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Abstract

We deal with a degenerate model describing the dynamics of a population de-
pending on time, on age and on space. We assume that the degeneracy can
occur at the boundary or in the interior of the space domain and we focus on
null controllability problem. To this aim, we prove first Carleman estimates
for the associated adjoint problem, then, via cut off functions, we prove the

existence of a null control function localized in the interior of the space domain.

Resumé Nous traitons un modele dégénéré décrivant la dynamique d’une pop-
ulation en fonction du temps, de ’age et de l'espace. Nous supposons que la
dégénérescence peut se produire a la limite ou a I'intérieur du domaine spatial
et nous nous concentrons sur un probléme de contrélabilité a zéro. Dans ce
but, nous demontrons les premieres estimations de Carleman pour le probleme
adjoint associé, puis, via des fonctions de coupure, nous prouvons l’existence
d’une fonction de controle a zéro localisée a l'intérieur du domaine spatial.
Key words: population equations, degenerate equations, Carleman estimates,
observability inequalities.

2010 MSC: 35K65, 92D25, 93B05, 93B07

*Corresponding author
Email address: genni.fragnelli@uniba.it (Genni Fragnelli)

Preprint submitted to Journal of BTEX Templates July 28, 2020

https://doi.org/10.1016/j.matpur.2018.01.003
Journal de Mathématiques Pures et Appliquées, 115 (2018), 74-126



20

25

1. Introduction

We consider the following linear population model describing the dynamics

of a single species:

G G~ k(@)yse + plt a2y = f(Lae)xe i@,

y(t,a,1) =y(t,a,0) =0 on Qr, 4, W
y(0,a,2) = yo(a,x) in Qa,

y(t,0,x) = fOA B(a,z)y(t,a,z)da in Qr1,

in the domain @ := (0,7) x (0, A) x (0,1). Moreover, Qr 4 := (0,T) x (0, A),
Qa1 :=(0,4) x (0,1) and Q1 := (0,T) x (0,1). Here y(¢,a,x) is the distri-
bution of certain individuals of age a € (0, 4) at time ¢ € (0,7") and location
x € (0,1), while x,, is the characteristic function of w C (0,1), which is the
region where the control f acts; A is the maximal age of life, and 5 and p are
the natural fertility and the death rate, respectively. Thus, the formula fOA Byda
denotes the distribution of newborn individuals at time ¢ and location x. The
function k is the dispersion coefficient and we assume that it depends on the
space variable x and can degenerate at the boundary or in the interior of the
state space.

In the last centuries, population models have been widely investigated by
many authors from many points of view (see, for example, [9], [19], [21], [28],
[29], [34], [36], [37], [41], [42], [44], [45]). In particular, one of the most studied
problem has been the controllability of the system. Indeed, y can represent
the distribution of a demaging insect population or of a pest population (see, for
example, [35]), thus it is important to control it. For example in [35], where (/1)
models an insect growth, the control corresponds to a removal of individuals by
using pesticides.

However, in the cited papers, the function & is either a constant or a strictly
positive function depending on a. In such cases, it is well known from the gen-
eral theory that all nontrivial solutions of the corresponding system (commonly

named Lotka-McKendrick systems) are asymptotically exponentially growing
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or decaying, according to the size of a certain biological quantity (the so called
net reproduction rate), see [6] and also [29] for related results concerning time-
independent steady states.

In this paper we are not interested in large time controllability, i.e. asymp-
totic behavior of the solution of , but we want to address the problem of null
controllability at each fixed time T" > 0. More precisely, we will give sufficient
conditions so that, for all initial data yq in a suitable space, there exists a control

f that brings the solution y of at time T at zero, i.e.
y(T,a,z) =0

for all € (0,1) and all a in a suitable subdomain of (0, A).

Our study has obviosly many connections with related ones for the heat
equation. Let us recall that the null controllability for linear parabolic equations
has been extensively studied in the last years using Carleman inequalities and
duality argument, not only when k is a constant (see, for example, [38], [39]),
but also when k degenerates at the boundary of the space domain (see, for
example, [5], [I3]-[18], [23], [25]) or in the interior (see, for example, [8], [I1I,
[26], [27], [30]-[32]). As far as we know, the first controllability result for an
age population dynamics model is established in [4], where the authors proved
that a set of profiles is approximately reachable. Later, in [I] a local exact
controllability was proved. In particular, the authors showed that, if the initial
distribution is small enough, one can find a control that leads the population to
extinction (see also [3] and [7]). Null controllability is also studied for nonlinear
population dynamics models, see [3] and [43]: in the first paper the authors
studied the controllability of nonlinear diffusive dynamic populations when the
fertility and the mortality rates depend on the total population; in the second
one, the authors considered a nonlinear distribution of newborns of the form
F(fOA B(t,a,z)y(t,a,z)da). However, in all the previous papers the dispersion
coefficient k is a constant or a strictly positive function.

To our best knowledge, [2] is the first paper where the dispersion coefficient,

which depends on the space variable x, can degenerate. In particular, the au-
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thors assume that k degenerates at the boundary (for example k(z) = 2%, being
xz € (0,1) and « > 0). Using Carleman estimates for the adjoint problem, the
authors prove null controllability for under the condition T° > A. However,
this assumption is not realistic when A is too large. To overcome this problem
in [20], the authors used Carleman estimates and a fixed point method via the
Leray - Schauder Theorem. However, while in [2] and in [20], the degenerating
operator is in divergence form - shortly (Df) -, i.e. (k(2)ys)s, in this paper we
consider the degenerating operator in nondivergence form - shortly (NDf) - and
we allow the function k£ to degenerate not only at the boundary, but also in the
interior of the state space. Observe that, in the case of a boundary degeneracy,
we cannot derive the null controllabilility for by the one of the problems in
divergence form. Indeed, it is proved in [I3] that in this situation, i.e. when
the degeneracy is at the boundary of the domain, and when the functions are
independent of a (i.e. if we have the degenerate heat equation), the equation of
can be rewritten as

Ay
3¢~ R(@)ya)e + ke (@)ys + p(t, 2)y = f(t, 2)xe (2)
at the price of adding the drift term k,(z)y,. Such an addition has major
consequences: as described in [I5], degenerate equations of the form are well

posed in L?(0,1) under the structural assumption

ko(z) < CV/k(2),

for a strictly positive constant C. Imposing this condition on k., for k(z) = z?,
gives a >2. This necessary condition that ensures the well posedness of
makes it not null controllable (see [31] for the interior degeneracy). For this
reason, in this paper as in [13], [I4], [26], [27] or [31], we prove null controllability
for without deducing it by the previous results for the problem in divergence
form. Therefore, this paper complements [2]. Indeed, we do not require as in [2],
that T' > A, but T' < A (see Hypothesis . Clearly, this assumption is more
interesting, since it is reasonable to control the population in small times and

this is important if y represents, for example, a demaging insect population or a
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pest population. Moreover, while in [20] the authors used Carleman estimates
and a generalization of the Leray - Schauder fixed point Theorem and the multi-
valued theory, here we use only Carleman estimates for the non degenerate and
the degenerate problem, and a technique based on cut off functions, making
the proof slimmer and easier to read. Last but not the least, we underline
that in [2] and in [20] only the case of a boundary degeneracy is considered. If
the function £ in degenerates in the interior of (0,1) and the problem is in
divergence form, related results can be founded in [I0]. To our best knowledge,
as written before, this is the first paper where the problem in nondivergence form
is considered allowing the diffusion coeflicient to degenerate at the boundary or
in the interior of (0,1) (when y is independent of a we refer, for example, to
[31]). We underline that in [I0] the authors assume that, if 29 € (0,1) is the
degenerate point, the function k& € C[0,1] N C1([0,1] \ {x0}); moreover, they
require the existence of a constant M € [0, 1) such that (z — z)k’ < Mk a.e.
in [0,1]. In this paper, we consider a less regular function k and we allow the
constant M to approach 2, i.e. M € [0,2), considering the so-called strongly
degenerate case.

The paper is organized in the following way: in Section [2] we study the well
posedness of the problem in the case that the dispersion coefficient k£ degenerates
either at the boundary or in the interior of the state space. Section [3]is divided
into three subsections: in the first one we deduce a Carleman estimate for the
non degenerate problem in nondivergence form by a Carleman estimate for the
non degenerate problem in divergence form (for the reader’s convenience, we give
its proof in the Appendix); the second and the third subsections are devoted
to study Carleman estimates in the case that k& degenerates at the boundary
of the state space or in its interior, respectively. Finally, in Section [4] we prove
null controllability via a null controllability result for an intermediate system,
observality inequalities and cut off functions.

A final comment on the notation: by ¢ or C' we shall denote universal strictly

positive constants, which are allowed to vary from line to line.
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2. Well posedness result

To study well posedness we assume that the dispersion coefficient k satisfies

one of the following assumptions:

Hypotheses 2.1. Boundary degenerate case (BD):
ke C([0,1]) k>0in (0,1) and k(0) =0 or k(1) = 0.

Hypotheses 2.2. Interior weakly degenerate case (IWD): There exists
zo € (0,1) such that k(xzg) =0, k >0 on [0,1]\ {z0}, k € WH1(0,1) and there
exists M € (0,1) such that (x — xg)k’ < Mk a.e. in [0,1].

Hypotheses 2.3. Interior strongly degenerate case (ISD): There exists
zo € (0,1) such that k(xo) =0, k >0 on [0,1]\ {zo}, k € W1>°(0,1) and there
exists M € [1,2) such that (x — xzo)k’ < Mk a.e. in [0,1].

Thus, we assume that the function k£ can degenerate at the boundary of the
domain or at an interior point; for example, as k one can consider k(z) = z?,

k(z) = (1 —x) or k(z) = |z — x|, a > 0.
On the rates p and 5 we assume:

Hypotheses 2.4. The functions p and 8 are such that

e3€C(Qan) and >0 1in Qa,

e eC(Q) and p >0 in Q.

(3)

To prove well posedness of ([I]), we introduce, as in [13] or in [14], the following
weighted Lebesgue and Hilbert spaces

1
1
L3 (0,1) := {u € L*(0,1) ’/ uzgdx < oo} ,
k
0

H% 0,1) := LQ% (0,1)N Hy(0,1) (4)

and

H3(0,1) = {u € H1(0,1) | kuse € L3 (0, 1)}, (5)
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in the boundary degenerate case; while in the interior degenerate case, as in

[31], we consider, in place of H% (0,1), the space
H:, (0,1) = {u e HL(0,1)|u’ € HY(0, 1)},
that can be written in a more appealing way as
H3, (0,1) = {u € H1(0,1) |’ € H'(0,1) and ku" € L3 (0, 1)}.

In every case, we consider the following norms

1
1
HWi:/”wfw,
% 0 k

1 1
1
lull? 1 == | v’—de+ [ uidx
1, % k x
0 0

1
ol =l + [ b

Observe that, if k is nondegenerate, the spaces LQ% (0,1), H% (0,1) and H% (0,1)
(or H%)IO(O,l)) coincide, respectively, with L2(0,1), H}(0,1) and H?(0,1) N
H0,1).

Denoting by ’Hé (0,1) the space Hi (0,1) or H%xo (0,1), we have, as in [13],

and

[14] or [31], that the operator
Aot = kg, D(Ap) := 7—[2% (0,1)

is self-adjoint, nonpositive and generates an analytic contraction semigroup of

angle 7/2 on the space L2 (0,1).
k

du
Now, setting A,u := —, we have that

da
Au = Au — Agu,

for

ou

u€ D(A) = {u € L?(0,A; D(Ap)) : € LQ(O,A;H% (0,1)),u(0,2) = /OA B(a,x)u(a,x)da} ,

" da



generates a strongly continuous semigroup on L?(0, A) x LZ (0, 1) (see also [7]).
k

Moreover, the operator B(t) defined as
B(t)u = _:U’(t7 a, x)ua

for u € D(A), can be seen as a bounded perturbation of A (see, for example,
[B]); thus also (A + B(t), D(A)) generates a strongly continuous semigroup.

150 Setting LQ% (Q) :== L*(Qr.4) x Lé (0,1) and LQ% (Qa1) = L*0,A)x Lé (0,1),
the following well posedness result holds (see [22], [40]):

Theorem 2.1. Assume that Hypotheses and one among Hypothesis -
are satisfied. For all f € L3 (Q) and yo € L% (Qa,1), the system admits
k k

a unique solutiony € U := C([0,T]; L3 (Qa,1)))NL*(0,T; H*(0, A) x H1 (0,1)).
k k
s In addition, if f =0, uwe C'([0,T]; L3 (Qan)).
k
3. Carleman estimates

In this section we show Carleman estimates for the following system:

0z 0z

E + % + k(x)Z,L‘L - ILL(t,CL.’L')Z - fa (ta a,l‘) € Q7

z(t,a,0) = z(t,a,1) = 0, (t,a) € Qr,a, (6)
2(t, A, x) =0, (t,x) € Qr,

where the function k is non degenerate (this will be crucial for the following) or

satisfies one of Hypothesis or

wo  Carleman inequalities in the non degenerate case. First of all assume that k is

non degenerate. Then, the following estimate holds:

Theorem 3.1. Letz € V := L*(Qr,4; H*(0,1)NHJ (0, 1)) NH (Qr,4; H} (0,1))
be the solution of (6) where f € L*(Q) and k € C*([0,1]) is a strictly positive
function. Then, there exist two strictly positive constants C and sy, such that,

s for any s > sg, z satisfies the estimate

T A
/ (80322 + 5622)e** P dudadt < C(/ fre*®dadadt — sn/ / [ke**®¢(2,)?] i;; dadt).
Q Q o Jo
(7)
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Here the functions ¢ and ® are defined as follows

1
t4(T — t)4a4’ (8)

d(a,t,z) = O(t,a)¥(zx), W(x)=e® —2lolle

(t,a,z) = O(t,a)e" "), O(t,a) =

(t,a,x2) € Q, k>0 and o(x) := szl ﬁdt, where 0 = ||k'[| oo (0,1)-

The proof of the previous result is based on the next Carleman estimate

which is proved in the Appendix.

Theorem 3.2. Let z € V be the solution of
0z 0z

a + % + (k(x)zr)r - ,u(ta a,a?)z = fv (t,SC, a) € Qa
2(t,a,0) = z(t,a,1) = 0, (t,a) € Qr.a, )
z(t, A,z) =0, (t,x) € Qra,

where f and k are as in the previous theorem. Then, there exist two strictly

positive constants C and sqg, such that, for any s > sg, z satisfies the estimate

T A
/ (36322 + sp22)e?* P dwdadt < o( / F2e*®dzdadt — sk / / (ke (2,)2] ", dadt),
Q Q o Jo

(10)
with ¢ and ® defined as in .
PRrROOF (PROOF OF THEOREM [3.1]). Rewrite the equation of (6] as % + % +
a

(k(2)2z)e — u(t,a,z)z = f, where f := f + k’z,. Then, applying Theorem

there exist two strictly positive constants C' and sg > 0, such that, for all s > s,

T A
/ (s3632% 4 s¢22)e** P dxdadt < C’(/ f2e?*®dadadt — sm/ / [kezs(bqﬁ(zw)ﬂ z;(l] dadt).
Q Q o Jo

(11)
Using the definition of f, the term fQ 22522 drdadt can be estimated in the

following way

/f2625q’dxdadt§2/ f262sq’d:ndadt+2||k’|\2Lm(071)/ e?? (2,)?dzdadt
Q Q Q

<2 / Fre*®dadadt + 2|k ||} < o1y / 0e"7¢*® (z,) drdadt,
Q Q
(12)
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7\ 8
where ¢ := A* maxo ) (t(T —t))* = A* (2> . Thus, by and ([12), one has

/ (s3¢322 + spz2 — 2||k’||2Lm(0’1)c¢z§,> e?*®dxdadt
Q

T A
<C (/ fre*®dadadt — sm/ / [ke**®¢(2,)?] z;(l) dadt) .
Q o Jo

Now, let s; > 0 be such that %1 > 2||k:’||2Loo(0,1)c. Then, for all s > s

/ (sgi)zi - 2||k’||2Loo(071)chz§> e***drdadt > f/ p22e** dxdadt.
Q 2 Jq
Hence the claim follows for all s > max{sg, $1}.

Actually we can prove Theorem [3.1] directly, but we have to assume on k more
regularity, for example k € C?[0,1] or, at least, k € W2°°(0,1). Indeed, in this

case, we have to estimate an integral containing the term (k®,;),.

Remark 3.1. The previous Theorems still hold under the weaker assumption
k € W1°°(0,1) without any additional assumption.
On the other hand, if we require k € W11(0,1) then we have to add the following
hypothesis: there exist two functions g € L'(0,1), h € WH>(0,1) and two
strictly positive constants go, ho such that g(x) > go and

K (x)

_2\/]{?(37)

in the divergence case,

</m1 g(t)dt + ho) + \/Wx)g(as) =h(z) for a.e. x €]0,1],

K'(x)
2/k(x)

in the nondivergence one.

In this case, i.e. if k € WH1(0,1), the function ¥ in becomes

= L 1 s)ds " _ho —
U(z):= [/0 \/@/t g(s)d dtJr/O mdt] c (13)

where r and ¢ are suitable strictly positive functions.

(/: g(t)dt + hO) +Vk(z)g(z) = b(z) for a.e.x €[0,1],

Thus we have the next theorem

10



Hypotheses 3.1.

(a1) k€ WH1(0,1), and there exist two functions g € L'(0,1), h € W1°(0,1)
and two strictly positive constants go, ho such that g(x) > go and

K (x)

_2\/@ </ g(t)dt + bo) +Vk(zx)g(z) = b(z) for a.e.x €[0,1],

200 in the (Df) case,
K'(x)

2\/k(x) (/ alt)dt + f)o) + VE(z)g(z) = h(z) for a.e. x € [0,1],

in the (NDf) one, or

(az) k€ WH=(0,1).
Define ®(t,a,x), ¢(t,a,z), O(t,a) and o as in and

—r S $)ds “ o B £ () holds
W) = [/ i st | k(t)dtl . if (ar) holds,

ro(x) _

e , if (az) holds,
(14)
20s where r > 0 and ¢ > 0 is chosen in the second case in such a way that

max[oyl] U < 0.

Theorem 3.3. Assume that Hypothesis[3.1] is satisfied. Let z € V be the solu-
tion of @ or of @D where f € L?(Q). Then, there exist two strictly positive

constants C and sg, such that, for any s > sg, z satisfies the estimate

/ (50(2,)? + s°0%2%) e*Pdzdadt < C (/ f2e***drdadt — (B.T.)) ,
Q Q

(15)
20 where

T=

s fOT fOA o(t) [\/E (frl g(r)dr + f)o) (Zx)ZGZSqD} ;dadt, in the (NDf),

(B.T) = o

Tr=

sr fOT fOA [k?’/Qer‘b@ (fxl g(r)dr + f)o) (zz)g} :dadt, in the (Df),

Tr=

11
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if (ay) holds and

/ (s0€" (2,)? + 5037 2?) e***dadadt < C ( / f2e?*®dadadt — (B.T.)) ,
Q Q

(16)
where (B.T.) := sr fOT fOA [kegs‘b@e"”(zm)Q]zzé dadt, if (az) is in force.

(See the Appendix for the proof.)

Carleman inequalities when the degeneracy is at the boundary. In this subsec-
tion we will consider the case when k£(0) = 0 or k(1) = 0. In both cases we
assume that p satisfies . On the other hand, on k& we make different assump-

tions:

Hypotheses 3.2. The function k € C°[0,1](C?%(0,1] is such that k(0) = 0,
k>0 on (0,1] and there exist € € (0,1] and M € (0,2) such that the function

kg s Tk () an ks () oo
i € L0, T < d(ik(m) >zeL 0,9).

Hypotheses 3.3. The function k € C°[0,1](C?[0,1) is such that k(1) = 0,
k>0 on (0,1) and there exist € € (0,1] and M € (0,2) such that the function

(z — Dka cof1 (z — Dkz(z)
ww S LT-e ) s

Now, let us introduce the weight functions

z — 1)kz(x)

< M and (( ) >x €L®(1—¢,1).

e(t,a,x) := O, a)(p(x) — 2||pllL>=(0,1)), (17)
and
@(t,a,z) == O(t,a)(p(x) = 2[PllL>=(0,1)), (18)
o _ [T Y Ry ) e [ YL R
Where®1sasm,px.—/—eydyandpx.—/ie ¥= dy,
8. #() o k() (@) o k()

with R > 0, if k satisfies Hypothesis [3:2] or Hypothesis [3.3] respectively. Ob-
serve that o(t,a,x), p(t,a,2) < 0 for all (t,z) € Q and ¢(t,q,2),p(t,a,x) —

—oo ast — 0%, T~ or a — 0F. The following estimates hold:

Theorem 3.4. Assume that Hypothesis is satisfied for some ¢ € (0,1].

Then, there exist two strictly positive constants C' and sg such that every solu-

tion v of @ n

Vl = L2 (QT,A; Hé (07 1)) n Hl (QT,A; H% (0’ 1))

12



satisfies, for all s > sy,
2s¢p
/ (5@1}5 + 83@3(3)202) e**?drdadt < C/ 25— dadadt
Q k QK

T rA
+s C’/ / O(t,a) {xvge%“"} (t,a,1)dadt.
o Jo

Theorem 3.5. Assume that Hypothesis is satisfied for some ¢ € (0,1].
25 Then, there exist two strictly positive constants C' and sy such that every solu-
tion v of @ in V1 satisfies, for all s > s,

2s¢@

/ (s@vi + 5363(177_1)202) 2P dxdadt < C/ f2 ¢ dxdadt
Q k @k

+sC /0 ’ /0 A@(t,a) [(1 - x)vge%@] (t,a,0)dadt.

Clearly the previous Carleman estimates hold for every function v that satisfies

(6) in (0,7) x (0, A) x (0, B) or (0,T) x (0, A) x (B, 1) as long as (0, 1) is substi-

tuted by (0, B) or (B,1) and k satisfies Hypothesis [3.2] in (0, B) or Hypothesis
240 in (B, 1), respectively.

Remark 3.2. Observe that Theorems and improve [13, Theorems 3.3.
and 3.4] and [Tj], Theorem 3 and 4]. Indeed, here we assume that k is of class
C?(0,1] (or C?[0,1)) and not C3(0,1] (or C3[0,1)) as therein, where y was

independent of a.
245 In the following, we will prove only Theorem [3.4] since the proof of Theorem

3.5 is analogous.

Proof of Theorem[3.]} As a first step assume that p = 0.
In order to prove Theorem we define, for s > 0, the function

w(t,a,x) = e3*H40) (¢, a, )

where v is the solution of @ in Vi; observe that, since v € V1, w € V;. Clearly,

13



20 one has that w satisfies

(e7%Pw)s + (e7*Pw)y + k(x) (e *Pw) e = f(t,a,2), (t,2) €Q,
w(0,a,z) = w(T,a,z) =0, (a,x) € Qa1,

(19)
w(t, A, x) = w(t,0,z) =0, (t,x) € Qr,
w(t,a,0) = w(t,a,1) =0, (t,a) € Qr,a.

Defining Lw := wy + wq + kwy, and Lyw := e%¥ L(e*?w), the equation of

can be recast as follows
Liw=Lfw+ L;w=e*?f,

where

LEw = kwye — s(0; + 0a)w + s2ko2w,
LTw = wy +wg — 28kpaw, — skpgpw.

»s  Moreover, set < u,v >r2 (q) = / uv%dmdadt, one has
% Q
”L:_wHii(Q) + ”Ls_w”%’i(Q) +2 < Liw, Liw Z13 (@ ||f€wH%i(Q)' (20)
k k k

Now, we compute the inner product < L¥w, L;w >12(Q) whose first expression
3
is given in the following lemma

Lemma 3.1. Assume Hypothesis (3.2l The following identity holds

< Lfw,L;w >12Q) = s/ (kee + (kpe)e ) widrdadt
* Q
Q

252/Qg0mgaztw2d:cdadt+;/@szdxdadt {D.T.}

+s/ (kprs)zwwydrdadt
T

$ra

+s
o k

w?dzdadt — 282/ (pwtpmwgdxdadt
Q
(21)

14



_ ;/OA /01 [wﬂjdxda+/07“ /OA {ww(wt—&—wa)};dadt
-5 / ) / ' [’f@xwi];dadt
o Jo

T oA 1 1 A rl i T
B.T. _ - 2,2 _ Pt T Pay 2
{ } 5/0 /o {k‘tpmwwgg}odadt—l— 2/0 /0 {(s Yo s Jw ]deda

T A 1
- 3/ / [(Skai — 5Pz Pt — S%%)wﬂ dadt
0 0 0

1T 1 (T + o
—5/0 /o [wi]?dfdt+§/o /0 [(szwi—s%)wﬂgd:pdt.

%0 PROOF. It results, integrating by parts,

< ij,LS_w >12 Q)T I + 1o+ Is + 1y,
*

where
I, = / Wao (W — 28k@w, — Sk w)dxdadt,
Q
1
I, = / —( — spw + Sngoiw) (wy — 28kppw, — skpy,w)drdadt,
o k
I3 = / (Wez — SWU} + szwiw)wadm‘dadt
Q
and

I, = —s/ %(wt — 2skpyw, — skpyw)drdadt.
Q

15



s By several integrations by parts in space and in time (see [13] or [14]), we get

L+ 1= s/ (k@us + (kpe)z)widrdadt
Q
+ 33/ 02 (kuy + (kps) e )widrdadt
Q
—2s° / Yopmwidrdadt + > / Pt 2 dedadt
Q 2 Jq

k

—|—3/ (kpzs)zwwdrdadt
Qr

1 (A 1 T T A 1
_ ,/ / [wg} dxda+/ / [wzwt} dadt
2Jo Jo 0 o Jo 0
T A L1
— s/ / {agpzwx}odadt
T
— s/ / agomum)m dadt—l— / / s cpx )wﬂod:ﬂda
1
- s/ / [(SQagoi - sgomgot)wﬂ dadt.
o Jo 0

Next, we compute I3 and Iy

T A
I3 = 7/ wmwzdazdadtJr/ / [wzwa]édadt
Q 0o Jo

+/ (s%¢2 — s 2t ; wa)wwadxdadt

1
- —7/ / dxdt+/ / wmwa dadt—l— / / [(sgwi—s%)wﬂ?da@dt
0

+2/(—s 02 +s Z‘p") w2dzdadt

= —7/ / dacdt +/ / wzwa dadt + - / / - s%)wﬂ?dmdt

—&—f/ sDaauﬂdacdaalt—l—i/ @wzdxdadt—SQ/ goxwmdexdadt.
2 ) k 2 ) k o

(22)

16
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On the other hand

Iy = —s/ @ak dzdadt + 25> / @mwawwxdxdadt—l—s?/ gpagomw2dxdadt
Q Q

— —7/ ia( 2)tdasoiadﬁ—i—SQ/ <p$<pa(w2)wdxdadt+52/ VaPrew drdadt
Q Q

/ Pat 2d:caladtfs2/(gamgaa)gcwzdxdaaltJr52/ VaPezwidrdadt
Q Q

T (A .
— 7/ / w2 d:cda+ 52/ / [@xwawz]odadt
o Jo

= SD];” w3dzdadt — s /gpmgoamw2dmdadt

T (A )
— f/ / w2 dxda+52/ / [cpxgoan]Odadt.
o Jo

Adding - , follows immediately.

The next lemma holds.

Lemma 3.2. Assume Hypothesis . The boundary terms in become

(BT} = —sc® /0 ! /O * ot aye? (t,a. 1)dadt. (25)

The proof is based on the next result:

2l
Lemma 3.3. For ally > M the map x % is nondecreasing in (0,1] so that

=0 for ally > M.

. 7
lim, o —

k

PrOOF (PROOF OF LEMMA [3.2)). Using the definition of ¢ and [I3] Lemma

17



2 3.9], the boundary terms of < Lfw,L;w >12 (@) become
3

{B T} —se / / ot t a,l dadt+/ / wwwa] dadt
1
— f/ / w2 da:da—l—sz/ / <p$<paw2}odadt
77/ / d:z:dtff/ / (2w 2 dadt
= —se / / Ot t a,1)dadt — f/ / dxdt+/ / wzwa dadt
—2[lp ||Loo 0,1) —-2[lp ||L°° 0,1)
- f/ / 3 w? d da — / / 3 w} dxdt
2
2 [ [ [00u L) ~ 20 s o)e™ ]
o Jo 0

Since w € V1, w(0,a, ), w(T,a,z), w,(0,a,z), w,(T,a,x), w(t,0,x), w(t, A, x)

and fOT fol [wgﬂ g‘da:dt are well defined; thus, using the boundary conditions and

the definition of w itself, we get

—2 .
// A dvdt = // Ip Jlz=( “)w] dada
k 0
)—2 - A
/ / @ P Ilx ©.1) wﬂ dzdt = 0.
k 0

Moreover, since w € V, we have that w,(¢,a,0) and w,(¢,a,1) make sense.

20 Moreover, also wg(t,a,0) and wy(t,a,1) are well defined, since w(t,a,-) €
H?2(0,1). Thus fo fo [wywa| =) dadt is well defined and actually equals 0. In-
k
deed, by the boundary conditions, we find

x x 1/2
waltan)| < [ |wam<t,a,y>|dy<¢:z( / |waz<t7a,y>|2dy) S0
0 0

as ¢ — 0, the integral being finite. Now, we consider the term

T A X 2 1
|| [00uf o)~ 21 limon)e*u?] dadt.
o Jo 0

Since w(t,a,1) =0,
T z Raz? 2
/ / {@@aE(p(m) —2||p [[zoe(0,1))e™" w ](t,a, 1)dadt = 0.
o Jo

18



285

290

295

Moreover, by Holder inequality, w?(t,a,z) < x/ w?(t,a,y)dy; hence, by
0
Lemma [3.3] one has
x z? r
O(t.0Buta) ¢ w?ta.n)| < Ota)BL(t )l [ udtay)dy 0.
k k(z) Jo

as £ — 0. Thus

X

T A
25°||p ||L°<>(0,1)/ / O(t,a)04(t,a) {GRI i wﬂ (t,a,0)dadt
o Jo

T (A
o 2 Rz> T 9 _
= 251(1)25 lp ||Loo(071)/0 /0 O(t,a)O4(t,a) [e o W ] (t,a,€)dadt = 0.

M

Finally, using the fact that the function x — o is nondecreasing, one has that

T A
/0 /0 O(t,a)0,(t,a) [eRx2 %p(m)wz} (t,a,0)dadt = 0.

Indeed, if M <1,
2 2 2 x
Ot )04 (t,)e™” Zp(a)u? (t,0,2)| < O(t,0)Ou(t, @)le” (,j(;)) [ wtttamiy o,
0

asz — 0. If M > 1,

o T M+l o1
‘@(t,a)@a(t,a)eRw —p(x)wQ(t,a,x)‘ < O(t,)|Ou(t, a) R T —w(t, a,z) / ——dy
k k2(x) o Y
X
= O(t,a)|O4(t,a)le () w(t,a, ).

4

< R_T Yo
<o(ale.tale G [ ultayd 0.

as ¢ — 0. Hence the thesis.
The crucial step is to prove now the following estimate.

Lemma 3.4. Assume Hypothesis[3.2l There exist two strictly positive constants
C' and sg such that, for all s > sg, all solutions w of satisfy the following

estimate

2
sC / Ow2dzdadt + s*C / 93(5) w?dzdadt < {D.T.}.
Q Q@ k

19



PROOF. The distributed terms of < L}w,L;w >12 (@), using the definition of
3
p, take the form
ks 2\ Rz?, 2
(D1} = s [ 62— % +4Ra? )" wldedadt
Q

+ 53 /Q o3 (%)2 (2 — x—]]zx + 4Rx2>e3R”2w2dxdadt

2
252/@@@t(z) eZRzQMQdIdadt+;/Q®ktt(p2||p|Loc(071)>w2d$dadt

2 4
+ S/ (C] <6RI {1 + 2Rx — xk}> wwydxdadt
Q x

S ®aa
3 [ 2o (= gl o doduc
Q

2 k
+ 8/ Ota (p —2||pll Lo (0 1))w2d1‘dadt - 252/ 00, (E)z 2R 2 drdadt.
Q k ’ Q k
(26)
Now, observe that there exists ¢ > 0 such that
OF<OIf0<u<y
064 < ¢O7,[08,] < &7, (27)

|O4a| < O3, |©4] < ¢©? and [O1a] < 03,

Hence, proceeding as in the proof of [I3] Lemma 3.8] or of [31, Lemma 4.3], one

20
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305

can deduce

ks
s/ @(2 - T +4Rz2>eRI2w§dxdadt
0 k

2 k.
+ 3 / o3 (f) (2 _ + 4R(£2)63R$2 w3dzdadt
Q

k k
2 ) . e

_232/ oo ; e w2d$dad2€+7/ —= P —2[|pllz=(0,1) w?dzdadt

Q (k‘) 5 0 ’ ( , )

s ®aa 9

+2/Q k (p_2||p||L°°(0,1))w dxdadt

@ta 2 2 z\?2 2Rz?, 2
+S/Q A (p—2||P||L<>°(o,1))w dxdadt — 2s Q@G)a (k) e wdzdadt

2
> SC/ ®wgdxdadt+s30/ 93(£) w?dzdadt
Q @ \k

3

5 3
- 529 o3 (E) w?dzdadt — sg Ew?alxdadt,
4 Jo k 4 Jo k
(28)
where C' > 0 denotes some universal strictly positive constant which may vary
from line to line.
k/
Now, consider the term / ] (eR””2 [1 + 2Rx — xk]> wwzdzdadt. Set-
Q
ting ’
R K
h:=e™ {I—I—ZRx—xk]

and for € > 0, it results

1
s/ @b’wwwdzdadt‘ < 75/ @|h’\2w2dxdadt+6s/ O(w,)*dxdadt
Q ¢ Ja Q (29)

1 2
< Esc||f)’||%oo(071)||k:||Loo(071)/Q@gUI;dxdadtJr{-:s/Q@(wm)dedadt.

As in [I3], one has, for v > 0,

3 2 3 3
/ iw%lxdaahﬁ :/ (1@2 (§> wz) (792 w2> dxdadt
Q k Q\7 x

k
1 2 o
< - / 0 (%) widadadt + / — wdedadt.

By Hardy’s inequality one has

o3 1 2
/ 2% w2dedadt < f/ o2 (f) dexdadt+70/ Ow?dxdadt, (30)
Q k Vo Nk Q
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315

320

for a strictly positive constant C.

Thus, for sy large enough and ~ small enough, by , and , the

thesis follows.

As a consequence of Lemmas and we have

Proposition 3.1. Assume Hypothesis[3.2| There exist two strictly positive con-
stants C' and sg such that, for all s > sqg, all solutions w of in Vq satisfy

2 2s T A
/s@w§+s3@3 (f) w2dzdadt < C /f2 i d:rdadtJrs/ / O(t,a)w?(t,a, 1)dadt | .
k Q k o Jo

Q
Recalling the definition of w, we have v = e™*?w and v, = (w; — s w)e .

Thus, Theorem follows immediately by Proposition when u = 0.

Now, we assume that p # 0.
To complete the proof of Theorem we consider the function f = f + pv.
Hence, there are two strictly positive constants C' and sy such that, for all

s > sq, the following inequality holds

o e2s¥
/ (561}% + 5393(§)202) e2*?dedadt < C/ f2e— dzxdadt
Q k Q" K

T (A
+s C’/ / O(t,a) [xvgezs“"] (t,a,1)dadt.
o Jo

(31)
On the other hand, we have
2s¢p 2s¢ 250
— 5 € , € , , e
/Q|f| ’ dxdadtSQ(/Qm B dxdadt—i—”,u”Loo(Q)/Qv : dxdadt).
(32)

Now, applying Hardy-Poincaré inequality to the function v := e*¢v, we obtain

2sp 2 2.2 2
/ 02~ dxdadt = / Y dwdadt = / T dvdadt < C | L dudadt

2
< C/ (e*?v)2dadadt < C/ ezswvgd:ﬂdadt—i—Cs?/ 02%e? (E) v?dxdadt.
Q Q Q k

Using this last inequality in , it follows

_ 2s5¢ 2sp
/ |f[?5— dedadt <2 / |f?5— dedadt + C / 25202 dydadt
N @ @ (33)

2
+082/ O2e25¢ (%) v2dadadt.
Q

22
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335

Substituting in 7 one can conclude

2 2s¢p
/ (s@vi + 33@3(5) v2) e**?drdadt < C(/ |fI?-5£— dadadt
Q k @ F

Q
This completes the proof of Theorem

Carleman inequalities when the degeneracy is in the interior. Now, we prove
Carleman inequalities for @ when k has an interior degeneracy point. In par-

ticular, on k we assume

Hypotheses 3.4. The function k satisfies Hypothesis 2.2] or Hypothesis [2.3]

Moreowver,
(x — xo)K' (x)
k(x)
and, if M > 1, there exists a constant ¥ € (0, M] such that the function

e Whe(0,1),

k s monincreasing on the left of x = xg,
. (34)

|z — zo]? . . .
is nondecreasing on the right of T = xg.

As before, we introduce the function T'(¢,a,z) := O(t,a)vy(x), where © is
defined as in and
x
_ Y =20 _R(y-a0)® )

x.—d/iey"d—d, 35
v(x) 1(@U ) y — da (35)

(1 _ Z,0)2€R(1—z0)2 xgeng
2-K)k(1) 7 (2-K)k(0)

with R > 0, dy > max{ } and d; > 0. Also in

this case we have

—dydy <7(z) <0 for every z € [0, 1].

Theorem 3.6. Assume Hypothesis|3.4, Then, there exist two strictly positive

constants C and so such that every solution v of @ n

Va = L?(Qras HE , (0,1) N H' (Qr.a: HL(0,1)) (36)

23

) T A
+ /eQS‘pvidxdadt + 5? /@2625“’ (E) v dadadt + S/ / O(t,a) [mvie%“"} (t a, l)dadt).
Q k o Jo
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350

satisfies

2
/ (S@(Uz)2 + 5°0° (xkxo> 112) e**Udxdadt
Q

2sT T A -~
gc( / 72< —dedadt + sd, / / [@eQSF(:E—zo)(vx)zdadt]i:;dadt>
Q o Jo
(37)

for all s > sg, where dy is the constant of .

Remark 3.3. Observe that Theorem is the same as [31, Theorem 4.2].

However, here we assume that k satisfies only if M > 1, while in [F1]
1

condition 1s required if M > 3 Thus, also in this situation, we improve

[31, Theorem 4.2] when y is independent of a.

Proof of Theorem[3.6] The proof of Theorem [3.6] follows the ideas of the one of
[31, Theorem 4.2] or Theorem As before, we consider, first of all, the case

when g = 0: for every s > 0 consider the function
w(t,a,x) := esr(t’“’m)v(t, a,x),

where v is any solution of @ in Vs, so that also w € Vs, since I' < 0. More-
over, w satisfies and Lemma still holds. We underline the fact that all
integrals and integrations by parts are justified by the definition of D(A) and
the choice of T", while before they were guaranteed by the choice of Dirichlet
conditions at x = 0 or x = 1, i.e. where the operator degenerates. Thus we start
with the analogue of Lemma [3.4] in the weakly and in the strongly degenerate

cases, which now gives the following estimate:

Lemma 3.5. Assume Hypothesis[3.4 Then there exists a strictly positive con-

24



s stant so such that for all s > sg the distributed terms of satisfy the estimate

s / (kT pe + (ET2)2 ) (wy ) dadadt + s* / (T2)? (kT 4y + (k). )w?dzdadt
Q Q

—232/ FxFEthdxdadt—Ff/ &deajdadt—&—s/(ka)mwwxdxdadt
Q 2Jq k Q

Faa r a
+§/ w2d:vdadt+s/ L wzdmdadtf%z/ I,T,aw?dzdadt
2)q k Q K Q

2
> Cs/ O(wy ) dxdadt + 053/ o3 (M)) w?dzdadt,
Q Q k
for a universal strictly positive constant C'.

1
Proor. Using the definition of I', the distributed terms of/ —LTwL; wdrdadt

ok
take the form

;/ %'yuﬂdxdadt—lg/ @@t(v’)2w2dxdadt—282/ 00, (Y)*w?dzdadt
Q Q Q

{(D.T.}, { + s/ O2kY" + K'v)(wy)?dzdadt + s3 / O3 (2ky" + K'+)(v)2w?dxdadt
Q Q

+s/ O(kv") ww,drdadt.
Q

Because of the choice of v(x), one has

D)y () () () = dly eFle—w0)? 2R = W (@)@ = w0) + AB(x — 20)k(z)

k(x)
0 As in [31], by Hypothesis or we immediately find
— ok
2—%—}—4]%(9:—:50)2 >2-M ae xz€][0,1],

for every R > 0. Thus, using the fact that eR@=20)" is hounded and bounded

away from 0 in [0, 1], the distributed terms satisfy the estimate

r — X

S @tt +@aa
DT}, > = _—
gz [ 2

2
- 320/ 100, (”3 — :170> wdzdadt
o k

2
+sC / O(w,) dzdadt + s3C / o3 (x_kxo> w2dzdadt
Q Q

2
yw?dzdadt — SQC/ |©6;| ( ) w?dzdadt
Q

+s/ O (kv ww,drdadt.
Q

25



By , we conclude that, for s large enough,

2
SQC/ (ClCARICISH)) <9c — xo) w?dzdadt < 0032/
Q k 0

3 _ 2
<& / 0% (129 w2dzdadt.
8" Jo k

2
e3 (m kx()) w?dzdadt

Again as in [31], by we get

f/ Myuﬂdmdadt
2 Jg k

2
< s@c/ @3/2w—dxdadt
2 0 k
c 2
< —s | O(w)*dzdadt (39)
4 Jo

3 _ 2
+%33/ o3 (xk”“’o> w?dzdadt.
Q

s Now, we consider the last term in , ie. sz O(k~") ww,dxdadt. By Hy-
pothesis and using the definition of v, as in [31], we get

1"\ c 2 303 3 (2L To ? 2
s | Ok wwzdrdadt| < —s [ O(w,)*dxdadt + s°— [ © wdzdadt.
Q 1 Jo 8 Jo k

Summing up, we obtain

3 _ 2
{D.T.}, > —%s/ O(w,)2dzdadt — %53/ o3 (mkxo> w2dzdadt
Q Q

3 _ 2
—0—53/ 03 r— %o w?dzdadt
8 Jo k
2
+sC / O(w,)?drdadt + s3C / o3 <x_kx°) w2dzdadt
Q Q

¢ 2 C? 4 3 2
— —s | O(wy)*drdadt — —s O° (wy)“drdadt
1 g 8 Jo

3 . 2
_ g / O(w, ) drdadt + & / o3 (m xo) w2dzdadt.
2% J, 2 J, k

As for the boundary terms, similarly to Lemma we have the following

result, whose proof parallels the one of Lemma and is thus omitted (see also
s [31, Lemma 4.4)).

Lemma 3.6. Assume Hypothesis . Then the boundary terms in reduce
to

=

T A , 1
—sd1/ / @(t)a[(:c — zg)eli@=wo) (wx)Q] dadt.
o Jo 0

r=
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By Lemmas[3.5] and [3.6] there exist C' > 0 and sy > 0 such that all solutions
w of satisfy, for all s > s,

1
/ —LfwL; wdxdadt > C’S/ O(w,)*dzdadt
Qk Q

2
+ 088 / o3 (T) w?dzdadt
Q

— sd; /OT /OA O(t,a) [(x - :co)eR(xfm")z(wx)z} :Z;dadt.
(40)

ss  Thus, for all s > sg, we obtain the next Carleman inequality for w:

2
/@ Wy) da:dadt+s /@3 (kxo> w?dzdadt
2 =1
<C (/ f2 / / (z — ao)ef@—m0) (wz)ﬂ » dadt> .

Theorem follows recalling the definition of w.

If 1 # 0, we can proceed as in the proof of Theorem [3.4] obtaining the thesis.

4. Observability and controllability of linear equations

In this section we will prove, as a consequence of the Carleman estimates
s established in Section 3, observability inequalities for the associated adjoint

problem of . To this aim, we assume that the control set w is such that

w = (a, p) CC (0,1), (41)

if k degenerates at the boundary of (0,1). When k degenerates at zo € (0, 1),

w is such that

zo € w = (a, p) CC (0,1), (42)
or
w = w1 Uwa, (43)
5 where
w; = (/\1‘7,01‘) C (0, 1), 1=1,2, and p; < zp < As. (44)
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Remark 4.1. Observe that, if holds, we can find two subintervals w1 =

(A1, p1) CC (@, ), w2 = (A2, p2) CC (20, p)-
Moreover, k and [ satisfy the following assumptions:

Hypotheses 4.1. The function k is s.t. Hypothesis[3.3,[3.3 or[3.4 is satisfied.
0 Moreover, if Hypotheszsm 2.9 holds, there exist two functions g € LS ([—p1, 1] \
{z0}), b € WE™([=p1,1] \ {z0}, L>°(0,1)) and two strictly positive constants

loc

g0, bo such that g(x) > go

K (x) < dt—&—bo)-i-\/ig (x,B) for a.e.x € [—p1,1],B €[0,1]
i\

(45)
with x < B < xg or xg < x < B, where

Ha) = k(z), x€][0,1], (46)
k(—x), ze€]-1,0].

Observe that implies the fact that € Lis ([0,1] \ {zo})-

N
s  Hypotheses 4.2. Assume T < A and suppose that there exists a < T such

that
B(a,z) =0 for all (a,x) € [0,a] x [0,1]. (47)

Observe that Hypothesis is the biological meaningful one. Indeed, a is
the minimal age in which the female of the population become fertile, thus it is
natural that before a there are no newborns. Obviously, if T < A and T = a,

w0 then y(¢,0,x) fT y(t,a,z)da. In this case, if (t,a) € (0,T) x (0,7,
only the mortality rate acts on the equation; hence it is natural to expect that
the population is 0 at 7. However, we will prove the observability inequalities
also in this case, since they are independently interesting. Finally, we underline
that, since T is strictly less than A, we are able to control the population also

ws in small times, thus complementing [2].
Under the previous hypotheses, the following observability inequality holds:
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420

Proposition 4.1. Suppose that Hypotheses and [£:2] hold and assume that
w satisfies , or . Then, there exists a strictly positive constant C
such that, for every 6 € (T, A), every solution v € U of

il + ov + k(2)vge — u(t, a,z)v + Ba,x)v(t,0,z2) =0, (¢, z,a) € Q,

ot 0Oa

v(t,a,0) =v(t,a,1) =0, (t,a) € Qr,a, (48)

v(T,a,z) = vr(a,z) € L*(Qa1), (a,x) € Qaa

v(t, A,z) =0, (t,z) € Qra,
satisfies

// Taaxdxda<c<//”T dxda—i—/ / /dedadt>
(49

)

Here vp(a,x) is such that vr(A,z) =0 in (0,1).

Remark 4.2. 1. If T = a, the observability inequality given in the previous
proposition is the corresponding of [2, Proposition 3.1], where the authors
proved it for the divergence case under different assumptions and with

T>A.
_ _ ol vd(a,x)
2. Moreover, observe that in the presence of the integral
0 Jo
is related to the presence of the term f(a,x)v(t,0,x) in the equation of
. In fact, estimating such a term using the method of characteristic

lines, we obtain the previous integral. Obviously, if vr(a,xz) = 0 a.e. in

(0,0) x (0,1), we obtain the classical observability inequality.

Before proving Proposition we will give some results that will be very

helpful. As a first step we introduce the following class of functions
W= {v solution of |vr € D(A2)},
where

D(A?) = {u € D(A) | Au e D(A) }

29
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Observe that D(A?) is densely defined in D(A) (see, for example, [12]
Lemma 7.2]) and hence in L2 (Q4,1). Obviously,
k

W =C'([0,T]; D(A)) CV:= L*(Qr,a; 'H‘% (0,1)) N H(Qr, a5 H; (0,1)) cU.

Proposition 4.2 (Caccioppoli’s inequality). Assume Hypothesis or,
Let o' and w two open subintervals of (0,1) such that w' CC w CC (0,1). Let
Y(t,x) == O(t,a)¥(x), where O is defined in and ¥ € C1(0,1) is a strictly

negative function. Then, there exist two strictly positive constants C' and sg

T A
C ( / / / videdadt + / f2e25¢d:cdadt>
0 0 w Q
T rA V2 e25Y
c / / / —dxdadt + / f?——dzdadt | ,
0 0 w k Q k

(50)

such that, for all s > sq,

T A
/ / / ’Ui 2V dxdadt
o Jo Ju

IN

IN

for every solution v of @
PROOF. Let us consider a smooth function & : [0,1] — R such that

0<¢&(x) <1, forallxzel0,1],

Then, integrating by parts one has

0 :/OTjt (/OA /Ol(fesw)QUQda:da> dt

= / 251y (£e5%)20% + 2(€eY)20(—vy — kVge + pv + f) dzdadt
Q
= 23/ Uy (€e5V) v dadadt + 23/ Vo (EeV) 20 dadadt + 2/ (SQeQka)x vugdrdadt
Q Q Q

+ 2/ (£2e>Y k)v2 dedadt + 2/ 2> 2 dedadt + 2/ £2e%Y fudadadt.
Q Q Q
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Hence, using Young’s inequality
2 / (£2e**Vk)v2dadadt = —2s / Yy (gew)%?dxdadt—% / Vo (e )2 v?drdadt
Q Q Q

s k
— 2/ (52625’%) Stk v, dedadt — 2/ £2e%Y Pdadadt
Q x 5631/’\/% Q

—2/ £2e%Y fudaedadt
Q
< —23/ wt(fesw)202dxdadt—2s/ Va(Ee®V) v dzdadt
Q Q
2
—|—4/ (few\/g) Uzdxdadt—i-/(52625wk)vidxdadt
Q r Q
+ @2llpllr=(@) + 1) / 2vidadadt + / £2e>Y f2dxdadt.
Q Q

Thus,

T rA
inf{k} / / / e**Yvidxdadt
W’ 0o Jo Ju

NERG )2 254 + o) ()

T A
} / / / v2dzdadt + / 12625 drdadt.
0 0 w Q

s Proposition 4.3 (Caccioppoli’s inequality). Assume Hypothesis and sup-

!

k
pose that TE e L.([0,1] \ {xo}) if Hypothesis [2.2 holds. Let ' and w two

loc

< |
wx (0,T)

open subintervals of (0,1) such that w' CC w CC (0,1) and xg & @. Let
Y(t,x) := O(t,a)¥(x), where O is defined in and ¥ € C1(0,1) is a strictly
negative function. Then the thesis of Proposition [L.2] holds.

a0 The proof of the previous result follows the one of Proposition We
underline only that, in this case, (ge“/’\/%) can be estimated by
xr

C (e2sw + 32(1/196)262“" + 6251[1(16125)2)
(k')

k
o e/az)

and exists and is bounded in w thanks to the assumptions (recall that

With the aid of Theorems and Propositions Wwe can now

s show w—local Carleman estimates for @
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Theorem 4.1. Assume Hypotheszs and suppose that w satisfies (41]). Then,
there exist two strictly positive constants C' and sg such that every solution v of

@ in V1 satisfies, for all s > s,

/ (s@vi + 5363(%)21)2) 2% dxdadt < C (/ f? ¢ d:z:dadt —|—/ / / dxdadt)
Q

PROOF. Let us consider a smooth function & : [0, 1] — R such that

0<¢&(x)<1, forallxel0,1],
§(x) =1, z € [0,(2a + p)/3],
&(z) =0, z € [(a+2p)/3,1].
We define w(t, a, z) := &(x)v(t, a, x) where v € V,, satisfies (€). Then w satisfies

Wi + Wq + kWey — pw = Ef + k(ﬁmﬂ) + 2§acvac) =: h, (t7a7x) €qQ,

w(t,a,0) =w(t,a,1) =0, (t,a) € Qr,a.

Thus, applying Theorem [3.4] and Proposition
T A e 2
/ / / (s@vg + 83@3(%) v2) e**¢dxdadt
o Jo Jo
T A pEE 2
= / / / s@wi + 33@3(5) w2) e**?drdadt

< / (s@w +s3@3( ) ) e drdadt < C / 02 < drdadt

<0< / P dedai + / / [t + / / [ mdxdadt)
2 €2 v?
<C f dzdadt + dxdadt | ,
Q k 0 0 w k

, 20+ p a+2p
where w’ := , .
3 3
Now, consider z = nv, where n = 1 — £ and take @ € (0, ). Then z satisfies

(51)

2t + 2q + kzza: — MUz = 77f + k(ﬁmﬂ + 27795”95) = ha (tu a7x) € QT,A X (d7 1) = Q7

2(t,a,) = =(t.a,1) =0, (t.a) € Qr.a.
(52)
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Clearly the equation satisfied by z is not degenerate, thus applying Theorem
and Proposition one has

/ (830322 + 5622)e?* P dadadt < C’/ h2e*® dxdadt
Q Q

T (A
gc( / f2e?*®dedadt + / / / (UQ—I—Ui)er‘Ddxdadt)
Q o Jo Juw
f2 T (A V2
C /—ezs(bdxdadt—i—/ / /*dxdadt .
Q k 0 0 w k
5 Hence

T A 1 T A 1
/ / / (s330% + spw?)e** P dardadt = / / / (s3632% 4 sp22)e* P dadadt
0 Jo Jes 0 Jo Sz

f2 T rA 02
<C / 2% drdadt + / / / —dzdadt | ,
Q k 0 0 w k

for a strictly positive constant C. Proceeding, for example, as in [31] one can

IN

prove the existence of ¢ > 0, such that, for all (¢,a,z) € [0,T] x [0, 4] x [&, 1],
we have

2
625@ < §€28<D, <kfx)) 6254,0 < §625®. (53)

Thus, for a strictly positive constant C,

T A 1 N2
/ / / (s@vi + 503 (f) vz) e**?drdadt
o Jo Jedze k
T A 1
<C (/ / / (s3¢30? + Sqﬁvi)e%q’dxdadt) (54)
0 Jo Jesz
£25® T A o2
<C / f? dzdadt + / / / —dzdadt | .
Q k 0 0 w k

Now, consider & € (a, (2a+ p)/3), p € ((a+2p)/3,p) and a smooth function
7 :[0,1] — R such that

0<7(x)<1, forallzel0,1],
T(x) =1, z € [(2a+p)/3, (a+2p) /3],

T(z) =0, z €[0,a)Up, 1],
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wo and define ((¢,a,2) := 7(z)v(t,a,x). Clearly, ¢ satisfies (52) with h := 7f 4+
2
E(Tzav + 27,0,). Observe that in this case 74, 7., # 0 in & = (d, ot p) U

3
2
<OH; p, ﬁ). As before, by Theorem , Proposition and , we have
T (A pot2e 9
/ / / <5@1)92C + 503 (E> 1)2> e?*?dxdadt
0 0 2otp k

3

T (A pot2e
<C ( / / / (s3¢30% + sqsvg)e%‘l’dxdadt)
o Jo J2ote

3

T A a-gzp
¢ </0 /0 /M (53¢342+5¢<§)625¢dxdadt)

3

£25® T (A 2
<C /f2 dxdadt—!—/ / /—dazdadt .
Q k 0 0 w k

Adding (51)), and (55)), the thesis follows.

(55)

Proceeding as before one can prove

ws Theorem 4.2. Assume Hypothesz's and suppose that w satisfies . Then,
there exist two strictly positive constants C' and sg such that every solution v of

@ in V1 satisfies, for all s > sq,

2
/ (s@vg—ks?‘@?’ <H> v2> e**¢dxdadt
o k
o250 T A o2
<C / f? dzdadt + / / / —dzdadt | .
Q k 0 0 w k

The w—local Carleman estimates given in Theorems [4.1] and [4.2 hold also if

k degenerates in the interior of the space domain:

a0 Theorem 4.3. Assume Hypothesis and if Hypothesis holds. Sup-
pose that w satisfies or , Then, there exist two strictly positive con-

stants C' and sg such that every solution v of (@ in Vy satisfies, for all s > sq,

2
/ <s@(vx)2 + 5303 (:E—k:vo> 1)2) eV dadadt
Q
f2 T rA 02
<C /—dxdadtJr/ / /fdxdadt .
Q k 0 0 w k
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PrROOF. First of all assume that w = (a, p) C (0,1) is such that 9 € w and
take w;, 1 =1,2, as in Remark Now, fix A\, p; € w; = (\i, pi), i = 1,2, such
that \; < p; and consider a smooth function ¢ : [0, 1] — [0, 1] such that
0 ze€ [07 5\1},
f(x): 1 .%‘E[;\l,j\g},
0 ze€ [ﬁg, 1],
where \; = (Xi + pi)/2, i = 1,2. Then, define w := &v, where v is any fixed
solution of @ Hence, neglecting the final-time datum (of no interest in this
context), w satisfies
Wi + Wwe + kwey — pw = Ef + k(Eppv + 26,0,) = F, (t,x) € Q,
w(t,a,0) =w(t,a,1) =0, teQra.

Applying Theorem [3.6]and using the fact that w = 0 in a neighborhood of x = 0

and x = 1, we have

2
/ (S@(ww)2+s3®3 (”C_kxo) w) 2T dudadt < C / N e drdadt, (56)
Q

for all s > sg. Then, using the definition of £ and in particular the fact that &,

and &, are supported in &, where @ := (\q, 5\1) U (;\2, B2), we can write

—<2f2+2k(§ v+ 26,v,)2 2f—2+0(v2+(v )?)xe (57)
k T YT k T XUJ'

Hence, we find

2
/ / / ( 21508 <mo> v2> eV dzdadt
X k
z—20\°
/ / / s@ (wy) 24 5303 <O> w2)ezsr dxdadt
X k
erF
<C / / /e%r(v2 + (vx)Q)dxdadt—i—/ f?
o Jo Jo Q k

(by Proposition since & CC w)

<C < / / / %dmdadt+ /Q J:dxdadt).
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Now, consider a smooth function 7 : [0,1] — [0, 1] such that

0 z€[0,)\s],
n(z) = :
1 ze€ [)\2, 1],

and define z := nv. Then z satisfies

2+ 2q +kzge —pz=h, (t,x) € Qra X (A2, 1), (59)
z(t,a,A2) = 2(t,a,1) =0, t€ Qr.a,

with h:=nf + k(Nzev + 27,0,) € L2((0,T) X (Ag, 1))
Since the problem is non degenerate (observe that € (A2,1)) , we can apply
Theorem with (0, 1) replaced by (A2,1) and Proposition obtaining that

there exist two strictly positive constants C' and sy such that, for all s > s,

T A 1 T A 1
/ / / (s@(zx)g—i-s?’@?’zz) e23®dq:dadt§6’/ / / h2e*®dxdadt
0 0 )\2 0 0 A2
T A o25®
c / / /ezs‘b(vQ—i—(vx)z)dacdadt—f— f2 dzdadt
0 Jo Jo Q k
T A B2 2 £25%
C / / / —dzdadt + / f?——dxdadt
o Jo Jxa, K ok
T A o2 p25®
C / / / —dzdadt + / f?——dxdadt |,
0 0 w k Q k
(60)

where @ = (A2, A2) and ® is related to (\z,1). Observe that the boundary term

IN

IN

IN

which appears in the original estimate is nonpositive and thus is neglected.
Now, for a suitable choice of d; (see, for example, [31]), there exists a strictly

positive constant C', such that

2T(12) < (0p25(t) (61)
and o

w 2sT'(t,x) <C 25D (t,x) 62

( k() ) ©= -
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for all (t,x) € Qr,.a X [A2,1]. Thus, by (61]) and @, via , we find

/ / / s@ (2z) 21508 ( xo) )eQSFdxdadt
A2
gc(/ / /v—dasdadt—i-/fge )
o Jo Juk Q

for a strictly positive constant C and s large enough. Hence, by definition of z

and by the inequality above, we get

/ / / s@ (vz) 24 5%08 ( x0> v )eZSFdxdadt
Az
/ / / s@ (20)? + s°03 ( x()) )eZSFdxdadt (63)
A2
gc(/ / /U—dmdadt—i—/er )
o Jo Ju k Q

Thus and (63)) imply

/ / / s@ (vz) 21 5% ( x0> v )eQSF dxdadt
)\1 k
<C (/ / / —dxdadt —|—/ dmdadt)

so To complete the proof it is sufficient to prove a similar inequality for z € [0, 5\1]

(64)

To this aim, we use the reflection procedure of [30] or [3I], considering the

functions
v(t,a, ), x € [0,1],
W(t,a,x):=
*"U(t,a, 7$)7 S [7170]3
. f(t,a,z), z € [0,1],
f(ta a,x) =
—ft,a,—z), =ze€[-1,0],
and
p(t, a,x), x € [0,1],
a(t,a,x) =

—u(t,a,—z), x€[-1,0],
sos 50 that W satisfies the problem

Wi 4 Wy + kW, — iW = f,  (t,2) € Qr.a x (—1,1),

W(t,a,—1) =W(t,a,1) =0, t€Qr.A.
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Here k is as in .

Now, consider a cut off function ¢ : [-1,1] — [0, 1] such that
0 ze€ [717 7ﬁ1]a
((r)=491 ze€ [—5\1,5\1],

0 ze€ [[31, 1},
and define Z := (W. Then Z satisfies

Zt + Za + ];Zxx - /.]Z = ila (t,fﬁ) € QT,A X (_pla pl)v (65)
Z(tvav _,01) = Z(taavpl) = 07 te QT,A,

where h = ¢ f + if(me + 2p,W,). Now, applying the analogue of Theorem

510 on (—p1,p1) in place of (0,1), using the definition of W, the fact that
Zy(t,a,—p1) = Zx(t,a,p1) = 0, analogous estimates of and and since
( is supported in [—[)1, —:\1} U [5\1,51}, we get

)\1 2
/ / / ( —|—33@3 <k$0> W2> eV dadadt
)\1 T 2
/ / / ( )2+ s°0° <k 0) ZQ> 2T drdadt
P1
<c / / [ oz + 560 2%) & dwdadt
<C / / / +33@322) e***drdadt
e []
pP1
+C/ / / (W2+(Wm)2)625®dxdadt+0/ / / (W2 4+ (W,)?)e**® dadadt
p 0 0 A1
P1 f2 T rA rp1
<C / / dxdadt+C / / / W2dzdadt + C / / / W2dzdadt
0 0 A1

(by Propositions and since f(t,a,2) = —f(t,a, —z), for x < 0)

<C’///dexdadt—i-C///dedadt

for some strictly positive constants C' and s large enough. Here @ is related to

(_plapl)'
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Hence, by definitions of Z, W and ¢, and using the previous inequality one

as
T A A € — x4 2
/ / / s@(vw)2 +5%0% [ ) ? | e**Vdadadt
o Jo Jo k
T A T — g 2
:/ / / sOW,)?2 +s5°0% [ ——=| W? | e**Tdzdadt (66)
o Jo Jo k
f2 T (A 02
<C / —dxdadt—&—/ / / —dzxdadt | .
Q k 0 0 w k

Moreover, by and (66]), the conclusion follows.

h

Nothing changes in the proof if w = w; Uws and each of these intervals lye

on different sides of z(, as the assumption implies.

Remark 4.3. Observe that the results of Theorems[{.1}, [{.2, [{.3 still hold true
if we substitute the interval (0,T) with a general interval (Ty,Ty), provided that
w and B satisfy the required assumptions. In this case, in place of the function
O defined in , we have to consider the weight function

~ 1
O0) = G ryirn, — oyt

Using the previous local Carleman estimates one can prove the next observability

inequalities.

Theorem 4.4. Assume Hypothesis[3.2] or[3.3] and Hypothesis [£.2] with T > a.
Suppose that w satisfies , Then, there exists a strictly positive constant C
such that, for every § € (0, A), every solution v of in Yy satisfies

/ / fUZ(Tfa,a,x)dxdaSC/ / / —v2(t, a, x)dzdadt
o Jo K o Jo Jo K
T 1,2 T A 2
+C / / vT(a’x)da:da+/ / /”—dzdadt .
o Jo k o Jo Ju kK

Moreover, if vp(a,x) =0 for all (a,x) € (0,T) x (0,1), one has

A1y T 6 oplq T A p o2
/ / —v*(T — a,a,r)dzda < C / / / —v2(t, a, r)dzdadt +/ / / —dzdadt | .
0o Jo k o JoJo Kk 0 Jo Ju k
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PROOF. Set
T:=T-a. (67)

Using the method of characteristic lines, the assumption on  and the fact
that v(t, A,x) = 0 for all (t,z) € Qr,1, one can compute the following implicit
formula for v solution of :

S(T —tyvp(T+a—t,-), (68)
if t > T + a (observe that in this case T + a — t < a) and

S(T —tyor(T+a—t,)+ [

U(t7a7 ) = A
J. S(s—a)B(s,-)v(s+t—a,0,-)ds,
(69)

otherwise. Here (S(t));>0 is the semigroup generated by the operator Ay — puld
for all u € D(Ap) (Id is the identity operator), T4 := A —a+t— T and

I':=min{a,Tar}. (70)
In particular, it results
v(t,0,-) :== S(T — t)yor(T —t,-). (71)

Now, define, for ¢ > 0, the function w = e*tv, where v solves . Then w

satisfies
ow Ow -
5 e T k(x)wee — (u(t, a,z) + )w = —B(a, x)w(t,0,z), (t,z,a) € Q,
w(t,a,0) = w(t,a,1) =0, (t,a) € Qr,a,
’LU(T, CL,.Z’) = egT'UT(aﬁx)v (CL,I) € QA,17
w(t, A, x) =0, (t,x) € Qr,
(72)

where Q := (T,T) x Qa,1, Qr,a := (T, T) x (0,A) and Qr,1 == (T, T) x (0,1).
Multiplying the equation of by % and integrating by parts on Q; := (T, t) x

40

Ta=t S(s—a)B(s, )v(s+t—a,0,-)ds,

I'=a

F:I—‘A,T7



(0, A) x (0,1), it results

1 <T

1 1, - 1ttt
- = / —w?(t,a,z)dzda + . —0*(T, a,x)dxda + f/ / —w?(7,0,z)dxdr
2 an k 2 QA | 2 Jo Jo k

1
—|—§/ EwQ(ﬂa,x)dxdadT < kﬁw(T 0, x)wdzdadr

Qi

1 1 ot
<||BLoo(Q)6/Q Ew2d$dadT+GAHﬂ”L°°(Q)/O/O Ew2(770,$)dl’d77

(73)
1 oo
for € > 0. Choosing e = ——— and ¢ = M, we have
218l L=(@)A €
L o7 Lo Ly
—v*(T,a,x)dzda < C —w*(t,a,z)dxda < C —v*(t,a,z)dzda.
Qan Qan Qan k
T 3T
Now, take 6 € (0, A). Then, integrating over [4, 34},
/ v (T, a, z)dzda < C’/ / 2(t, a, z)dxdadt
Qa,n k Qa,
(74)

_c/ (/ /)/ (4,0, ) dndad

s 1q
Consider the term / / / Ezﬁ(t,aw)dxdadt. By the Hardy - Poincaré
r

/—dx<C/ dx<C/ vide, (75)

for a strictly positive constant C. Hence,

/ / / t a,z)dzdadt < C/ / / @UzeQSV’dxdadt

and, by Theorem [4.1] or

L LAl £2 T pA 02
/ / / Ov2e**?drdadt < C / * dxdadt + / / / —dxdadt |
T s Jo Q k o Jo Ju k

where, in this case, f(t,a,2) := —B(a, z)v(t,0,2). Thus

T A 2
/ / / —0*(t,a,z)dzdadt < C||B|2q) (/ (tko ) g dadt+/ / /dedadt)
0 0 Jw

(76)

inequality one has
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for a strictly positive constant C. Now, using the fact that the semigroup
generated by Ag is a contraction semigroup and the hypothesis on p, we have

that also the semigroup generated by Ag — pld is bounded. Hence, by ,

2(t 2(T —t 2
/ dedadt <C dedt <C vy (a, z)dxda.
Q k Qr,1 k Qr1 k

(77)
Hence, by and (77), one has

/ // tawd:vdadt<C’Hﬁ||Loo </Q (k )dd +/0T/0A/w

(7

d;vdadt) ,

\@w‘e

for a strictly positive constant C. From and 7 it results

/ —v}(T,a,2)dxda < C/ / / —v2(t, a, x)dzdadt
Qan k o Jo Jo K
2 T rA 2
+C / dedﬁ/ / /”—dxdadt .
Qr,1 k o Jo Ju k

(79)

The observability inequality proved in the previous theorem still holds when k
degenerate at xg:

/

k
Theorem 4.5. Assume Hypothesz's Hypothesis and suppose that — €

Vk
loc([O 1] \ {J;o}) if Hypothesis [2.2] holds with T > a. Suppose that w satisfies

or , Then, there exists a strictly positive constant C' such that, for
every 0 € (0, A), every solution v of in Vo satisfies

A 1y T 51
/ / fUQ(de,a,x)dxdaSC/ / / —v2(t, a, x)dzdadt
o Jo K o Jo Jo K
T 1,2 T A 2
+C / / vT(a’x)dzdaJr/ / /v—d;vdadt .
o Jo k o Jo Ju kK

Moreover, if vr(a,z) =0 for all (a,z) € (0,T) x (0,1), one has

A 1 1 T ) 1 1 T A U2
/ / %’UQ(T —a,a,z)drda < C / / / %UQ(t,a,x)dxdadt +/ / /?da:dadt .
0o Jo o Jo Jo 0o JoJu

The proof of the previous inequalities follows the one of Theorem SO we omit

it. But we underline the fact that, in order to obtain in this situation, we
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distinguish the cases M < 1 and M > 1. In the former case, define

2
p(w):% and gq=2— M.
. plx)
Clearly, by [30, Lemma 2.1], p(z) — 0 as ¢ — zp and = — ﬁ =
r — X
|z — lfo\M . . . .
— s nonincreasing on the left of + = z¢ and nondecreasing on the

right of z = xy. Moreover, ¢ > 1 since M < 1. Hence, by the Hardy-Poincaré

inequality given in [30, Proposition 2.3], one has

to? b op(w) !
—de= | —/—Z _?de<C 2 )2d
/O o /O(m_g:O)Qv r < HP/O p(ve) dx
1
SC/ (vx)de,
0

for a strictly positive constant C'.

If M > 1, we can apply [33] Lemma 3.7] obtaining again

1,2 1
/ —deC/ (vy)%dz,
o k 0

for a strictly positive constant C'.
Hence, in both cases holds also if the degeneracy is in the interior of

the domain. So, proceeding as before, we obtain the thesis.

Corollary 4.1. Assume a = T, Hypotheses [£1] and [£2] Suppose that w sat-
isfies , or . Then, there exists a strictly positive constant C such
that, for every 6 € (0, A), every solution v of m Vi, 1 =1,2, satisfies

A 1y T 51
/ / fUQ(O,a,x)dxdagC/ / / —v2(t, a, x)dzdadt
o Jo k o Jo Jo K
T 1,2 T A 2
+C / / md;zcda+/ / /”—dxdadt .
o Jo k o Jo Ju kK

Moreover, if vr(a,z) =0 for all (a,z) € (0,T) x (0,1), one has

A 1 1 T ) 1 1 T A U2
/ / %’02(0, a,z)drda < C / / / %’UQ(t, a, x)dzdadt —|—/ / / ?da:dadt
o Jo o JoJo 0 Jo Ju

Actually, we can improve the previous results in the following way:
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Theorem 4.6. Assume Hypotheses and . Suppose that w satisfies ,
or . Then, there exists a strictly positive constant C' such that, for
every 0 € (T, A), every solution v of ({8]) in V;, i = 1,2, satisfies

[ Tamm<c(//vT Dasaa [ [ /dxdadg

Proor. We distinguish between the two cases T'=a and T > a.
If T = a: Taking § € (T, A), one has, as in (74)),

/ v%(0, a, x)dxda < C’/ (/5 /5“) / v2(t, a, x)dxdadt.

(80)

As for ,
L LA 1 T A 2
/4/ / 11)2(75,a,ac)dacdadt§C’ / Y x)dxda+/ / /U—d:):dadt .
z s—2L Jo k 7,1 o Jo Juk
(81)

673T

Now, consider the term / / / —v2(t, a, x)dzdadt and let us prove that

there exists C' > 0 such that

L ps-3L 1 5 1,2
1
/4/ ' / fvz(t,a,ac)dxdadtSC/ / UT(a’x)dxda. (82)
T Jo o k 0o Jo k

3r T

In order to prove 7 we use (|68)) or . Observe, first of all, that (5—? > T

but we do not know if § — % > % ro— % < % In the last case, if
3T 3T 3T ~

t e {6—4,4) and a € <0,6—4>, we have easily that t > T +a = a

(recall that we are in the case T = 0); hence holds. On the other hand,
ift<5f¥Wedonotknowift2T+a:aort<T+a:a. Hence, we
have to consider or . Taking into account these considerations, using
the assumption on 8 and the boundedness of (S(t)):>0, one has:

T T
If6—3— =y

- o- po-3L 19
/ / / —v2(t, a,z)drdadt = / / / —v2(t, a,z)drdadt
T 0 o k
ir 6—2F
/ / /fvz(t,a,x)dxdadt.
F) 3T 0 0 k
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53T
(T
(taxda:dadt<0/ / / Gl +“ v+ a=42) ) ot
F) 3T

2 3T

0—=1 a+3L 1,2
T(a“ ?) dvdads < C/ / / wc@dada

4 1,2
<’ / / mdmda.
0o Jo k

Consider now the integral

(84)

3T ) 3T

63T _ 3T
/ / / —p? (t,a,z)dxdadt

and divide it in the following way:

6= po=3E 19 ) §—3L ot el
—v*(t, a, z)dxdadt =
z 0 o k o Jo

3T

-3T /5
t

v2(t, a, z)dxdadt

ET‘\H

w1N

%\‘t]

+

H

NI

"1
/ v%(t, a, z)dxdadt.
0

(85)
Proceeding as before, one can prove

§—32L ot el 5§ p1,2
/ / / l112(15,(z,fv)dxdadt < C/ / Mdzdo. (86)
z 0o Jo k o Jo k
Indeed, since T=0anda< t, holds, hence
53T
(T
/ //fvtaxda:dadt<0/ //”T A=) 4o
4 T—=z 2 4
< C/ / / VL@t 20 b dads < C/ / / 12 4o
£ Jo 0 k £ Jo Jo k
é 1.2
S C/ / ’UT((L ‘r)d d
o Jo k

s Now, we estimate the second term in the right hand side of @ First of all,
assume that T' = @ (we recall that ' is defined in ). By (69) and (71 .7 using
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the assumption on 8 and the boundedness of (S(t)):>0, one has:

3L 53T 6—3L 53T
1 T
/ / / —v tawdmdadt<0/ / / UT —|—a )d dadt
—— —— THa—t e
+C/ / / (/ vp (T Sk H“’x)ds) dedadt
EN Gy v2 T+a ,T)
< C/ / / il L " dxdadt

3T

+C/ /5_/ (/T . a”T(“Zz m)dz> dedadt

(proceeding as in ) for the first integral)

<c// ‘”dd +c/ /6/ (/ vr(o )da>dxdadt

(since T' < §)

gc/oé/ ((””dd+c/ /_/</% )d>dmadt
cof [ 0D

Now, assume that ' = A+ @ — a+¢ — T (this implies that A —a < T —t). By

(87)
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and , one has, as before:

o-3L po-3L 01
/ / / %vz (t,a,z)dxdadt
5,@ 5,& o o
<c/ / / (/ = t“"x)ds) drdadt
5—£ T—a—t
<C/ yl /(/ vh(at =), )dxdadt
T—A—t k

5—3L T—t 2
<C / / / / (7)o dedadt
T—t—(A—a) K

(since T < 0)

§0/7/77/ (/ vTJx)d)dxdadt
<C/ / vTo:cdd

s Hence, in every case (82]) holds.

By , and , it follows that

53T
/ l1)2(0,a,9:)d:ula < C/ (/ / ) / v(t, a, z)drdadt
QA,I k K 3T
é 1.2
gc(/ / @dzdm/ / /2dzdadt>.
o Jo o Jo Ju

If6—

3r _ 3T
T In order to obtain (82), we divide the integral

3T

/ / / Z0? (t,a,z)dzdadt
T

4

in the following way:

3T §—3T 1 3 t 1
1 1 1 1 1
/ / / —v2(t,a, r)dzdadt = / / / —v2(t,a, z)drdadt
z Jo o k r Jo Jo k
4 4

3T  .5_3T .1
1 1 1 9
—|—/ / / —v(t, a, x)dxdadt.
T St 0o k

Then, proceeding as before, the thesis follows.
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T 3T
If T > a: We proceed as before substituting, for simplicity, 1 and e with

T—aand T — %7 respectively. In particular, taking ¢ € (7, A), we will consider,
in place of , the following inequality:

/A}lllf 2T —aaxdxda<C/T</6a / )/ 2(t,a, r)drdadt.

(90)
Also in this case, since t € (T —a, T — %) and a € (0,0 — a), we do not know
ift>T+aort<T+a. Hence, to prove an estimate like , we have to

consider different cases as before.

By Theorem [£.6] and using a density argument, one can prove Proposition

As a consequence one has the following null controllability results:

Theorem 4.7. Assume Hypotheses and A2l Then, given T > 0 and yo €

L3 (Qa.), for every § € (T, A) there exists a control f € L3 (Q) such that the
k k

solution y € U of

dy 0Oy o~
- ta — k( )y$m + u(t,a,x)y = f(ta CE,(I)XW m Q,
ot da
y(t,a,1) =y(t,a,0) =0 on Q A,
) g (91)
y(Tvaax) = yO(avx) mn QA,la
y(t,0,z) fo y(t,a,z)da in QT,l,
satisfies
y(T,a,2) =0 a.e. (a,z) € (0, 4) x (0,1).
Moreover, there exists C' > 0 such that
£z @) < CHZ/O”LZ’% (Qan): (92)
k

Here, we recall, Q = (T, T) % (0,4) x (0,1), QT7A = (T, T)x(0,A) and QTJ =
(T,T) % (0,1).

PrOOF. Take g € L% (Qa.1) such that g(A,x) =0 in (0,1) and fix 6§ € (T, A).
k
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Let v be the solution of

O 0t k(@ — )0 = (1w ap(t,0,2),  (1,2,0) € Q,
v(t,a,0) =v(t,a,1) =0, (t,a) € Qr,a,

g(a,x), (a,z)€ (6,A)x (0,1),
0, (a,x) € (0,9) x (0,1),

v(t, A, x) =0, (t,x) € QTJ.
(93)

(T, a,z) = vr(a,x) :=

Now, fixed yo € L3 (Qa,1), define as in [24],
k

/ / /7dxdadt+/ / o(T, a, )yo(a, v)dzda.

The functional J is strictly convex, continuous and coercive over the Hilbert
space H defined by the completion of L2((, A) x (0,1)) with respect to the norm
[0l £2(Gp 4 xey- Thus, there exists a unique minimum, g, of J and §(A,z) =0
n (0,1). Let ¢ be the solution of associated to §. Define f := vy, and let

y be the solution of in Q associated to f. Since § is the minimum of J, it

results

d
0= {dtJ(g +tg } / / / —vbdxdadt +/ / yo(a, x)dzda,

(94)
for all g € L?(Qa.1) such that g(A,x) = 0in (0,1). In particular, for g = §, one
has
0 —/ / /—dmdadt+/ / x)yo(a, x)dzda.

Hence

/TT /OA /w ’%zdxdadt / / —0( x)yo(a, r)drda, (95)

and, by Holder’s inequality, by Proposition applied to v in Q and using the
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fact that vr(a,z) =0 for all (a,z) € (0,60) x (0,1), one has

<<// Tawdmda) (//kyoaxdmda>
’l’) 2

Thus, by and ,
1

T oA pq , T A g
—0%(t, a, x)dxdadt < C' / / / —dzxdadt Yol 2 .
_/f /0 /wk; ( ) i Jo Jo kK | 0||L%(QA,1)

(97)

N|=

fv z)yo(a, z)dzda

(96)

Hence

1
~9 2
v
f||L21@>=</ / I dxdadt> < Cllnlz3 (@
% k

Now, let y be the solution of | asssociated to f and yq.

Multiplying the equation of by % and integrating over Q7 one has:
ov ov Y
0= [ | 5 + 5 +E@)vee — pu(t,a,2)v + B(z,a)v(t,0,z) %dxdadt =

1 1 - 1
02/ / —y(T,a,x)g(a,x) dzda—/ —yov(T, a, z)dazda—/ —y(t,0,z)v(t, 0, x)dxdt
5 0 k Al k ~T,1 k

1 v [0y Oy
+ /Q Eﬂ(a,x)v(t, 0,z)y(t,a,z)dxdadt — /Q z <8t + %0 k(2)yze + p(t, a,x)y) dxdadt
(recall that y(¢,0,z2) = fOA Bla,x)y(t,a,x)da). But % + % — k(2)Ype +

w(t,a,x)y = fxw; hence

Of/ / y(T,a,x)g9(a,x) dmdaf/ 1ygv(T a, d:rdaf/ / /—dmdadt
Qan k

Thus, being by (9

/ / / —vbdadadt = / / x)yo(a, x)dzda,

it follows
0= / / y(T,a,x)g(a,z) deda
for all g € L3 (Qa1) with g(A,z) = 0 in (0,1). Hence y(T,a,z) = 0 a.e.
k
(a,x) € (6,4) x (0,1).
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Observe that if 7' = @, Theorem [£.7] is exactly the null controllability result
that we expect. Indeed, in this case coincide with . On the other hand,
if T > a, the null controllability for is given in the next theorem and it is

based on the previous result:

Theorem 4.8. Assume Hypotheses and . Suppose that w satisfies ,

[2) or (43). Then, given T >0 and yo € L% (Qa1), for every & € (T, A), there
k
exists a control f € L% (Q) such that the solution y of satisfies
k

y(T,a,2) =0 a.e. (a,z)€ (5,A4) x(0,1).
Moreover, there exists C' > 0 such that
1122 (@) < Clivoll 22 @an- (98)
k k

PROOF. Fix T € (0,T). By Theorem there exists a unique solution u of

Ou Ou . -
5 + 90 k(2)uge + u(t,a,z)u =0 in (0,7) x (0,A) x (0,1),
u(t,a,1) =u(t,a,0) =0 on O,T x (0, A),
(t,a,1) = u(t,a,0) (0,7) x (0, A) (99)
u(0,a,z) = yo(a,x) in (0,4) x (0,1),
u(t,0,x) =0 in (0,7) x (0,1).
Set go(a, x) == u(T, a,z); clearly o € L2 (Qa.1). Now, consider
Kk
ow Ow o
E + % - k(x)wz:c + /L(t,aax)w - h(t7m>a)Xw m Q,
w(t,a,1) =w(t,a,0) =0 onQ,7
(~ ) =w(t,a,0) T,A (100)
w(T,a,z) = go(a,x) inQan,
w(t,0,z) = fOA B(a, z)w(t,a,x)da in Qr;.

Again, by Theorem there exists a unique solution w of (100)) and, by the

previous Theorem, there exists a control h € L3 (Q) such that
k

w(T,a,z) =0 ae. (a,2) € (§,4) x (0,1).
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Now, define y and f by

u, in[0,7], 0, in[0,T],
Y= ~ and f:=
w, in [T,T] h, in[T,T].
Then y satisfies (1)) and f € L2 (Q) is such that
k
y(T,a,2) =0 a.e. (a,z) € (4,4) x (0,1).

Indeed y(T,a,z) = w(T,a,z) =0 a.e. (a,z) € (§, 4) x (0,1).
It remains to prove . To this aim, observe that, by 7

|f||L2 / / / —d:cdadt < C||y0||L2 (@) / / x)dzda

(101)
for a strictly positive constant C. Thus, it is sufficient to estimate the last
integral. To do this, we multiply the equation of by % and we integrate

over (4,1, obtaining:

u? tAx
th//?dwda—&-Q/O d-i—//udmda—i—//uk—

Hence

2 tAx 9
- — 7<,
2dt/ / kdxda 2/0 d / / dxda— / / 0] 0

For all ¢t € (0,T), integrating over (0,t), we have

// taxdda<// Oaavald_//y0
In particular,
T
// axdxda</ / Y6002 ), (102)

By (101) and (102]), follows.

Actually, in the (ISD) case, this result can be deduced directly by Theorem

ﬁ

in the (BD) case. Indeed, it holds also if we substitute the space interval
(0,1) with a general interval (A, B) provided that k satisfies the required as-

sumptions in this interval. Now, if we are in the (ISD) case, by [33 Proposition
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3.6], y(t,a,zp) = 0 a.e. (t,a) € Qr,4; hence, we can divide into two prob-
lems stated in Q7 .4 % (0,20) and in Qp 4 X (xo, 1), respectively, and we can
apply Theorem in the (BD) case, obtaining the thesis. This technique does
not work in the weakly degenerate case since we are not able to divide the prob-
lem into two disjoint systems due the lack of the characterization of H % (0,1).
However, using observability inequalities and Carleman estimates, we are able

to prove a null controllability result also in this case.

5. Appendix

Proof of Theorem [3.4 Let us proceed with the proof of Theorem It is
similar to the one of Theorem [3.4] (see also [31, Theorem 3.1]), so we sketch it.

As a first step assume that g = 0 and define, for s > 0, the function
w(t,a,x) = e*2EH2) (¢ a, x)

where v is the solution of @ in V; thus, since ® < 0, w € V. Of course, w

satisfies
(e*%w); + (e7%%w), + (k(z)(e™*%w),), = f(t,7,a), (t,x) € Q,
w(0,a,2) = w(T,a,z) =0, (a,z) € Qa,
(103)
w(t, A, x) = w(t,0,z) =0, (t,r) € Qr.1,
w(t,a,0) =w(t,a,1) =0, (t,a) € Qr,a.

Defining Pw := w; + w, + (kwy), and Psw = e*®P(e”*®w), the equation of

(103]) becomes
Pow = Pfw+ Py w= e,

S
where

Prw = (kwg)y — s(®; + ®o)w + s2k(®,)*w,

S

and

P;w = wy + w, — 25k w, — s(kP,) w.
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Moreover, setting (u, v)q := fQ wvdzdadt and ||ullg := fQ u?dzdadt, one has

2(Pjfw, Prw)s < 2(Pfw, Prw)s + || Pl wlf3 + [Py w3

, o (104)
= [[Pswliz = [[fe>" 2.

Proceeding as in the proof of Lemma [3.1} one can compute the scalar product

(PFw, PTw)s, which takes, in this case, the following form

Lemma 5.1. The following identity holds:

(P:'w,P_w>2

S

= g / (B4 + Pua)w?drdadt + 33/ (Qk@m + k/@m)k(@z)2w2da€dadt
Q Q

, {D.T.},
+s/ (2k®,, + k'@, ) k(w,) dmdadt—I—s/ k(k®,)pww,drdadt
Q Q
— 9242 / k®,®,,widrdadt — 25> / k®,®,,widrdadt + s / &, wdzdadt
Q Q Q
(105)

1 A 1 k ) Td d T A k 1d d
Y x a t
2/0 /0 [wx]o xa—"A /O [w(wt‘Fw)}oa
T (A 1
—s / k%xw;] dadt
0o Jo 0
T A 1 1 A 1 T
{B.T}2 q —s / {k(k¢x>xwwx:| dadt + = / / [(52,’4@3 — 50, — s@a)wz} dxda
o Jo 0 2Jo Jo 0
T (A ) L
-5 / / [(5%2@3 — sk®, P, — sk@x@l)wz} dadt
o Jo 0

1 T 1 A 1 T 1 A
- 7/ / [kw?] ] dadt + 7/ / (k@2 — 5(Py + ®o))w?] dadt.
2 0 0 2 0 0

ProoF. Integrating by parts, one has

(Pfw,Prw)y =11 + Ir 4 Is + I,

where

I = / (kwg )z (we — 28kPw, — s(kPy ) w)dardadt,
Q

I, = / (—s®w + s2k(®,)*w) (w; — 25kP,w, — s(kP,),w)dzdadt,
Q

o4



I3 = / —sP,w(wy — 28kPw, — s(kP,) w)dxdadt
Q
and
I, = / wa ((kwy)y — 8(®; + ®o)w + s2k(®,)?w)dzdadt.
Q

By, [31, Lemma 3.1],

Il + .[2
- %/ ‘I)ttUJle‘dadt + 83/ (2k(1)339€ + kl@x)k((bx)2w2d$dadt
Q Q

— 252 / k®, 0, w?drdadt + s / (2k®,, + K ®,)k(w, ) drdadt
Q Q

{D.T.}5

+8/ k(k®y)zpwwdrdadt
(106)

/ / [kw, w5 Odadt / / 2<I)t dxda—i— —/ / 2 2 t Tdmda
{B.T.}5 { — 7/ / (wy)? d:cdaJr/ / —sk(k®,) pww, | =t dadt

+/ / [ 5D,k (w,)? + 52k B Dyw? — s5K2(®,)Pw?]7=) dadt.
0 0
(107)

s Next, we compute I3 and Iy:

S s A 1
Iy=— / ®ywidrdadt — = / / [®ow?]i=d deda
T rA
52/(k@x)$<baw2dzdadt—52/ kfbxfbawadxdadt—FSQ/ / [k®, P, w?] = dadt
Q Q 0 0

+ 52 / (k®,), P w?dzdadt
Q

S S A 1
=_ / ®ywidrdadt — = / / [®ow?]i=L dada

T A
52/ kfI)m@amwzdxdadt+s2/ / [kfI)(l(I)mwz]ﬁiédadt.
Q 0
(108)
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On the other hand

I4—/ / [Fwwe]3= dadt—f/ / wx o= dedt

// (s%k®2 — s(®¢ + Pa))w?] ' _ ddt (109)

+*/ waWdrdadt + = /‘bmw dzdadt — s* /k‘bm@mwzdxdadt.
2Jq 2 Jq Q

Adding (106)), (108]) and (109)), we have the thesis.

The crucial step is to prove now the following estimate.

Lemma 5.2. There exist two strictly positive constants sy and C such that for

all s > sg the distributed terms of (L05|) satisfy the estimate
C’s/ @em(wx)dedadt—FCsB/ 03e3" wdrdadt < {D.T.},.
Q Q

PrOOF. By [31, Lemma 3.2], there exist two strictly positive constants so and

C such that for all s > s, the distributed terms given in (106]

%s/ 0e" (wy)*drdadt + 083/ 033" wdrdadt < {D.T.}s. (110)
Q Q

Moreover, using the definition of ®, the other distributed terms of < Pfw, P;w >

take the form

—252 /Q k0O, V2w dzdadt + g /Q Ou Vwidrdadt + s /Q Ot Vw?dzdadt.
(111)
Now, the first term in can be estimated in the following way:
202K%¢c

min(g, 17 k ming, 1y €57

2k0
2520252/ @@aek w2dxdadt‘ < 52/ 033 widrdadt
Q Q

C
< —83/ @363””w2dxdadt,
6 Jo

(112)
f C>0and s > 120% % Usi i h
or some and s . Using again we have
~ C'mingg ) kminp 1) €259 & 28 ’

s / O oo Vwdadadt
2 Jq

min e3ko

C
< —33/ 03 widrdadt
6 Jo

(113)
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v
< sct[r(}al)]<|\lf|/ O3w?drdadt < W[O’HH/ e3e** widrdadt
’ Q Q



and

s/ @ta\I'dexdadt’ < 953/ 03¢ w?drdadt,
Q 6 Jo

6cmaxg. 1y [V ) ) . - .
for s > Cmimetre In conclusion, by the previous inequalities, we obtain
min e

{D.T}s > gs/ O™ (wy)?drdadt + 033/ e*e*widrdadt — 933/ 0*e** 7 wdxdadt.
2 Jg Q 2 Jo
Hence, the thesis follows.

720 The next lemma holds.

Lemma 5.3. The boundary terms in (105)) become
T A
(B.T.}a = skllK 2= o.0 / / (606" (w,)2]2=Ldad. (114)
o Jo
ProOF. By [31, Lemma 3.4], the boundary terms given in (107) take the form

T A
{B.T.}3 = skl|k'| L= 0.1) / / [kOe" (w,)?)3 =g dadt.
0 0

Using the definition of ®, the other boundary terms of < P;fw, P, w >2 become

T A 1 s A 1 T
/ / [szwa} dadt—f/ /[@awﬂ dxda
o Jo 0 2J)o Jo 0
T A T 1
+s° / / [kz(l)wd)awzrdadt— ! / / [kw?] dadt
o Jo 0 2Jo Jo
Lt 27.52 214
+ 5/ / [(s*k®2 — s(P; + @4))w?] | dadt
o Jo
T (A 1 s A rt T
:/ / [k‘wxwa} dadt — 7/ / {@a‘llwz} dxda
o Jo 0 2 Jo Jo 0

T A 1 1 T 1 A
+s? / / k00, W W, w?| dadt - / / [kw?) * dadt
o Jo 0 2Jo Jo 0

T rl
+ %/ / (kO W2 — (0, + ©,)¥)w?] ) dudt.
0 0

725 As before, since w € V, w(0,a,z), w(T,a,z), w,(t,0,z), w. (¢, A, ), w(t, A, x),
w(t,0,z), w(t,a,0), w(t,a,1) w,(t,a,0) and w,(t,a,1) are well defined. More-

over, we have that wq(t,a,0) and wg(¢,a,1) make sense and are actually 0.
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Thus, using the boundary conditions of w = e*®v, we get

/OT /OA [kwmwa] ;dadt — ;/OA /Ol[ea\llwﬂ Odeda

T A T 1
+s° / / {k@@awxwﬂ;dadt—% / / [kw?] dudt
0 0 0 0

1 T 1
+ 5/ / [(s*k0* W7 — (0 + @a)\l’)wﬂ?dm‘dt =0.
o Jo
Hence the thesis.
70 By Lemmas and the next estimate holds:

Proposition 5.1. There exist two strictly positive constants C and sy such

that, for all s > sg, all solutions w of (103)) in V satisfy

5/ @6“”(wx)2d:cdadt+53/ o33 widrdadt
Q Q

T A
<C (/fze%‘bdxdadt — Sli”k/”Loo(oJ)/ / [k@em(wzf]i:édadt) .
Q o Jo

—sP —s®

Recalling the definition of w, we have v = e

Thus,

w and v, = (w; — sP w)e

(S(_)eﬁa(vw)Q + 83@363501}2) er‘i’ <c [S@(ZKJ(SQGQ’LUQ + (wm)2> 4 839363,‘60“)2]
< ¢[50e" (w,)* + s*0%e* 7 w?]
s for a strictly positive constant ¢. Hence, Theorem follows immediately by

Proposition [3.1] when p = 0.

Now, we assume that p # 0.
To complete the proof of Theorem we consider, as before, the function
f = f+pw. Hence, there are two strictly positive constants C' and sq such that,

mo  for all s > sg, the following inequality holds

T A
/ (830302 + spv?)e?* P drdadt < c(/ fre**®dadadt — SK/ / [kegsq’gb(vm)g]z;é dadt).
Q Q o Jo
(115)
On the other hand, we have

fPe*®drdadt < 2 fI2e®*®dxdadt + ||p]|? v|?e**®dzdadt ).
L>(Q)
Q Q Q
(116)
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Now, applying the Hardy-Poincaré inequality to the function v := e*®v, we

obtain
2
/ |v|2e**® dxdadt < / %dxdadt < C/ (e*®v)2dxdadt
Q QT Q
< C’/ eQSq)vid:Edadt + 052/ @2625¢\Il§v2dxdadt.
Q Q
Using this last inequality in (116)), it follows

/ |f|?e**®dadadt < 2 / |fI?e**®dadadt + C / e *v2dedadt

© © ? (117)

+082/ 02e25® 2592 drdadt.
Q

Substituting in ((115)), one can conclude

/ (s330% + spv?)e?* P dadadt < C’(/ |f|?e**® dzdadt
Q Q

T (A N
+ /ezs‘bvfcdxdadt + 52 /@2625‘I’62“0v2dxdadt — sn/ / [ke**® ¢(vy)?] z;; dadt).
Q Q o Jo

This completes the proof of Theorem [3.2)

Proof of Theorem[3.3 As before, to prove Theorem [3.3] one can assume, first
of all, that ;4 = 0. The case u # 0 follows as in the previous subsection.

If u = 0, the proof in the divergence case is formally similar to the one of
Theorem [3.2| (see also the proof of [31, Theorem 3.1]). Observe that, in this
case, integrations by parts are not immediately justified since the function k is
not C1[0, 1]. However, proceeding as in [31], one can motivate them.

In the non divergence case one can proceed as in the proofs of [3I, Theorems

3.1 and 3.2].
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