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Abstract: Natural fibrillar-like macromolecules find applications in several fields, thanks to their
peculiar features, and are considered perfect building blocks for natural and artificial functional
materials. Indeed, fibrous proteins (such as collagen or fibroin) are commonly used in scaffold
fabrication for biomedical applications, due to the high biophysical similarity with the extracellular
matrix (ECM) which stimulates tissue regeneration. In the textile industry, cellulose-based fabrics
are widely used in place of cotton and viscose, which both have sustainability issues related to their
fabrication. With this in mind, the structural characterization of the materials at molecular scale plays
a fundamental role in gaining insight into the fiber assembly process. In this work, we report on three
fibers of research interest (i.e., type I collagen, silk fibroin extracted from Bombyx mori, and cellulose)
to show the power of wide-angle X-ray scattering to characterize both intra- and intermolecular
parameters of fibrous polymers. The latest possibilities offered in the X-ray scattering field allow one
to study fibers at solid state or dispersed in solutions as well as to perform quantitative scanning
X-ray microscopy of tissues entirely or partially made by fibers.
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1. Introduction

Over recent years, there has been a growing interest in the development of fibrillar structures
containing, as the main fibrous structures, natural (cellulose, collagen, silk fibroin, elastin,
chitosan, and alginate) and synthetic (polylactic acid−PLA, poly-lactic-co-glycolic acid–PLGA,
polycaprolactone–PCL) polymers, separately or in a blend. Thanks to their tunable specific features,
linked to their order at molecular scale/nanoscale, fibrous materials have found applications in several
fields. In particular, when fibers possess diameters ranging from 10 to more than 100 nm, i.e., nanofibers,
they show a high surface-to-volume ratio, and high sensitivity to external physical and chemical stimuli
with respect to the micro fibrous materials [1,2], thus enhancing interaction with a final target. The
possibility to tune the fiber size and orientation, the high porous structure, together with the possibility
to construct networks with controlled structure and interconnected porosity, making them useful for
the development of functional materials applied to several fields, such as tissue engineering [3], water
filtration [4], semiconducting materials [5] and energy generation and storage [6]. The choice of the
materials for fiber fabrication is strongly related to the final function of the device.

Natural fibrous polymers are often employed for scaffold or drug delivery devices production
in biomedical applications [7] or drug/gene delivery devices, because of their biocompatibility and
non-toxic biodegradation. It has been demonstrated that fibrillary scaffolds made of natural polymers
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improve cell adhesion, growth and tissue regrowth as they are able to mimic natural biochemical
and topographic features of the extracellular matrix (ECM) [8], in particular, superficial roughness,
viscoelasticity, and sub- and supra-molecular configuration. Wound dressing and tissue regeneration
appear to be the favorite fields of application of fibrous polymers that possess great air permeation,
preventing infection and promoting wound healing [9]. Moreover, scaffolds made of oriented
fibers are used as “railways” for anisotropic tissue regeneration or scaffold fabrication of bone, skin
connectives, muscles and nerves, as they are physical guides that promote tenocyte growth along
the axis of the tendon and/or axonal regrowth. Synthetic fibrous devices are developed for tissue
engineered constructs, because of their low antigenicity, but also for other manufacturing fields. Fibrous
synthetic materials are also employed in the aerospace industry in order to enhance the mechanical
reinforcement [10] of the structures. In the textile field, nanostructured fiber-based garments are able
to keep body temperature constant, to prevent rain and cold infiltration and to provide comfort thanks
to the controlled nanoporosity [11]. Moreover, fibers appear also to be useful enhancers of sensitivity
in sensor development [12] and long-term electrolyte storage.

Considering the crystallographic classification of crystalline materials, three major categories can
be identified (see Figure 1):

1) single crystals due to the periodic repetition of the same crystal unit cell in three directions of
space, forming a quite large single crystalline domain (extension of the domain: from several tenths of
microns to a few millimeters), whose data set of diffraction patterns is characterized by a spotted-like
diffraction intensity distribution;

2) bundle of fibers, which are crystals ordered along two main directions, the meridional direction
along the fiber axis and the equatorial direction perpendicular to it, whose diffraction pattern is made
by arcs mainly localized along the meridional and equatorial directions, respectively;

3) polycrystalline materials (or powders), which are made by thousands of small single crystals,
oriented in all directions, whose diffraction pattern is marked by concentric rings.

The information which can be extracted by a 2D wide-angle diffraction pattern of single crystal,
bundle of fibers and polycrystalline material, respectively, is therefore the fingerprint of the specific
material crystallinity class, as the intensity distribution allows us to characterize each crystal in its
category without uncertainty.
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Figure 1. Typical diffraction patterns of single-crystal (left); bundle of fibers (center);
poly-crystals (right).

Small- and wide-angle X-ray scattering (SAXS and WAXS) are among the most suitable methods
to investigate fibrous macromolecular polymer assemblies to obtain structural details with nanometric
or atomic resolution, respectively. The characterization by both SAXS and WAXS, especially to study
hierarchical systems, is extremely up-to-date and beneficial to a whole analysis of the structure across
the different length scales, as shown by Terzi et al. in collagen type 1 [13].
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When fibers are embedded in natural tissues or artificial scaffolds, SAXS and WAXS scanning
microscopy can be obtained by mapping areas of several mm2 with a focused X-ray beam [14,15]. The
combination of crystallographic and statistical methods can transform raw SAXS/WAXS datasets into
quantitative images, to map the variation of specific structural properties in the explored area. These
microscopies have been used to study the organization of the fibers into natural tissues like eyes, teeth,
bone, skin connectives, muscles and nerves, as well as in engineered ones [15–17].

In addition, fibers can also be studied in a water solution [18] resembling the condition of fibers
dispersed in biological liquids as well as a solution containing an injectable drug.

Information extracted from fiber diffraction/scattering, both in a solid or liquid phase, respectively,
can be combined with atomic models to determine or even predict behaviors and features of fiber-based
materials. Last but not least, fibers have also been largely studied with small angle neutron scattering
(SANS). New instruments such as BEER and HEIMDAL at the ESS, Lund and iMATERIA at J-PARC can
be relevant examples of instruments designed for studying with SANS advanced functional materials,
including fibers [19,20].

In this paper, we will present WAXS data collected on three cases of technological interest (type I
collagen, silk fibroin extracted from Bombyx mori and cellulose), aimed at their molecular study.

Type I collagen. Type I collagen is the main fibril-forming protein of the connectives, representing
approximately 70% of the total collagen in mammals [21,22]. It is distributed within a wide range of
tissues, such as bone and skin, and confers biomechanical elasticity and support to tissues. Thanks
to its biocompatibility and non-toxic degradability, it is widely used in several biomedical fields [23]
and it is considered one of the gold standard biomaterials for scaffolds fabrication in regenerative
medicine. Type I collagen is a complex hierarchically organized structure characterized by three
α-helices, two α1 (I) chains, encoded by collagen type I alpha 1 chain gene (COL1A1), and one α2 (I) chain,
encoded by COL1A2 gene [24], intertwined in a typical heterotrimeric molecule of 300 nm in length
and 1.5 nm in diameter [25]. In the triple helix, three sections are clearly distinguishable: a central
helical part with the repetition of the characteristic triplet Gly-X-Y, and two non-helical regions at C
and N-termini (telopeptides). The tightly packed conformation of the triple helix is guaranteed by the
glycine amino acid retained in every third position of the triplet, while Pro and Hyp, often observed
in X and Y positions, are placed on the helical surface, available for steric interactions with other
molecules. Furthermore, the telopeptides placed at the end of the helical region comprise the sites for
intra- and intermolecular crosslinks (trivalent pyridinoline or pyrrole crosslinks at the N-terminus
and divalent intermolecular crosslinks at the C-termimus) that are crucial for collagen supramolecular
organization and strength. Collagens triple helices are arranged in fibril bundles due to electrostatic
and hydrophobic interactions, with a variable diameter (10−500 nm), characterized by a molecular
distance of about 1.6 nm, that varies in relation to the tissue and the hydration state. Indeed, the
molecular structure is stabilized by water-mediated or direct hydrogen bonds, between the NH group
on the glycine backbone and the CO group on the backbone of the amino acid in X position of the triplet
Gly-X-Y, placed on the closed chain. The creation of a cylinder of hydration permits the stabilization of
the crystal lattice of collagen. Fibrils are arranged in longitudinally staggered arrays, in which each of
them is staggered about one-quarter of its length with respect to the neighbor along the axis of the fibril.
This disposition gives rise to a gap (0.54•d)−overlap (0.46•d) nanoscale structure (regions of high and
low electron density) showing a d-periodic banding of 64−67 nm axial periodicity [16]. Fibrils are also
packed into fibers with a final diameter of about 100 nm, depending on hydration state and tissue.
Indeed, as type I collagen can be extracted from different sources, it partially retains tissue-related
features, depending on the particular extraction process. It is mainly isolated from fish scales and
skin [26], bovine dermis and equine tendons [27] with a variable yield. The main issue related to the
protein isolation from the tissues is obtaining a soluble fraction of protein, which is related to the age
of the animal. Thus, younger tissues are preferred, as they allow to one extract the higher amount of
soluble protein, about 2%. The extraction can be performed with chemical or enzymatic hydrolysis.
Among all the extraction protocols, the chemical method ensures the preservation of the molecular
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conformation and the partial retention of the nanofibrillary structure. On the contrary, the enzymatic
protocol, consisting of the selective cleavage of the telopeptides at both the N- and C- termini, permits
researchers to obtain smaller molecules, named atelocollagen, with a low retention of fibrillary structure,
as the telopeptides containing crosslinking sites are cleaved. However, molecules are still bonded with
few intermolecular crosslinks along the triple helical length. The achieved atelocollagen induces a
lower immune response, as the telopeptides also comprise the antigenic P-determinant [28]. Thus, the
retention of few crosslinks between molecules is related to the type of tissue and extraction methods.
In particular, the stiffer the extraction tissue, the more the fibrillary structure is retained.

Silk fibroin (Bombyx mori). Silk fibroin (SF) is a natural material derived from Bombyx mori cocoons.
This biopolymer, in its native or regenerated forms, is largely used and studied for biomaterial
applications thanks to its excellent properties like mechanical strength, elasticity, biocompatibility
and biodegradability, versatile processability, ease of functionalization and thermal stability. In
addition, silk fibroin possesses good optical properties like transparency in the visible range together
with a remarkable surface smoothness, making it a suitable material for the processing of photonic
devices for biomedical applications. The main fields of applications are medical/pharmaceutical, tissue
engineering, drug delivery, optics, sensing and diagnostics. The morphologies, together with the
peculiar macroscopic properties of silk fibroin, are strictly related to its molecular structure, which has
been extensively studied in several papers since 1913 by Nishikawa and Ono [29] by X-ray diffraction,
investigating the hierarchical structure of silk fibers. The X-ray structural analysis of the silk fibroin
allows one to determine the structural features like unit cell dimension, nanocrystallite size and
orientation, and degree of crystallinity. In 1955, the crystal structure of silk fibroin was proposed by
Marsh, Corey and Pauling [30] as a regular arrangement of antiparallel β-sheets.

From the molecular structural point of view, the silk fibroin is a protein composed by four
aminoacids: glycine (43.7%), alanine (28.8%), serine (11.9%) and tyrosine (5%) arranged in heavy-chain
(H), 390 kDa, and light-chain (L), 26 kDa, linked together by a disulfide bond [31] at the C-terminus
of H-chain, forming an H–L complex. In particular, H-chains form small discrete β-sheet crystallites
embedded in an amorphous matrix, which constitutes the main structural component conferring the
exceptional mechanical properties to this biopolymer (hydrophobic region).

The size of β-sheet crystallites was estimated to be 2.6 nm in the intermolecular hydrogen bond
direction, 32.0 nm in the sheet stacking direction and 11.5 nm in the chain direction, respectively. The
hydrophobic regions of SF interact with each other, giving rise to supramolecular nanocrystallites which
adopt an orthorhombic structure with unit cell dimensions a = 9.20 Å, b = 9.40 Å and c = 6.97 Å [32–34].
The hydrophilic disordered regions allow for the aqueous solubility of the material.

The degree of crystallinity can be estimated by analyzing the crystalline and amorphous
components present in the WAXS profiles. Different methods have been proposed and applied
for such analysis with results in good agreement for silk fibroin from Bombyx mori that show a
crystallinity of 45.6%, higher than all other silks, indicating a higher abundance of nanocrystalline
component in Bombyx mori silk [35].

The study of the structure-function relationship is one of the main research topics in silk-based
polymers since it determines fields and limits of its application. The interesting properties of silk
fibroin are thought to originate from the particular molecular structures of the material. In particular
the Young’s modulus of silk is enhanced with increasing β-sheet content and crystallinity. Indeed,
Bombyx mori silk fibroin shows the highest tensile strength and Young’s modulus compared to other
types of silk.

Cellulose. Cellulose is a glucose polymer, insoluble in water, with a hierarchically ordered structure
composed by a crystalline and an amorphous component. There are different crystalline polymorphs of
cellulose [36], but the most known are cellulose I (with the two allomorphs, triclinic Iα and monoclinic
Iβ [37,38], which corresponds to native cellulose) and cellulose II, obtained by chemical regeneration
or mercerization of natural cellulose [38]. The term fiber usually refers to a bundle of cells adhering
to each other [39]. The cellulose Iβ is thermodynamically more stable. [40]. In cellulose, glucose
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molecules are linked together by β(1−4) linkages, such that each glucose molecule is rotated 180◦ with
respect to the other. Two 180◦-linked glucose molecules form a cellobiose unit, which is the repeat unit
of cellulose. Cellobiose units are linked together, forming cellulose chains, whose length or degree of
polymerization—number of glucose monomers—is variable, up to about 10,000 units in the secondary
walls of the fibers [41]. Cellulose chains are linked together to form microfibrils. Various hypotheses
have been proposed regarding the cross-sectional arrangement of microfibrils [39]. In particular, a
microfibril of 18−24 chains should be 2−3 nm wide, leading to main X-Ray scattering signals in the SAXS
regime. Microfibrils aggregate together, forming macrofibrils [42], up to a maximum cross-sectional size
of about 50 nm, although further studies are needed to understand the exact structure of microfibrils
and macrofibrils. Indeed, the model of cellulose microfibrils, linked together within a hemicellulose
and lignin matrix, is an approximate description of the textile fibers. As an example, we report the
composition of some natural textiles: cotton fiber contains 94−96% of pure cellulose and 4−6% of other
components; flax/linen fibers contain 92% of pure cellulose, 2% of hemicellulose, 2% of lignin and 4%
of other components; hemp fibers contain 78% of pure cellulose, 10% of hemicellulose, 7% of lignin
and 5% of other components. Wood contains 50% of cellulose.

In this approximate model, textile fibers’ cellulose can be divided into “well-ordered”
crystal-surface and “poorly-ordered” crystal-interior cellulose [43], showing also the absence of
any order (amorphous state). These partially ordered structures lead to scattering signals in the
WAXS regime, from which information about the degree of crystallinity of the fibers can be extracted.
Amorphous cellulose is the result of mechanical/chemical damage of crystalline cellulose, rather than
being a native state [39]. Thus, the WAXS patterns contain specific features of the fibrous samples and
of its state of integrity and conservation.

2. Materials and Methods

Type I collagen. The type I collagen here analyzed was derived by commercially available raw
flakes extracted from equine tendons through a chemical protocol. The protein was provided by
Typeone Srl (Lecce, Italy) [44,45].

Silk fibroin from Bombyx mori. The degummed silk fibroin was obtained from Bombyx mori cocoons
purchased from TaJima Shoji (Japan). The sericin was removed from the silk fibroin cocoons by cutting
them into fourths, then the silk fibroin was shredded and boiled for 30 min in aqueous solution of
Na2CO3 0.02 M and then rinsed with bi-distilled water to remove residual sericin and excess of salt.
The fiber was then dried for 24 h at ambient conditions.

Cellulose. The cellulose sample was a linen thread with a length of about 1 cm and a thickness of
around 0.2–0.4 mm. This sample was taken form a group of fabrics analyzed by WAXS with the aim to
offer an alternative method to radiocarbon dating, entirely based on X-ray data [46].

The fiber diffraction patterns were collected with a dedicated set-up (X-ray MicroImaging
Laboratory, XMI-L@b) shown in Figure 2a. The micro-source, a Fr−E+ SuperBright rotating copper
anode microsource (45 kV/55 mA; Cu Kα, λ = 0.154 nm, 2475 W), displayed in Figure 2b,c, was coupled
through a multilayer focusing optics (Confocal Max-Flux; CMF 15–105) to a three-pinhole camera
(Rigaku SMAX3000) for small- and wide-angle X-ray scattering (SAXS/WAXS) data collection. The
samples were placed in the sample chamber (Figure 2d) and measured in vacuum (0.1−1 mbar). A
goniometer with a 125 × 125 mm2 stage can be inserted into the chamber to collect grazing incidence
small- and wide-angle scattering data (GI-SAXS/GI-WAXS). For WAXS/GIWAXS data collection, an
image-plate (IP) detector (250 × 160 mm2, with 50 or 100 µm effective pixel size depending on
binning, and off-line RAXIA reader) was inserted at ~28 mm from the sample, using a load-lock
system (Figure 2e) which allowed the mounting and demounting of the detector without breaking
the vacuum. Alternatively, the same detector could be mounted into the sample chamber at other
distances up to 250 mm from the sample. The set-up was equipped with a second detector, a Triton
20 gas-filled proportional counter (1024 × 1024 array, 195 mm pixel size) for SAXS/GISAXS acquisition.
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The two detectors could also be used simultaneously thanks to a 6 mm hole in the center of the WAXS
detector [47,48].Crystals 2020, 10, 274 6 of 13 
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Figure 2. (a) X-ray MicroImaging Laboratory (XMI-L@b) set-up; in details: (b) Fr−E+

SuperBright microsource; (c) Cu rotating anode; (d) the sample chamber; (e) load-lock system
for mounting/demounting the image plate detector for wide-angle X-ray scattering (WAXS)/grazing
incidence wide-angle scattering (GIWAXS) data collection.

3. Results and Discussion

3.1. Type I Collagen

Two models for type I collagen have been reported in the literature: the 10/3 model, described
by Rich and Crick [49], characterized by the pitch length of 86 Å and 3.33 amino acidic residues per
turn that confer the axial repetition of 28.8 Å and the 7/2 model, described by Okuyama et al. [50],
with the pitch length of 60 Å and 3.5 amino acidic residues per turn, conferring the axial repetition of
20.0 Å to the molecule. Figure 3 shows the WAXS data collected on type 1 collagen (Figure 3a) and the
2d3h molecular model (Figure 3b) [51] reported in the protein database, which keeps a triple-helical
structure very close to the ideal 7/2-helical model. The 2D WAXS pattern displays the typical cross
β fiber diffraction features with the intensity distributed along two main orthogonal directions, the
meridional one along the fiber axis and the equatorial one perpendicular to it. The pattern is centered,
calibrated and integrated along the meridional and equatorial directions, and the corresponding 1D
WAXS profiles are displayed in the same figure (yellow curves).
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integrated profiles show the main peaks of the protein, the meridional peak (marked as 1) and the
equatorial peaks (marked as 2 and 3), respectively; (b) 2d3h molecular model of type I collagen.

As shown in Table 1, as well as in our recent WAXS studies performed on type I collagen [44,45],
we found a meridional diffraction peak at q1 = 2.22± 0.075 Å−1 (marked as 1 in Figure 3a), corresponding
to the distance between amino acidic residues along the c-axis of the helix (d = 2.8 ± 0.1 Å, helical
axial periodicity). A further diffraction signal was found orthogonally to it: the equatorial peak at
q2 = 0.6 ± 0.05 Å−1 (marked as 2 in Figure 3a), corresponding to the lateral packing (d = 10.65 ± 1 Å)
of triple helices which varies with the hydration state of the material. Along the equatorial direction
was also observed a broad amorphous-like peak at q3 = 1.39 ± 0.25 Å−1 (marked as 3 in Figure 3a),
corresponding to d = 4.55 ± 0.85 Å and describing the distance between collagen skeletons. The
stability of the triple helices is increased by the formation of direct hydrogen bonds between the NH
group of glycine and the CO group of the amino acid in the X position on the neighboring chain,
and it is also enhanced by the formation of a hydration cylinder around the molecular configuration.
Thus, the hydration state of the material is important for the lateral packing of collagen molecules
in the crystal lattice arrangement and may affect the equatorial peak position [52]. Indeed, it was
demonstrated that collagen concentrations larger than 30−40 mg/mL allow one to arrange triple helices
in liquid crystal phases with two oriented preferred geometries: nematic (not arranged in layers) and
cholesteric (arranged in layers) [53]. By measuring the exact positions of meridional and equatorial
peaks, relevant information on the stress state of the fiber can be extracted.

3.2. Silk Fibroin from Bombyx Mori

Figure 4 shows the WAXS data (Figure 4a) collected on fibroin-Bombyx mori and the 2slk molecular
model [54] reported in the Protein Data Bank (PDB) protein database for this fiber (Figure 4b). The 2D
WAXS pattern displays the typical cross β fiber diffraction features with the intensity distributed along
two main orthogonal directions, the meridional along the fiber axis and the equatorial perpendicular to
it. The pattern is centered, calibrated and integrated along the meridional and equatorial directions, and
the corresponding 1D WAXS profiles are displayed in the same figure (yellow curves). The positions of
the main peaks are reported in Table 1.
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Figure 4. (a) Two-dimensional WAXS fiber diffraction pattern collected on fibroin-Bombyx mori with
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corresponding 1D WAXS integrated profiles show the main peaks of the protein, the meridional peak
(marked as 1) and the equatorial peaks (marked as 2 and 3), respectively; (b) 2slk molecular model of
fibroin-Bombyx mori.
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Figure 5. (a) Two-dimensional WAXS fiber diffraction pattern collected on cellulose [46], with white
arrows along the fiber axis (meridional) and perpendicular to it (equatorial). The corresponding 1D
WAXS integrated profiles show the main peaks of the protein, i.e., the meridional peak (marked as 1)
and the equatorial peaks (marked as 2, 3 and 4), respectively; (b) Iα model; (c) Iβ model.

The meridional peak at q1 = 1.78 ± 0.03 Å−1 (marked as 1 in Figure 4a), corresponding to an
interplanar distance d1 = 3.53 ± 0.06 Å, was correctly indexed as the (002) reflection of the Silk I [55].
Indeed, as reported in the literature [56], this indicates that the β strands along the fiber axis yield the
7.0 Å axial repeat and contain two peptide units. The equatorial peaks indicate the distance along
the intersheet and interchain direction. The equatorial peak at q2 = 0.66 ± 0.075 Å−1 (marked as 2 in
Figure 4a) corresponding to d2 = 9.52 ± 1 Å was indexed as the (010) reflection, whereas the peak at
q3 = 1.44 ± 0.08 Å−1 (marked as 3 in Figure 4a), corresponding to d3 = 4.36 ± 0.25 Å, was indexed as an
overlap of the (020) and (210) reflections. The unit cell determined from the d-spacing values reflection
(020), (210) and (002) shows a good agreement with the literature [55].
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Table 1. Positions and relative interplanar distances extracted from the 1D-WAXS data reported in
Figure 3 (TYPE 1 COLLAGEN), Figure 4 (FIBROIN−BOMBYX MORI) and Figure 5 (CELLULOSE).

TYPE 1 COLLAGEN

Meridional Equatorial

q1 = 2.22 ± 0.075 Å−1; d1 = 2.83 ± 0.1 Å q2 = 0.59 ± 0.05 Å−1; d2 = 10.65 ± 1Å

q3 = 1.39 ± 0.25 Å−1; d3 = 4.52 ± 0.85Å

FIBROIN–BOMBYX MORI

Meridional Equatorial

q1 = 1.78 ± 0.03Å−1; d1 = 3.53 ± 0.06 Å q2 = 0.66 ± 0.075 Å−1; d2 = 9.52 ± 1 Å

q3 = 1.44 ± 0.08 Å−1; d3 = 4.36 ± 0.25 Å

CELLULOSE

Meridional Equatorial

q1 = 2.43 ± 0.015 Å−1; d1 = 2.58 ± 0.01 Å q2 = 1.05 ± 0.04Å−1; d2 = 6.00 ± 0.25 Å

q3 = 1.18 ± 0.025Å−1; d3 = 5.32 ± 0.15 Å

q4 = 1.60 ± 0.04 Å−1; d4= 3.93 ± 0.1Å

3.3. Cellulose

Figure 5 shows the WAXS data (Figure 5a) collected on linen cellulose. Unlike the previous two
cases, we could not find a single molecular model to describe the hierarchical fiber organization. We
report here the two crystal structures of cellulose Iα (Figure 5b) and Iβ (Figure 5c) which better explain
our WAXS data [35,36]. As with the previous examples, the 2D WAXS pattern displays the typical
fiber diffraction features with the intensity distributed along two main orthogonal directions, the
meridional one along the fiber axis and the equatorial one perpendicular to it. The pattern is centered,
calibrated and integrated along the meridional and equatorial directions, and the corresponding 1D
WAXS profiles are displayed in the same figure (yellow curves). The positions of the main peaks are
reported in Table 1.

The equatorial peaks at q2 = 1.05 ± 0.04 Å−1 and q3 = 1.39 ± 0.25 Å−1, marked as 2 and 3,
respectively, in Figure 5a can be indexed as the (010) and (001) reflections in the case of the triclinic
cellulose Iα phase or alternatively as the (1–10) and (110) reflections in the case of the monoclinic
cellulose Iβ phase; the meridional peak at q1 = 2.43 ± 0.015 Å−1, marked as 1 in Figure 5a, can be
indexed as the (021) reflection in the case of the triclinic cellulose Iα phase or alternatively as the (004)
reflection in the case of monoclinic cellulose Iβ phase [57,58].

4. Conclusions and Perspectives

Engineered polymer fibers are extensively used in biomedical applications thanks to the high
similarity with the extracellular matrix, the outstanding mechanical properties and the high versatility.
In these fields, both natural (collagen, silk, cellulose, elastin, chitosan, alginate) and synthetic (polylactic
acid−PLA, poly-lactic-co-glycolic acid−PLGA, polycaprolactone−PCL) fibrous polymers are used to
fabricate fiber networks for cells and to improve their mechanical response.

The protocols of extraction and/or fabrication of the devices based on natural or engineered
fibers are numerous. For each of them, it is necessary to correlate specific functions to the structural
organization of the fiber. Fiber polymers have often a complex hierarchical structure with well-defined
organization on multiple length scales from sub-molecular to supramolecular scale. To gain deeper
insight into the assembly process, X-ray scattering techniques allow inspection of the material from
atomic/molecular (WAXS) organization to nanoscale (SAXS), i.e., the whole hierarchical architecture.

In this paper, we report the WAXS investigation performed with a table-top high brilliance
X-ray micro-source on three different types of natural fibers (collagen, silk fibroin and cellulose)
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aiming to show the power of fiber wide-angle X-ray scattering for the molecular characterization of
natural polymers. For many biological/natural systems, the fibrous state is functionally crucial to a
specific function.

Besides the cases of natural polymers here reported, novel studies have been reported on other
materials, for example aromatic peptide-based materials that exhibit spontaneous phenomena of
supramolecular organization into ordered nanostructures [59–61]. Here, the knowledge of their inner
molecular organization was correlated to the design of novel molecules with enhanced and tunable
properties for drug delivery or contrast agents.
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