(t)) ∈ Kk×Kl = Kr, we call u(0) the key, v(0) the plaintext and
v(T ) the ciphertext of (a1, . . . , an). Moreover, we call (u(T ), v(T )) the final state
of (a1, . . . , an) and (4) the key subsystem of the cipher C.

With the language of Cryptography, the encryption function Eu(0) : Kl → Kl

of the difference block cipher C is given by the map v(0) 7→ v(T ), where the pair
(u(0), v(0)) varies in the affine space Kk ×Kl of all initial states of the K-solutions
of (1). To provide the decryption function we introduce the following notion.

Definition 5.7. Let C be a difference block cipher consisting of a reducible invertible
system (1) and a clock T ≥ 0. The inverse cipher of C is by definition the inverse
system of (1) together with T .

Let C′ be the inverse cipher of C where (3) is the inverse system of (1). Consider
also the key subsystem (4) of C. If u(0) is the key of a solution of (a1, . . . , an) of
(1), we can compute u(T ) by means of (4) without knowing v(0). If we are given
the ciphertext v(T ), we have hence the final state (u(T ), v(T )) of (a1, . . . , an). By
Proposition 3.7, the inverse system (3) provides the computation of the initial state
(u(0), v(0)) of (a1, . . . , an) and in particular of the plaintext v(0). In other words,
the decryption function Du(0) : Kl → Kl is obtained as the map v(T ) 7→ v(0) which
is computable by means of the systems (3), (4).

Definition 5.8. Let C be a difference block cipher given by a reducible invertible
system (1) and a clock T ≥ 0. For all t ≥ 0, let (u(t), v(t)) ∈ Kk ×Kl be the t-state
of a K-solution of (1) where we denote

v(t) = (am+1(t), . . . , am+1(t+ rm+1 − 1), . . . , an(t), . . . , an(t+ rn − 1)).

Consider the corresponding linear ideal

J(t) =
∑

m+1≤i≤n

⟨xi(t)− ai(t), . . . , xi(t+ ri − 1)− ai(t+ ri − 1)⟩ ⊂ R

and put J = J(0) + J(T ). An algebraic attack to C by the plaintext-ciphertext
pair (v(0), v(T )) consists in computing the K-solutions (a1, . . . , an) of the system
(1) such that (a1, . . . , an) ∈ VK(J). If I = ⟨x1(r1)− f1, . . . , xn(rn)− fn⟩σ ⊂ R, this
is equivalent to compute VK(I + J) = VK(I) ∩ VK(J).

Note that the above attack belongs to the class of known plaintext attacks. Since
the given pair (v(0), v(T )) is obtained by the states (u(t), v(t)) of a K-solution
of (1), say (a1, . . . , an), we have that (a1, . . . , an) ∈ VK(I + J) ̸= ∅. For actual
ciphers, one generally has that the set VK(I+J) contains more than one K-solution.
Since computing a unique solution by a single DegRevLex-Gröbner basis can be
faster than calculating multiple solutions via conversion to an elimination ordering
(FGLM algorithm [23]), we prefer to obtain uniqueness by attacking with multiple
plaintext-ciphertext pairs.

Precisely, fix an integer s > 1 and let (u(t), v(i)(t)) (1 ≤ i ≤ s) be the t-state

of a K-solution (a1, . . . , am, a
(i)
m+1, . . . , a

(i)
n ) of the system (1) where (a1, . . . , am) is

some fixed K-solution of the key subsystem (4). In other words, we consider some
plaintext-ciphertext pairs (v(i)(0), v(i)(T )) (1 ≤ i ≤ s) which are obtained by the
same key u(0). To describe properly a multiple pairs attack, we also need the
following notations.

For each i = 1, 2, . . . , s and t ≥ 0, consider the set of variables X(i)(t) =

{x1(t), . . . , xm(t), x
(i)
m+1(t), . . . , x

(i)
n (t)} where

⋂
iX

(i)(t) = {x1(t), . . . , xm(t)}. We
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put X(i) =
⋃

t≥0X
(i)(t) and R(i) = K[X(i)]. The polynomial algebra R(i) is

clearly isomorphic to R and we denote by I(i) ⊂ R(i) the ideal which is isomor-
phic to I ⊂ R. For all 1 ≤ i ≤ s, consider (1) as written in the variables X(i)

and let J (i)(t) ⊂ R(i) (t ≥ 0) be the linear ideal corresponding to the t-state of

the K-solution (a1, . . . , am, a
(i)
m+1, . . . , a

(i)
n ) of the system (1). Moreover, we put

X ′ =
⋃

iX
(i), R′ = K[X ′] and we denote by I ′, J ′(t) the ideals of R′ that are

generated by
∑

i I
(i),

∑
i J

(i)(t), respectively. Finally, we put J ′ = J ′(0) + J ′(T ).

Definition 5.9. Let C be a difference block cipher given by a reducible invertible
system (1) and a clock T ≥ 0. An algebraic attack to C by the multiple plaintext-
ciphertext pairs (v(i)(0), v(i)(T )) (1 ≤ i ≤ s) consists in computing the K-solutions

(a1, . . . , am, a
(1)
m+1, . . . , a

(s)
m+1, . . . , a

(1)
n , . . . , a(s)n ) ∈ VK(I

′ + J ′).

For real ciphers, a sufficiently large number of pairs implies that we have VK(I
′+

J ′) = {(a1, . . . , am, a(1)m+1, . . . , a
(s)
m+1, . . . , a

(1)
n , . . . , a

(s)
n )}. By bounding the clocks of

the variables in X ′, one can compute this unique K-solution and hence its key
u(0) = (a1(0), . . . , a1(r1 − 1), . . . , am(0), . . . , am(rm − 1)) using a Gröbner basis
computation as in Proposition 5.5. Alternatively, for K = GF(2) one can use SAT
solvers or other methods. In Section 7 we make use of multiple pairs when attacking
the block cipher KeeLoq.

Since the final clock T is usually chosen a large one, the main drawback of this
approach is the high number of variables. Despite this, such a strategy generally
appears to be more viable than elimination techniques. Indeed, the normal forms
of the generators of J ′(T ) modulo I ′ + J ′(0) belong to R̄m but they may have very
high degrees because of the large clock T . As for stream ciphers, the main problem
is hence to reduce somehow the final clock T . Even though the system (1) of the
block cipher C is invertible, note that we cannot attack an internal state instead
of the initial one because the set VK(I

′ + J ′(t)) (t ≤ T ) generally contains too
many solutions. In other words, a ciphertext only attack is generally too weak for
difference block ciphers.

A better strategy is possible when the period of the key subsystem (4), say
d, is sufficiently small. This technique has been introduced in [9, 10] to attack
KeeLoq. To simplify its description, let us assume that the final state T is a
multiple of d. Consider the state transition map T : Kr → Kr of the explicit
difference system (1) and denote by S : Kk → Kk the state transition map of the
subsystem (4). Recall that S is just the restriction of the map T to the subspace
Kk ⊂ Kr (k = r1 + . . . + rm, r = r1 + . . . + rn). By definition of period, one has
that Sd = id and therefore Sd(u) = u, for all u ∈ Kk. For any t ≥ 0, denote by
(u(t), v(t)) ∈ Kk×Kl = Kr the t-state of a K-solution (a1, . . . , an) of the system (1).
Then, the encryption function Eu(0) : Kl → Kl corresponding to the key u(0) ∈ Kk

is the map v(0) 7→ v(T ). By a chosen plaintext attack, we can assume the knowledge
of the bijection Eu(0). If Kl is a large space (l → ∞), one has a probability equal
to 1 − 1/e ≈ 0.63 (see [9], Section 4.1) that Eu(0) has one or more fixed points
v(0) = v(T ). Observe now that v(0) = v(d) implies that v(0) = v(T ). In fact, by
definition (u(d), v(d)) = Td(u(0), v(0)) and we have that u(d) = Sd(u(0)) = u(0).
Then, from v(0) = v(d) it follows that (u(0), v(0)) = Td(u(0), v(0)) and hence
(u(0), v(0)) = TT (u(0), v(0)) because T is a multiple of d. We conclude that among
the fixed points of the encryption function Eu(0) one has the fixed points of the
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map v(0) 7→ v(d). If v(0) = v(d) is such a fixed point, we have that (v(0), v(0)) =
(v(0), v(d)) = (v(0), v(T )), that is, (v(0), v(0)) is a plaintext-ciphertext pair for the
final clocks d and T . In other words, by means of such pairs we can perform an
algebraic attack to the difference block cipher C assuming that the final clock is
just the period of the key subsystem.

Let us conclude this section with a final general observation. When we ap-
ply Proposition 5.5 for solving polynomial systems, an essential trick consists in
adding some linear polynomials to the considered ideal J + L ⊂ K[x1, . . . , xr]
(L = ⟨xq1 − x1, . . . , x

q
r − xr⟩) in order to speed up the Gröbner basis computa-

tion. Such linear polynomials are either elements of J which are given or com-
puted ones, or they correspond to the evaluations of some subset of variables
{xi1 , . . . , xis} ⊂ {x1, . . . , xr}. If some of these evaluations, say xik = αik (αik ∈ K),
is wrong and VK(J) contains a unique solution, one has that

J + L+ ⟨xi1 − αi1 , . . . , xis − αis⟩ = ⟨1⟩

and the Gröbner basis computation stops as soon as the element 1 is obtained.
Note that using instead a SAT solver, the answer “UNSAT” essentially arrives
when the full space Kr (K = GF(2)) has been examined. This means that for
wrong evaluations, which are all except that one, Gröbner basis solving is generally
faster than SAT solving. We have evidence of this in practice in Section 6.

Note that solving after the evaluation of some bunch of variables is usually called
a guess-and-determine strategy (see, for instance, [20]) or a hybrid strategy (see [5]) in
the case of (semi-)regular polynomial systems. The latter case cannot be generally
assumed for algebraic attacks to difference ciphers because the polynomials we
obtain by means of elimination techniques such as Theorem 5.4 do not seem random
at all. For this reason, as in the paper [20], we prefer to consider the experimental
running time of a guess-and-determine strategy as the product a · qs where a is the
average solving time for a single guess and qs is the number of guesses of s variables
when K = GF(q). In other words, the complexity of such a strategy is O(qs) where
qs is the total number of solving processes to be performed in a reasonable time.

Of course, by assuming with probability ≥ 1/2 that the correct guess is found in
half of the space Kq, we obtain that the average running time is reduced to a · qs/2.
We conclude by observing that the choice of the variables to be evaluated is a very
important issue to optimize a guess-and-determine strategy. The parallelization
of the computation which can be obtained simply by dividing the guess space in
different subsets is also a viable way to scale down the complexity.

6. Attacking Bivium

Aiming to illustrate by a concrete example how to perform in practice an alge-
braic attack to a difference stream cipher as described in the previous section, we
start considering Trivium which is a well-known stream cipher designed in 2003 by
De Cannière and Preneel as a submission to European project eSTREAM [14]. In
fact, Trivium was one of the winners of the project for the category of hardware-
oriented ciphers. Even though it has been widely cryptanalysed, no critical attacks
are known up to date. The system of explicit difference equations describing Triv-
ium looks quite simple since it consists only of three quadratic equations over the
base field K = GF(2), namely
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(6)

 x(93) = z(0) + x(24) + z(45) + z(1)z(2),
y(84) = x(0) + y(6) + x(27) + x(1)x(2),
z(111) = y(0) + y(15) + z(24) + y(1)y(2).

Its keystream polynomial is a homogeneous linear one

f = x(0) + x(27) + y(0) + y(15) + z(0) + z(45).

Therefore, a t-state consists of 288 = 93 + 84 + 111 bits, for any clock t ≥ 0. The
keystream bits are known by the attackers starting with clock T = 4 · 288 = 1152.
The key and the initial vector of Trivium are 80 bit vectors and they form together
160 bits of an initial state. The remaining 128 bits are fixed ones.

By Corollary 3.4, we obtain that the system (6) is invertible with inverse system x(93) = y(0) + x(66) + y(78) + x(91)x(92),
y(84) = z(0) + y(69) + z(87) + y(82)y(83),
z(111) = x(0) + z(66) + x(69) + z(109)z(110).

This allows an algebraic attack to the T -state instead of the initial state containing
the key and the initial vector. The problem with such an attack is the high number
(288) of variables in the set

X̄ = {x(0), . . . , x(92), y(0), . . . , y(83), z(0), . . . , z(100)}.

Indeed, to solve the polynomial system obtained by means of Theorem 5.4 using
a guess-and-determine strategy, one has to evaluate a number of variables that
exceeds the length of the key which is 80 bit. In other words, providing that all
solving computations for any guess can actually be performed in a reasonable time,
one has a complexity which is greater than the key recovery by exhaustive search.
An experimental evidence of this is contained, for instance, in [20, 26]. We also
tried ourselves with a time limit of one hour for the Gröbner bases computations.
We plan to further improve our guess-and-determine strategies to tackle Trivium.

Therefore, we present here all optimizations and computational data that we
have obtained for a well-studied simplified version of Trivium cipher which is
called Bivium. For this cipher we obtain a running time for an algebraic attack
which improves a previous one [20] and it is much better than brute force.

The explicit difference system defining Bivium are the following two quadratic
equations

(7)

{
x(93) = y(0) + y(15) + x(24) + y(1)y(2),
y(84) = x(0) + y(6) + x(27) + x(1)x(2),

and its keystream polynomial is

f = x(0) + x(27) + y(0) + y(15).

In this case, the t-states are vectors of 93 + 84 = 177 bits and the keystream starts
at clock T = 4 · 177 = 708. Again, the key and the initial vector are 80 + 80 = 160
bits of the initial state. Corollary 3.4 implies that the system (7) is invertible with
inverse {

x(93) = y(0) + x(66) + y(78) + x(91)x(92),
y(84) = x(0) + x(69) + y(69) + y(82)y(83).
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Consider the polynomial algebras R = K[X] where X =
⋃

t≥0{x(t), y(t)} and

R̄ = K[X̄] where X̄ = {x(0), . . . , x(92), y(0), . . . , y(83)}. If R is endowed with a
clock-based monomial ordering, we have that

G = {x(93) + y(0) + y(15) + x(24) + y(1)y(2),

y(84) + x(0) + y(6) + x(27) + x(1)x(2)}

is a difference Gröbner basis of the difference ideal I = ⟨G⟩σ ⊂ R. Consider the
polynomials f ′t = T̄t(f) = NFI(σ

t(f)) ∈ R̄ (t ≥ 0) and let b : N → K be a
keystream. Since the system (7) is invertible, we can attack the T -state by the
ideal

J ′′
B =

∑
0≤t≤B−T

⟨f ′t + b(T + t)⟩ ⊂ R̄.

We have found experimentally that if the number B − T + 1 of known values of
the keystream is approximately 180, one has a unique K-solution in VK(J

′′
B). In

this case, the maximal degree of the generators of J ′′
B is 3. Even though we use

a DegRevLex monomial ordering on R̄, a Gröbner basis of the ideal J ′′
B + L ⊂ R̄

where

L = ⟨x(0)2 + x(0), . . . , x(92)2 + x(92), y(0)2 + y(0), . . . , y(83)2 + y(83)⟩

seems to be hard to compute. Indeed, we have experimented that the number of
S-polynomials for such a computation increases in a very fast way affecting time
and space complexity. We therefore use a guess-and-determine strategy to obtain
solving times that we can actually determine.

Since all shifts σt(f) (0 ≤ t ≤ 65) of the keystream polynomial f = x(0)+x(27)+
y(0)+y(15) are normal modulo I, we have 66 linear polynomials σt(f)− b(T + t) =
f ′t − b(T + t) ∈ J ′′

B . Because the clocks of the variables in f are all multiples of 3,
we can divide these polynomials into 3 sets of 22 linear polynomials, namely

Si = {σt(f)− b(T + t) | 0 ≤ t ≤ 65, t ≡ i mod 3} (0 ≤ i ≤ 2).

By performing Gaussian elimination over Si, we obtain 22 pivot variables and 36
free variables. In other words, for any set Si the evaluation of 36 variables implies
the evaluation of 36+22 = 58 variables. This is a good trick that was first observed
in [33]. In our computations, we choose the set S2, that is, we guess the following
36 free variables

x(68), x(71), . . . , x(92), y(2), y(5), . . . , y(80)

and we obtain the evaluation of the 22 pivot variables

x(2), x(5), . . . , x(65).

Moreover, note that one has the polynomial f ′68 − b(T + t) ∈ J ′′
B where

f ′68 = y(83) + x(68) + y(68) + x(26) + y(17) + y(4)y(3) + y(2).

By guessing the variables y(3), y(4) together with the previous 36 ones, one ob-
tains in fact the evaluation of the variable y(83), that is, a total of 61 evaluations
out of the 177 variables of the algebra R̄. This is enough to have Gröbner bases
computations that last only a few tenths of seconds. Precisely, our guess-and-
determine strategy for Bivium consists in computing the Gröbner bases of all ideals



20 R. LA SCALA AND S.K. TIWARI

J ′′
B + L+ Eα1,...,α38 ⊂ R̄, where

(8)
Eα1,...,α38

= ⟨x(68) + α1, x(71) + α2, . . . , x(92) + α9, y(2) + α10,

y(5) + α11, . . . , y(80) + α36, y(3) + α37, y(4) + α38⟩

and the vector (α1, . . . , α38) ranges in the space K38.
We propose now tables where we compare the solving time to obtain the set

VK(J
′′
B + Eα1,...,α38

) by using Gröbner bases and SAT solvers. For Gröbner bases,
we make use of two main implementations of the Buchberger algorithm that are
available in the computer algebra system Singular [15], namely std and slimgb.
We have decided to use this free and open-source system because of our long expe-
rience with it, to compare with a previous attack [20] based on the same Gröbner
bases implementations and finally because different implementations would affect
the average running time a · 237 only by the factor a corresponding to average solv-
ing time. The considered SAT solvers are minisat [19] and cryptominisat [37]
which are widely used in cryptanalysis.

We have carried out the computations on a server: Intel(R) Core(TM) i7−8700
CPU @ 3.20GHz, 6 Cores, 12 Threads, 32 GB RAM with a Debian based Linux
operating system. In our tables, we abbreviate milliseconds and seconds by ms and
s, respectively.

Table 1. 90% Confidence Interval for timings with random guesses

# ks bits slimgb (ms) std (ms) MiniSat (s) CrMiniSat (s)
180 (160, 195) (326, 397) (9.33, 84.03) (9.61, 40.39)
185 (159, 170) (332, 367) (6.88, 60.24) (7.33, 28.41)
190 (119, 134) (353, 411) (6.94, 63.98) (9.59, 38.26)
195 (123, 138) (342, 397) (6.55, 67.57) (7.69, 25.26)

Table 2. 90% Confidence Interval for timings with correct guess

# ks bits slimgb (ms) std (ms) MiniSat (s) CrMiniSat (s)
180 (172, 187) (330, 350) (1.21, 53.81) (2.71, 33.32)
185 (178, 191) (352, 388) (0.15, 49.59) (0.24, 15.85)
190 (127, 145) (351, 411) (0.81, 24.56) (0.23, 31.52)
195 (122, 135) (328, 348) (1.08, 36.50) (6.72, 19.92)

In both tables, the rows correspond to different choices of the number of keystream
bits that are used for the attack. The second and third columns present the 90%
confidence intervals for Gröbner bases timings that are obtained by slimgb and
std. The fourth and fifth columns provide the intervals for SAT solvers timings
corresponding to minisat and cryptominisat.

In Table 1, the confidence intervals for Gröbner bases are computed for 24 dif-
ferent random (key, iv)-pairs and 210 different random guesses of the 38 variables
in (8) for each (key, iv)-pair. In other words, the confidence intervals contain 90%
of the timings that are obtained by a total of 214 computations. The intervals for
SAT solvers are computed for the same set of 24 (key, iv)-pairs and with a subset
of 24 different random guesses from the set that we have considered for Gröbner
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bases. The motivation of such reduction is larger total computing times for SAT
solving.

Similarly, in Table 2 the confidence intervals are computed for the same 24 (key,
iv)-pairs of Table 1 and the correct guess of the 38 variables corresponding to each
(key, iv)-pair.

For Bivium attack, the tables show that the procedure slimgb is faster than
std. This happens because “slim”, that is, compact elements in the resulting
Gröbner bases imply faster S-polynomial reductions which are the most expensive
component of these computations. Moreover, we have that Gröbner bases perform
better than SAT solvers for computing solutions of the polynomial systems involved
in the Bivium attack. This is especially true for the UNSAT case which is dominant
in complexity. About 190 keystream bits are the best choice for our attack and we
conclude that its average running time is 0.12 · 237 s ∼ 234 s.

This result improves the timing 239 s of an algebraic attack to Bivium which is
presented in [20]. This attack uses a guess-and-determine strategy based on the
exhaustive evaluation of 42 variables and Gröbner bases computations which are
obtained by the same Singular routines std and slimgb running on a comparable
CPU.

7. Attacking KeeLoq

We present now an illustrative example of an algebraic attack to a concrete
difference block cipher. A well-known small size block cipher is KeeLoq which
has important applications in remote keyless entry systems which are used, for
instance, by the automotive industry. KeeLoq is a proprietary cipher [6] whose
cryptographic algorithm was created by Gideon Kuhn at the University of Pretoria
in the mid-1980s. Starting from the mid-1990s, the cipher was widely used by car
manufactures but it has begun to be cryptanalysed only in 2007. In particular, we
mention the papers [9, 10] where there are algebraic attacks to KeeLoq on which
this section is based. For another important class of “meet-in-the-middle attacks”,
see [27].

The block cipher KeeLoq is defined by a reducible invertible difference system
over the base field K = GF(2), where the key subsystem consists of a single homoge-
neous linear equation (LFSR). In fact, its state transition K-linear map corresponds
to a cyclic permutation matrix of period 64. In addition to the key equation, the
invertible system consists of an explicit difference cubic equation involving a single
key variable. Precisely, the KeeLoq system is the following one

(9)


k(64) = k(0),
x(32) = x(0) + x(16) + x(9) + x(1) + x(20)x(31)

+ x(1)x(31) + x(20)x(26) + x(1)x(26) + x(9)x(20)
+ x(1)x(9) + x(1)x(9)x(31) + x(1)x(20)x(31)
+ x(9)x(26)x(31) + x(20)x(26)x(31) + k(0).

The key, that is, the initial state of the key equation, consists therefore of 64 bits
and the plaintext and ciphertext are 32 bits vectors. In other words, any t-state
of KeeLoq consists of 64 + 32 = 96 bits. The final clock of this difference block
cipher is defined as the clock T = 8 · 64+ 16 = 528. Theorem 3.2 provides that the
system (9) is invertible with the following inverse system
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(10)


k(64) = k(0),
x(32) = x(0) + x(31) + x(23) + x(16) + x(23)x(31)

+ x(6)x(31) + x(1)x(31) + x(12)x(23) + x(6)x(12)
+ x(1)x(12) + x(1)x(23)x(31) + x(1)x(12)x(31)
+ x(1)x(6)x(23) + x(1)x(6)x(12) + k(0).

To describe a multiple plaintext-ciphertext pairs attack to KeeLoq, consider
two such pairs (v′, v′′), (w′, w′′) ∈ K32 × K32, where v′ = (α′

0, . . . , α
′
31), v

′′ =
(α′′

0 , . . . , α
′′
31) and w′ = (β′

0, . . . , β
′
31), w

′′ = (β′′
0 , . . . , β

′′
31). Then, define the poly-

nomial algebra R′ = K[X ′] where X ′ =
⋃

t≥0{k(t), x(t), y(t)} and consider the
following set

G′ = {k(64) + k(0),

x(32) + x(0) + x(31) + x(23) + x(16) + x(23)x(31) + x(6)x(31)

+ x(1)x(31) + x(12)x(23) + x(6)x(12) + x(1)x(12) + x(1)x(23)x(31)

+ x(1)x(12)x(31) + x(1)x(6)x(23) + x(1)x(6)x(12) + k(0),

y(32) + y(0) + y(31) + y(23) + y(16) + y(23)y(31) + y(6)y(31)

+ y(1)y(31) + y(12)y(23) + y(6)y(12) + y(1)y(12) + y(1)y(23)y(31)

+ y(1)y(12)y(31) + y(1)y(6)y(23) + y(1)y(6)y(12) + k(0)}.

We define the difference ideal I ′ = ⟨G′⟩σ ⊂ R′ and the linear ideal J ′ = J ′(0) +
J ′(T ) ⊂ R′ where

J ′(0) = ⟨x(0) + α′
0, . . . , x(31) + α′

31, y(0) + β′
0, . . . , y(31) + β′

31⟩,
J ′(T ) = ⟨x(T ) + α′′

0 , . . . , x(T + 31) + α′′
31, y(T ) + β′′

0 , . . . , y(T + 31) + β′′
31⟩.

An algebraic attack to KeeLoq by the plaintext-ciphertext pairs (v′, v′′) and
(w′, w′′) consists in computing VK(I

′ + J ′). Note that we can indeed assume that
the variables clocks are bounded by T + 31, that is, we solve over the finite set
of variables

⋃
0≤t≤T+31{k(t), x(t), y(t)}. Actually, the computation of VK(I

′ + J ′)
is unfeasible for T = 528. If we would assume that T = 512 = 8 · 64, we could
use the trick of fixed pairs which is described at the end of Section 5. Briefly, if
(u(t), v(t)) ∈ K64 ×K32 denotes the t-state of the system (9), the trick consists in
computing enough fixed points v(0) = v(512) by the knowledge of the encryption
function and to assume that some of them are in fact fixed points v(0) = v(64). By
means of a couple of such plaintext-ciphertext pairs (v(0), v(0)), we are reduced to
compute VK(I

′ + J ′) for T = 64.
The problem now is how to compute v(512) from the ciphertext v(528). If we

assume that the variables k(0), . . . , k(15) are evaluated by the correct corresponding
key bits, we can apply the inverse cipher (10) since these bits are the only ones that
are involved in the computation of v(512) from v(528). Indeed, the authors of [9, 10]
have studied a property based on the disjoint cycles decomposition which is able
to distinguish a generic permutation of the set K32 from the KeeLoq encryption
function reduced to T = 512 clocks. By means of this method, the cost of the
search of the correct values of the variables k(0), . . . , k(15) is assumed to be 252

CPU clocks in the worst case. With an optimized implementation on our CPU @
3.20GHz, this method should then take a = 221 sec.
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Once obtained the correct values α1, . . . , α15 ∈ K of the variables k(0), . . . , k(15),
we have experimented that to compute each set VK(I

′+J ′+Eα0,...,α15
) where T = 64

and

Eα0,...,α15
= ⟨k(0) + α0, . . . , k(15) + α15⟩

one needs just few tens of milliseconds by using Gröbner bases or SAT solvers.
Note that this improves solving times obtained in [9, 10] which are hundreds of
milliseconds on a similar CPU.

We conclude that the total running time of this algebraic attack to KeeLoq can
be described by the formula

(11) a+ b · c · 232 + d

where b is the average encryption time for T = 528 clocks, c is the average percent-
age of the plaintext space K32 containing enough fixed points v(0) = v(512) and d
is the average computing time to obtain the sets VK(I

′ + J ′ + Eα0,...,α15
) for each

couple of such fixed points. The authors of [9, 10] have experimented that there are
26% of keys such that c = 60%. Among the computed fixed points v(0) = v(512),
they also assume a good chance that at least one couple v′(0), v′′(0) of them is such
that v′(0) = v′(64), v′′(0) = v′′(64). In our experiments we make use of 4 distinct
random such “weak keys”.

In the following table, we present then statistics of the values b, d. Similarly to
Section 6, the solving time d is provided for Gröbner basis algorithms and SAT
solvers and it appears in the columns corresponding to slimgb, std, minisat,
cryptominisat. Recall that d is the total computing time for solving the poly-
nomial systems corresponding to all couples that are obtained by computed fixed
points v(0) = v(512).

Table 3. 90% Confidence Interval for timings

b (ms) slimgb (ms) std (ms) MiniSat (ms) CrMiniSat (ms)
(2.9, 3.2) · 2−10 (93, 183) (27, 93) (12, 27) (16, 32)

In Table 3, we present 90% confidence intervals corresponding to 4 weak key
and the correct guess of the 16 variables corresponding to each key. The total
encryption time b · c · 232 when c = 0.6 is about 2.5 hours by an executable C file.
The confidence interval of b, that is, the timing for a single encryption is obtained
by the corresponding interval of this total time.

For the polynomial systems involved in the KeeLoq attack, the SAT solvers
seem to be the best option. Nevertheless, note that in the tables of Section 6
and 7, the time for computing ANF-to-CNF conversion (see, for instance, [3]) is
not considered. In particular, for KeeLoq attack this would imply that Gröbner
bases (std method) and SAT solvers have comparable timings. In any case, for the
total running time (11) of this algebraic attack to KeeLoq, the dominant timing
is clearly a = 582 hours which confirms the results in [9, 10].

8. Conclusions

We have shown in this paper that the notion of system of (ordinary) explicit
difference equations over a finite field is useful for modeling the class of “stream
and block difference ciphers” which many ciphers of application interest belong
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to. The appropriate algebraic formalization of such systems and corresponding
ciphers requires the theory of difference algebras and ideals, as well the methods of
difference Gröbner bases. This formalization allows the study of general properties
of the difference ciphers such as their invertibility and periodicity. This study is
essential to assess their security by means of suitably defined algebraic attacks. We
have illustrated this in practice using two well-known difference ciphers, Bivium
and KeeLoq, where Gröbner bases and SAT solvers are also compared. We plan to
include different methods from the formal theory of Ordinary Difference Equations
for further improving the cryptanalysis of difference ciphers. We believe therefore
that the proposed modeling and the corresponding methods will be useful for the
development of new applicable ciphers.
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