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ABSTRACT: Drug-induced phospholipidosis (PLD) involves the accumu-
lation of phospholipids in cells of multiple tissues, particularly within lysosomes,
and it is associated with prolonged exposure to druglike compounds,
predominantly cationic amphiphilic drugs (CADs). PLD affects a significant
portion of drugs currently in development and has recently been proven to be
responsible for confounding antiviral data during drug repurposing for SARS-
CoV-2. In these scenarios, it has become crucial to identify potential safe drug
candidates in advance and distinguish them from those that may lead to false in
vitro antiviral activity. In this work, we developed a series of machine learning
classifiers with the aim of predicting the PLD-inducing potential of drug
candidates. The models were built on a high-quality chemical collection comprising 545 curated small molecules extracted from
ChEMBL v30. The most effective model, obtained using the balanced random forest algorithm, achieved high performance,
including an AUC value computed in validation as high as 0.90. The model was made freely available through a user-friendly web
platform named AMALPHI (https://www.ba.ic.cnr.it/softwareic/amalphiportal/), which can represent a valuable tool for medicinal
chemists interested in conducting an early evaluation of PLD inducer potential.
KEYWORDS: phospholipidosis, ligand-based classifiers, machine learning, SARS-CoV-2

■ INTRODUCTION
Phospholipidosis (PLD) is a lysosomal storage disorder
characterized by excessive accumulation of phospholipids in
liver, kidney, brain, cornea, lung, and other organs.1 While it is
widely recognized that this phenomenon can arise from
prolonged treatment with cationic amphiphilic drugs (CADs),
the exact mechanism behind this process remains unclear.
Various hypotheses have been explored in the literature,
including direct inhibition of lysosomal phospholipases,2

binding to phospholipids,3 the potential regulation of
phospholipid synthesis,4 and the enhanced cholesterol biosyn-
thesis.5 For a comprehensive review on this topic, the reader is
referred to the recent paper by Breiden et al.6 Given that a
notable proportion (∼5%7) of drugs can induce PLD, there
has been a growing interest in recent years to assess the
potential of drug candidates to be inducers of PLD during the
early stages of a drug discovery (DD) process. This proactive
evaluation is recognized as valuable, as compounds that lead to
PLD have a reduced likelihood of being successfully brought to
market.8 Recently, highly significant correlations have been
demonstrated between lipophilicity, the ability of CADs to
induce PLD, and the antiviral activity that these cationic
amphiphilic drugs have shown against multiple viruses such as
hepatitis C virus (HCV), Japanese encephalitis virus (JEV),
severe acute respiratory syndrome coronavirus (SARS-CoV),
and Epstein−Barr virus (EBV).9 In light of the recent COVID-

19 pandemic, a publication in Science by Tummino et al.10

presented findings that highlight the pivotal role of PLD in the
context of drugs with anti-SARS-CoV-2 activity, revealing that
most of the molecules return antiviral activity during the drug
repurposing campaigns conducted during the pandemic induce
PLD. This adds another layer of complexity and importance to
the understanding and evaluation of PLD in drug development
efforts, particularly in the context of the recent global health
crisis. Based on these data, Tummino et al. speculated that the
anti-SARS-CoV-2 activity observed in vitro for many molecules
would be the consequence of their ability to induce PLD rather
than activity on a specific target (false anti-SARS-CoV-2
activity10). This hypothesis was supported by the evidence that
many molecules exhibiting antiviral activity in vitro lost such
activity when transitioning to in vivo conditions. Further
support came from the lack of correlation between the antiviral
activity and the affinity of some ligands that interact with host
targets identified as important in combating SARS-CoV-2
replication (e.g., sigma-1 receptor).11 Some molecules with
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high affinity for sigma-1, for instance, show no antiviral
activity.12 Although PLD in the context of SARS-CoV-2
antiviral assays remains a subject of ongoing scientific debate
with contradictory data,13,14 its importance in the drug
development process has been further underscored. Unfortu-
nately, the available in vitro assays able to measure the PLD-
inducing potential of drug candidates are laborious, time-
consuming, expensive, and, for these reasons, poorly applied
despite the fact that several CADs agents are in clinical use/
development. Furthermore, the gold standard method (trans-
mission electron microscope�TEM) does not allow the
screening of a large number of molecules.15 Other in vitro
approaches include a method consisting of measuring the
binding of dyes to the phospholipids by flow cytometry or
fluorescence microscopy,16−20 as well as a method based on
quantifying gene biomarkers linked to PLD.15 All these
approaches are particularly expensive and often yield
conflicting data.21−23 The development of in-silico tools able
to prioritize safe drug candidates is, therefore, highly desirable,
although it is worth noting that they are not free from
limitations. Especially when not used in conjunction with
experiments or when not starting from highly curated
experimental data, they can lead to a considerable number of
false positives, as was clearly seen during the COVID-19
pandemic.24 In the context of antiviral design, if developed
effectively, these tools would provide valid support to the
identification of those compounds with a low probability to
provide false antiviral activities during in vitro assays.
Accordingly, several models have been developed in the past
few years to predict the PLD-inducing potential of drug
candidates, based on ligand-based approaches7,25−28 or
substructure search methods.29,30 Valuable examples can be
found in the papers by Kruhlak et al.7 and Orogo et al.,26

reporting quantitative structure−activity relationship (QSAR)
models based on 583 and 743 compounds, respectively,
extracted from the published literature, existing pharmaceutical
databases, and Food and Drug Administration (FDA) internal
reports. Of note are also the papers by Fusani et al. and
Schieferdecker et al.27,28 Based on in-house in vitro data, the
authors developed machine learning-based models of PLD-
inducing potential. However, despite their good performance
(accuracy > 80%), the developed models are not available;
hence, their accessibility to potentially interested users is
strongly limited. Building on this background, in the present
study, new classifiers of PLD-inducing potential were
developed using four algorithms, namely, random forest
(RF), K-nearest neighbors (KNN), gradient boosting (GB),
and extreme gradient boosting (XGB) starting from 545
compounds extracted from ChEMBL version (v) 30 (PLD-
DB) and then splitting into a training set (TS) and a validation
set (VS). The top-performing classifier was also tested on two
external sets (ESs). Despite the limited data availability, these
models demonstrated satisfactory performance, as evidenced
by widely accepted quality metrics, such as the area under the
receiver operating characteristic curve (AUC) and balanced
accuracy (BA). Following an approach successfully employed
by our team for predicting other chemical properties,31,32 the
most effective model was incorporated into a user-friendly web
platform named AMALPHI (https://www.ba.ic.cnr.it/
softwareic/amalphiportal/). Significantly, this platform does
not necessitate expertise in cheminformatics or programming
and can be a valuable resource for medicinal chemists
interested in early evaluations of the PLD inducer potential.

To the best of our knowledge, AMALPHI is the first freely
accessible tool able to efficiently predict the PLD potential of
drug candidates.

■ MATERIALS AND METHODS
Data Set Preparation. We extracted 851 entries from

C h E M B L v 3 0 a c c o r d i n g t o t h e T a r g e t I D
(CHEMBL1626541) assigned to the PLD phenotype.
Following an approach described elsewhere,32,33 we checked
the validity of each SMILES string using an in-house
semiautomated procedure implemented in the KNIME
platform. In particular, this procedure allows for the removal
of organometallic and inorganic compounds, chemicals
characterized by unusual elements and mixtures, neutralizing
salts, and stereochemistry. Finally, the OpenBabel node
implemented in KNIME allowed the conversion of retrieved
SMILES in a standardized QSAR-ready format. In doing that,
we created the PLD-DB, consisting of 545 curated entries. It is
worth noting that 70% of the compounds belonging to the
PLD-DB data set are approved drugs, while the remaining ones
have yet to progress to the clinical phase.

Furthermore, to assess the diversity of molecules in our data
set, we employed a metric called internal diversity (ID�
defined as the mean over the Tanimoto distances between each
molecule and all the others belonging to the same set34), which
effectively measures the similarity of molecules within the data
set. The resulting ID value of 0.82 indicates that the
compounds in our data set exhibit a high degree of diversity.
To classify the entries as either PLD inducers (P+) or
noninducers (P−), we analyzed the comments field based on
the reference CHEMBL ID document. Annotations selected as
referring to P+ were: “active”/ “positive”/ “positive: inducer
confirmed by electron microscopy”/ “positive: weak inducer
based on foamy macrophages and cytoplasmic vacuolations.”
Instead, comments selected as indicating no PLD induction
(P−) were: “not active”/“negative”/“negative: confirmed by
electron microscopy”/“negative: based on the absence of
positive reported data from WMDD.” 295 duplicates were
removed, keeping the P+ or P− class as the most frequent one.
Finally, 11 chemicals were excluded, as their activity was
indicated as “Not determined” in ChEMBL v30. In doing that,
the final curated data set (PDL-DB) comprises 104 P+ and
441 P− for a total of 545 compounds.
External Set Preparation. Two different external sets

(ESs), one consisting of 117 (ES1) and the other consisting of
20 (ES2) compounds, were built and used in this work. In
particular, Orogo et al.26 made available a data set (Or-ds)
consisting of 743 compounds that we used to create ES1.
Noteworthy, Or-ds comprises compounds along with their
associated PLD activity and a corresponding data confidence
rate expressed as either high or medium. Compounds
associated with keywords related to electron microscopy
confirmation of PLD are considered to have high confidence,
while those associated with keywords and phrases indicating
only the presence of foamy macrophages are considered to
have medium confidence. We kept only those compounds with
a high confidence rating and processed the SMILES strings
using the same semiautomated procedure described above to
remove duplicates and compounds already included in PLD-
DB. The second external set (ES2) was built based on the
work by Przybylak et al.29 The authors used two curated data
sets comprising 185 and 331 compounds. These two data sets
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were merged and processed following the already described
data curation approach.
Data Set Splitting. We employed a rational approach to

split PLD-DB into a TS and a VS. To this aim, we applied the
RDkit Diversity Picker node separately on the two classes (i.e.,
P+ and P−). This node automatically generates Morgan
fingerprints (radius 2−2048 bits) for each SMILES string and
then picks 80% of the most diverse molecules for each class
based on the Tanimoto distance.35 In this way, a TS of 431
compounds (80% of each class) and a VS that includes the
remaining 114 compounds were obtained. Table 2 summarizes
the composition of the starting TS, VS, and ES as well as the
relative imbalanced ratio (IR) calculated as the ratio between
the number of majority and minority instances.36 Note that
such a procedure allowed us to keep the ratio between the
classes in each subset. To depict the chemical space covered by
TS, VS, and ESs, a principal component analysis (PCA) was
performed based on 36 physicochemical properties of the
molecules calculated by the RDKit Descriptor Calculation
KNIME node and then standardized using the Normalizer
KNIME node (Figure 1). The score plot of the first three

principal components (PC1, PC2, and PC3) that account for
80.8% of the variance shows each ligand belonging to the
different data sets in the resulting 3D chemical space.

■ DEVELOPMENT OF STATISTICALLY BASED
MODELS
Development and Validation. In this work, four

classification algorithms were used: RF, KNN, GB, and XGB.
We employed the following KNIME nodes: tree ensemble
learner, tree ensemble predictor, K-nearest neighbor, gradient
boosted trees learner, gradient boosted trees predictor,
XGBoost tree ensemble learner, XGBoost predictor.37−39

AtomPair fingerprints (AP�1024 bits) calculated by the
RDKit Fingerprint KNIME node were used to represent each
chemical structure belonging to PLD-DB.

It is worth noting that we opted for AP fingerprints instead
of the previously used Morgan fingerprints due to their
acknowledged higher sensitivity to molecular global features,
such as size and shape.40

Noteworthy, an IR equal to 4.4 was computed for the TS.
For this reason, we created an additional set of models using an
undersampling ensemble learning model (UELM), employing
KNN, GB, and XGB. This technique presents two advantages
as it (i) avoids the convergence of algorithms trained on the
majority class ignoring classes with fewer samples,41 and (ii)
preserves information from the majority class using the
ensemble technique. In particular, we used the equal size
sampling node to generate, from the original TS, 50 sub-TS
(characterized by an IR equal to 1) to train 50 models and
generate the final ensemble model, able to make predictions on
external data (i.e., VS and ES) following a majority voting
approach. In all cases, we found the optimal setting (shown in
Table 1) for the final model training through hyperparameter

tuning performed based on a 5-fold cross-validation (5-CV).
Note that, for each algorithm, the hyperparameters known to
be responsible for the higher impact on the overall perform-
ance42,43 were considered.

To do that, we employed a Bayesian optimization algorithm
for RF and XGB and a grid search for KNN and GB. Finally,
after performance evaluation, we selected the best-performing
model.
Applicability Domain. An applicability domain (AD) was

defined for the TS in order to increase confidence in the
predictions. Notably, AD represents the chemical space from
which the models are built and, therefore, where a prediction
can be considered reliable.44 The domain-similarity KNIME
node was employed to define the AD. This node measures the
Euclidean distances between the compounds belonging to the
TS and those subjected to prediction. In particular, this
approach allows defining an AD threshold (ADP) following
these steps: (i) the computation of all the Euclidean distances
between all the possible pairs of compounds belonging to TS,
based on representative descriptors (AP fingerprint in our
case); (ii) the creation of a set of distances that are lower than
the average distance calculated in step 1; (iii) the computation
of the mean (d) and standard deviation (σ) of the distances in

Figure 1. PCA based on the physicochemical properties returned by
the compounds belonging to TS, VS, ES1, and ES2.

Table 1. Optimized Parameters for Each Algorithm

algorithm optimized parameters
unbalanced

TS
equal size

models

RF split criterion gini index
attribute sampling square root
set of attributes for each tree different
number of trees 423
tree depth 6
equal size sampling yes

kNN number of neighbors to
consider

5 7

weight neighbors by distance yes no
GB number of trees 280 100

learning rate 0.98 1
attribute sampling square root
set of attributes for each tree same
maximum tree depth 8

XGB eta 0.589 0.28
boosting rounds 253 100
gamma 0.182
lamba 4.842
alpha 0.211
maximum depth 6
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the set created in step 2; and (iv) the definition the ADP (AD
threshold) using the equation

d ZAPD = + (1)

where Z is an empirical cutoff value equal to 0.5 by default.45

In doing that, we excluded 2 compounds from VS and 16
compounds from ES1, while all the compounds belonging to
ES2 resulted within the AD. Table 2 reports the VS, ES1, and
ES2 compositions after the application of the AD filter.

Performance Evaluation. Each classifier was evaluated by
using Coopers statistics. In particular, sensitivity (SE),
specificity (SP), and BA were computed as follows

SE
TP

TP FN
=

+ (2)

SP
TN

TN FP
=

+ (3)

BA
SE SP

2
= +

(4)

where TP (true positives) and TN (true negatives) are,
respectively, the positive and negative samples correctly
classified by the trained model, whereas FP (false positives)
and FN (false negatives) are the misclassified positive and
negative samples, respectively. Another quality metric, namely,
the Matthews correlation coefficient (MCC), was considered
to evaluate model performance. MCC indicates the quality of
binary classification and is generally recognized as a reliable
metric, although it deteriorates when the TS is unbalanced.

MCC ranges between −1 and +1, where a value of +1 means a
perfect classification, 0 indicates a random classification, and
−1 is a complete misclassification.

TP FP TP FN TN FP TN FN

MCC
TP TN FP FN

( )( )( )( )
=

* *
+ + + +

(5)

The AUC was also computed by the ROC curve node46 to
measure the ability of a model to distinguish P+ from P−
samples. This metric ranges between 0 (miss-classifiers) and 1
(ideal-classifiers), reflecting the probability of positive
compounds being ranked earlier than decoy compounds
according to the prediction confidence value estimated by
the KNIME Predictor nodes with respect to each specific
algorithm used.37−39 The ROC curve and, consequently, the
AUC will be one of the key metrics we will primarily consider
for selecting the most effective model.47

Finally, the positive (+LR) and the negative likelihood ratio
(−LR) were considered and computed as follows

LR
SE

1 SP
+ =

(6)

and

LR
1 SE

SP
=

(7)

The classification model becomes more informative as the +LR
value increases (or the −LR value decreases).

■ RESULTS AND DISCUSSION
In this work, different classifiers of PLD-inducing potential
were developed using four ML classification algorithms,
namely, RF, KNN, GB, and XGB, all available in the
KNIME analytics platform. To this end, a highly curated
data set (PLD-DB) consisting of 545 compounds was used to
train and then to validate the models. More specifically, PLD-
DB was divided into a TS used to perform hyperparameter
tuning based on a 5-fold cross-validation (5-CV) and a VS
used to validate the models obtained with the best parameters
identified. Each compound was described by binary finger-
prints, namely, AtomPair FP.48 As already mentioned, PLD-
DB is an unbalanced data set with an IR approximately equal
to 4. To address the problem and therefore prevent a
significant discrepancy between SE and SP, different
techniques were undertaken. The RF algorithm was combined

Table 2. Partitioning Schemes Before (Top) and After
(Bottom) the Application of the ADa

data set # P− P+ IR

TS 431 351 80 4.4
VS 114 90 24 3.7
ES1 133 112 21 5.3
ES2 20 11 9 1.2
within the AD
VS 112 88 24 3.6
ES1 117 99 18 5.5
ES2 20 11 9 1.2

aFor PLD-DB, the number of noninducers (P−) and inducers (P+)
chemicals is reported for the training set (TS), validation set (VS),
largest (ES1), and smallest (ES2) external sets. Notably, the total
number of chemicals (#) is also reported.

Table 3. Performances in 5-CV Returned by All of the Developed Classifiersa

SE SP BA AUC −LR +LR MCC TP FP TN FN

RF 0.19 0.97 0.58 0.77 0.84 6.58 0.26 15 10 341 65
KNN 0.31 0.95 0.63 0.70 0.72 6.86 0.35 25 16 335 55
GB 0.23 0.97 0.60 0.75 0.80 6.58 0.30 18 12 339 62
XGB 0.40 0.95 0.68 0.78 0.63 8.26 0.43 32 17 334 48
BRF 0.73 0.74 0.73 0.78 0.37 2.77 0.38 58 92 259 22
uKNN 0.65 0.73 0.69 0.72 0.48 2.41 0.31 52 96 255 28
uGB 0.73 0.70 0.71 0.73 0.39 2.43 0.34 58 105 246 22
uXGB 0.68 0.72 0.70 0.72 0.44 2.43 0.32 54 98 253 26

aFor each model, the following statistics are reported: sensitivity (SE), specificity (SP), balanced accuracy (BA), area under the ROC (AUC),
negative likelihood ratio (−LR), positive likelihood ratio (+LR), Matthews correlation coefficient (MCC), number of true positives (TPs), false
positives (FPs), true negatives (TNs), and false negatives (FNs).
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with a uniform size sampling strategy (hereinafter referred to
as balanced random forest−BRF) to reduce the bias toward
the majority class while an additional technique named UELM
(see the section Materials and Methods for methodological
details) was implemented for KNN (hereinafter referred to as
uKNN), GB (uGB), and XGB (uXGB) algorithms. In
particular, using the equal size KNIME node, we developed,
for each of these algorithms, a final ensemble model following
the approach described in the section “Models Development
and Validation”. The final prediction was performed following
a majority vote approach. Furthermore, to wisely evaluate real-
life model predictivity, VS was kept imbalanced, and only
compounds within the AD were considered. Finally, two
different ESs were employed to assess the predictivity of the
best model in a real-life case study. The following section will
focus on analyzing the key quality metrics (SE, SP, BA, MCC,
and AUC) calculated for each validation process (internal and
external), aiming to identify the top-performing classifier.
Hyperparameterization. Table 3 displays the perform-

ances achieved using 5-fold cross-validation (5-CV) for each
employed algorithm using the TS extracted from PLD-DB for
hyperparameter optimization tuning. In this step, ensuring
satisfactory performance is critical to guarantee the capability
of model generalization, meaning that models fit the data set
accurately, avoiding overfitting or underfitting. As expected, the
classifiers built based on RF, KNN, GB, and XGB returned SP
values significantly higher than SE ones (difference ranging
from 0.55 to 0.78). Moreover, in all cases, BA values lower
than 0.70 were computed. A remarkable performance
improvement is instead observed when a proper treatment of
the TS imbalance is undertaken as evident looking at the
quality metrics returned by BRF, uKNN, uGB, and uXGB
(Table 3). More specifically, no significant difference is
observed between the SE and SP, ranging from 0.01 (BRF)
to 0.08 (uKNN). Furthermore, higher BA and AUC values

were also detected, with BRF returning the best performance
(BA = 0.73 and AUC = 0.78). As mentioned in the
introduction, building models of PLD-inducing potential has,
as a primary aim, that of directing the experimental efforts
toward safe (P−) molecules. Building on that, the prediction of
dangerous substances as safe should be avoided. In light of
that, we also focused our attention on the computed −LR
values. Notice that this quality metric is independent of the TS
data distribution and is able to provide an estimation of the
decrease in the probability of a compound being a P− with
respect to the initial condition (before querying the relative
classifier). Again, BRF (−LR = 0.37) returned the best
performance, followed by uGB (0.39), uXGB (0.44), and
uKNN (0.48), while significantly worse values were returned
by RF (0.84), KNN (0.70), GB (0.80), and XGB (0.63). In
summary, the performed 5-CV provided clear evidence that
resembling approaches are required to reach satisfactory
performances.
Validation. Aimed at selecting the top-performing

classifier, the models built using BRF, uGB, uXGB, and
uKNN were subjected to a validation using the VS previously
extracted from PLD-DB and comprising 112 compounds.
Notice that to judiciously evaluate the predictiveness of the
model in real-life scenarios, VS was deliberately left
imbalanced, and the performances were computed considering
only those compounds within the AD. As evident in Figure 2A,
the good performance observed in 5-CV is herein confirmed
for all the models, as indicated by the computed BA values ≈
0.80, AUC > 0.85, and very low −LR (ranging from 0.07 to
0.18). Importantly, acceptable differences were observed
between SE and SP, ranging from 0.20 to 0.32. Figure 2B
displays a radar plot constructed with the aim of selecting the
top-performing classifier. Taking as a whole, the obtained data
put forward BRF, whose ROC curve is displayed in Figure 2C,
as the model to be selected, being able to provide the best

Figure 2. Selection of the top-performing model was based on the performance obtained in validation. (A) Table reporting the quality metrics
returned by all the developed models: sensitivity (SE), specificity (SP), balanced accuracy (BA), area under the ROC (AUC), negative likelihood
ratio (−LR), positive likelihood ratio (+LR), Matthews correlation coefficient (MCC), number of true positives (TPs), false positives (FPs), true
negatives (TNs), and false negatives (FNs); (B) radar plot comparing the performance of the models; and (C) ROC curve derived from the
probability-based ranking returned by the selected classifier (BRF).
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AUC (0.90), BA (0.81), and MCC (0.50) values. It is
important to emphasize that we conducted an additional
analysis to assess the stability of the built models. This analysis
involved creating an additional set of 100 classifiers by using

different, randomly selected training sets (TS) and validation
sets (VS) while adhering to the data splitting methodology
outlined in the Materials and Methods Section. For each of
these models, we calculated key metrics, including BA, SE, and

Figure 3. Performance of the selected BRF model on external sets ES1 and ES2. (A) Table reporting the computed sensitivity (SE), specificity
(SP), balanced accuracy (BA), area under the ROC (AUC), negative likelihood ratio (−LR), positive likelihood ratio (+LR), Matthews correlation
coefficient (MCC), number of true positives (TPs), false positives (FPs), true negatives (TNs), and false negatives (FNs); (B, C) ROC curve
derived from the probability-based ranking returned by BRF on ES1 and ES2, respectively.

Figure 4. Example of the output page returned by the AMALPHI web platform.
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SP, and then examined their relative standard deviations to
gauge the stability of the classifiers. The obtained results
unequivocally demonstrate that all of the classifiers exhibit
robustness and independence from the TS and VS
composition (standard deviations ≤ 0.07). To further
challenge the BRF model, an additional validation with two
different external sets (ES1 and ES2) was performed. As
reported in Figure 3A, an acceptable balance between SE and
SP was observed as well as high values of BA (0.72 and 0.90 for
ES1 and ES2, respectively) and AUC (0.75 and 0.94,
respectively). This is also supported by the relative ROC
curves displayed in Figure 3B,C.

■ AMALPHI: A FREELY ACCESSIBLE WEB
PLATFORM

We made available the top-performing classifier, built using the
BRF algorithm, in a freely accessible web platform called
AMALPHI (A machine learning platform for predicting drug-
induced phospholipidosis�https://www.ba.ic.cnr.it/
softwareic/amalphiportal/). Following an approach already
employed for other web platforms developed by our group,31,32

the user can draw a 2D structure of her/his query molecule
using the JSME canvas applet49 or, alternatively, insert the
relative SMILES string directly into the provided text field.
Additionally, to facilitate the use of the platform for virtual
screening applications, the user can upload a .txt file containing
a list of SMILES strings. This can be achieved by clicking on
the “MASSIVE” button. Once the file is uploaded or the query
molecule is drawn, AMALPHI generates predictions regarding
the PLD inducer potential of each compound used as input.
The results are displayed as “YES” if the BRF model predicts
the query to be a PLD inducer and conversely as “NO” if it is
not. Notably, information on the reliability of the performed
predictions is also provided, based on the considered AD.
Finally, the user can download the produced output as .csv file.
It is worth noting that a link to download the predictions is
sent to the user’s registered email address. Additionally, the
“History” page maintains a record of all user executions,
preserving input SMILES files and their corresponding output.
Figure 4 shows an example of an output page generated by the
tool.

■ CONCLUSIONS
In an era where accurate prediction of pharmacological and
toxicological properties of organic molecules is becoming
fundamental to significantly expedite the drug discovery
process in both academia and industry, expensive and time-
consuming traditional approaches are increasingly giving way
to the use of computational technologies. In this regard, this
study focuses on the development of multiple machine learning
models capable of predicting the PLD-inducing potential,
employing different ML algorithms (RF, KNN, GB, and XGB).
Following data extraction from ChEMBL v30 and subsequent
analysis of experimental phospholipidosis data concerning 851
compounds, we applied rigorous data curation practices to
create PLD-DB comprising 545 compounds and used them to
build different PLD-inducing potential classifiers. The analysis
of the obtained validation performances in validation yields
similar values for all of the models trained using techniques
that consider data imbalance (BRF, uKNN, uGB, and uXGB),
among which the top-performing one was BRF, capable of
providing the best AUC (0.90), BA (0.81), and MCC (0.50).

Furthermore, external validation using two different external
sets (ES1 and ES2) returned high values of BA (0.72 and 0.9,
respectively) and AUC (0.75 and 0.94, respectively).
Collectively, these promising results led us to make the top-
performing classifier available through a user-friendly web
platform developed by our group and named AMALPHI
(https://www.ba.ic.cnr.it/softwareic/amalphiportal/). AMAL-
PHI is the first freely accessible tool capable of efficiently
predicting the PLD potential of drug candidates. It can assist
medicinal chemists in proactively identifying safe drug
candidates during the research and development of pharmaco-
logically active molecules and in prioritizing drugs with a low
probability of exhibiting false in vitro antiviral activity.
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