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A B S T R A C T   

The development of small molecules that selectively target the cannabinoid receptor subtype 2 (CB2R) is 
emerging as an intriguing therapeutic strategy to treat neurodegeneration, as well as to contrast the onset and 
progression of cancer. In this context, in-silico tools able to predict CB2R affinity and selectivity with respect to 
the subtype 1 (CB1R), whose modulation is responsible for undesired psychotropic effects, are highly desirable. 
In this work, we developed a series of machine learning classifiers trained on high-quality bioactivity data of 
small molecules acting on CB2R and/or CB1R extracted from ChEMBL v30. Our classifiers showed strong pre-
dictive power in accurately determining CB2R affinity, CB1R affinity, and CB2R/CB1R selectivity. Among the 
built models, those obtained using random forest as algorithm proved to be the top-performing ones (AUC in 
validation ≥0.96) and were made freely accessible through a user-friendly web platform developed ad hoc and 
called ALPACA (https://www.ba.ic.cnr.it/softwareic/alpaca/). Due to its user-friendly interface and robust 
predictive power, ALPACA can be a valuable tool in saving both time and resources involved in the design of 
selective CB2R modulators.   

1. Introduction 

Cannabinoid receptor 1 (CBR1) and cannabinoid receptor 2 (CB2R) 
are receptor subtypes belonging to the EndoCannabinoid System (ECS) 
[1,2], responsible for the network of signalling ECS-mediated involved 
in several disorders based on an inflammatory state, such as neurode-
generative diseases, cancer and neuropathic pain [3–5]. CB1R and CB2R 
are both G-protein-coupled receptors (GPCRs (Gi)) whose activation 
leads to the inhibition of the adenylate-cyclase enzyme and physiolog-
ically differently located: CB1R is mainly present in the Central Nervous 
System (CNS) while CB2R at the peripheral level [1,2]. Noteworthy, 
CB2R is overexpressed in inflammatory state, suggesting that devel-
oping selective CB2R agents may be an effective strategy for treating 
neuroinflammation [6,7]. In particular, there are pieces of evidence that 
the overexpression of CB2R in activated microglia and its activation may 
induce a final anti-inflammatory activity and, thus, neuroprotection 
without the psychotropic side effects typical of the central CB1R 

stimulation [7,8]. Furthermore, in other diseases where inflammation is 
the cause of the onset as cancer, covid-19, obesity or diabetes, the 
development of selective CB2R ligands may have a significant impact [9, 
10]. Thus, the need of developing CB2R selective agents to treat/combat 
inflammation is a challenging aim considering the utility to monitoring 
(diagnostic field) the disease progression detectable by the CB2R 
changed expression and to potentially treat the above-mentioned dis-
eases (therapeutic field). This is a challenging issue since the two re-
ceptors share a high sequence homology (44%) and it is not so easy to hit 
CB2R without modulating also the other subtype [11]. This increasing 
interest in targeting the CB2R for various pathological conditions has 
prompted numerous research groups to dedicate their efforts to 
designing CB2R ligands. Remarkably, a great impetus in this direction 
has been provided by the recent deposition of the first x-ray structures of 
human CB2R in the Protein Data Bank (PDB IDs: 5ZTY [12] and 6KPC 
[13]) hence providing the structural information required for using 
structure-based approaches such as for instance molecular docking. 
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Noteworthy, using these X-ray structures, we recently developed active 
agents as single target ligands [14] and MultiTarget Directed Ligands 
(MTDLs), driven by the importance of this class of compounds (MTDLs) 
in multifactorial disorders as the neurodegenerative ones [14–16]. 
Furthermore, Jing-Fang Yang et al. used molecular docking and mo-
lecular dynamics simulations to determine the binding poses of 
long-chain endocannabinoids within the CB1R and CB2R binding site, 
demonstrating the usefulness of structure-based strategies to design 
more effective long-chain endocannabinoids [17]. However, despite 
these achievements, reaching CB2R selectivity using standard 
structure-based approaches is still considered challenging due to the 
high similarity between the CBRs binding sites, so that alternative 
strategies are highly desirable such as advanced approaches based on 
MD simulations and binding free energy calculations, recently proved to 
be useful for reaching selectivity in the presence of similar binding sites 
[18–22]. Noteworthy, despite the increasing availability of extensive 
bioactivity data concerning CB2R and CB2R ligands in freely accessible 
repositories such as ChEMBL [23] and PubChem [24], only a few efforts 
have been dedicated to developing ligand-based models for assessing the 
affinity and selectivity of candidate compounds towards CBRs. To the 
best of our knowledge, the only existing examples are the recent studies 
conducted by Bian et al., Ruano-Ordás et al., Zhou et al., and Mizera 
et al. reporting machine learning (ML) models for predicting CB1R or 
CB2R activity [25–28]. Nevertheless, these classifiers are not straight-
forwardly useable by medicinal chemists interested in design CBRs li-
gands as they were not made available by the authors. The presented 
study aims to bridge this gap by developing and making freely accessible 
a novel computational workflow that effectively addresses selectivity 
issues about CB2R. Leveraging the bioactivity data from ChEMBL, we 
trained ML models using the atom pair (AP) fingerprint to accurately 
predict the affinity and selectivity profiles of CB2R ligands. More spe-
cifically, the models were trained to i) identify molecules with high af-
finity towards CB2R (pKi > 6.5 or pKi > 7) while excluding affinity 
towards CB1R (pKi > 5.5 or pKi > 6) and ii) develop a specific classifier 
for CB2R selectivity. We employed five different classification algo-
rithms to construct our models, which were subsequently tested and 
validated against two external datasets extracted from independent 
sources. Our models exhibited excellent performance levels, as demon-
strated by various widely accepted metrics and we made the top per-
forming ones freely accessible through a user-friendly web platform 
developed ad hoc and called ALPACA (https://www.ba.ic.cnr.it/softwa 
reic/alpaca/). ALPACA does not require any specific cheminformatics 
or programming skill, hence it can be considered a valuable resource for 
medicinal chemists seeking to design new selective CB2R modulators for 
cancer and neurodegeneration. Furthermore, ALPACA offers the capa-
bility to conduct virtual screening campaigns by inputting a compound 
library, enabling the identification of highly probable CB2R selective 
molecules with a high level of confidence. With its robust predictive 
power and user-friendly interface, we believe that ALPACA can serve as 
an invaluable tool to aid medicinal chemists in the design of selective 
CB2R modulators for cancer and neurodegeneration. Its ability to 
conduct virtual screening campaigns further enhances its usability and 
practicality. 

2. Materials and Methods 

2.1. Data set preparation 

6031 entries, annotated exclusively with Ki measures, were retrieved 
from the ChEMBL [23] v30 database according to the Target ID 
(ChEMBL253) assigned to the CB2R channel. To ensure data validity and 
following an approach successfully employed for other classifiers [29, 
30], the database was mined by retaining only those entries matching 
specific criteria: i) referring to assays conducted on human targets 
(“target_organism” = “Homo sapiens”), ii) marked as direct binding 
(“assay_type” = “B”), and iii) without any warning in the 

‘data_validity_comment’ field (5369 entries). Although associated with 
the CHEMBL253 target, 26 entries were eliminated as reporting in the 
assay description field the following sentence: “Displacement of 
[H3]-CP-55940 from human recombinant CB1R express in CHO cells” 
(11) and “Displacement of [3H]-SR141716A from human CB1R 
expressed in CHO membranes after 1 h by liquid scintillation counting” 
(15). SMILES were curated using an in-house automated procedure to 
remove organometallic and inorganic compounds, chemicals charac-
terized by unusual elements and mixtures, neutralizing salts, and ste-
reochemistry [29,31]. The neutralized SMILES were converted to a 
standardized QSAR-ready format using OpenBabel [32] implemented in 
the KNIME Analytics Platform [33] to generate Canonical SMILES. To 
standardize the data, we converted Ki values from molar concentration 
(M) to pKi (-log Ki). In the last step, duplicates were aggregated in 
unique entries and the standard deviation (σ) related to the pKi values 
was computed. For compounds (45) with a pKi mean σ greater than 2 
(outliers), the mean value was excluded from the study. Finally, after 
removing 1784 entries present as duplicates, the curated dataset con-
sists of 3514 chemicals (hereinafter referred to as CB2R-qsarDB) and the 
corresponding experimental values (pKi mean). It is worth noting that 
CB2R-qsarDB includes compounds without any recorded pKi values but 
noted as ‘not active’ in the comment field, therefore these have no af-
finity for CB2R. Using the criteria described above (i.e., the criteria for 
selecting validated entries from ChEMBL), we retrieved from 
ChEMBLv30 6140 entries with Ki measures for CB1R (Target ID: 218) 
and collected 5504 entries annotated as direct binding and free of 
warnings. Finally, using the automated procedure, we remove i) 1590 
duplicate entries and ii) 68 entries considered outliers (pKi mean with a 
σ > 2). In doing that, the final database (CB1R-qsarDB) contains 3846 
entries with the corresponding experimental value (pKi mean). Com-
pounds denoted as ‘not active’ in the comment field were considered to 
have no affinity for CB1R. It is important to highlight that as a result of 
the rigorous data curation process, a significant majority of the pKi 
values in the CB2R-qsarDB (78%) and CB1R-qsarDB (82%) datasets 
were derived from radioligand binding assays. These assays are widely 
recognized as the gold standard for obtaining reliable and high-quality 
affinity data. Fig. S1 (available in the Supporting Information), reports 
the pKi distribution of all the molecules belonging to CB2R-qsarDB and 
CB1R-qsarDB datasets. Notice that “not active” compounds were 
excluded from this analysis. It is worth to note, moreover, that both 
CB2R-qsarDB and CB1R-qsarDB exhibited high values of internal di-
versity (0.72 and 0.75, respectively) as calculated by the mean Tanimoto 
distances among each molecule and all others within the same dataset. 
This demonstrates that both datasets cover a wide range of chemical 
space. In this work, we selected two different thresholds for predicting 
CB2R (pKi = 6.5 and 7) and CB1R (pKi = 6 and 5.5) affinity. In other 
words, we aimed at discriminating molecules with high affinity (HAF) 
from those with low or absent affinity (LAF). Additionally, we merged 
CB1R-qsarDB and CB2R-qsarDB to create a new dataset, comprising 
those molecules having experimental data for both the receptors and 
high affinity for at least one of them. In particular, we removed all the 
compounds with no data for both receptors, as well as those with low 
affinity based on defined thresholds: pKi = 6.5 for CB2R and pKi = 5.5 
for CB1R. In doing that, this new database (CBRs-qsarSEL) consists of 
2183 compounds. These molecules were labelled based on the pKi dif-
ference computed as follows: 

pKi(CB2R− CB1R) = pKi(CB2R) − pKi(CB1R) (1) 

Specifically, we built three classes: i) no-sel for molecules with − 1 ≤
pKi(CB2R− CB1R) ≤ 1 (non-selective); ii) CB2R-sel for those with 
pKi(CB2R− CB1R) > 1, selective towards CB2R, and iii) CB1R-sel for the 
remaining compounds with pKi(CB2R− CB1R) < − 1. Finally, we represented 
each SMILES string in the database as an Atom pair fingerprint [34]. In 
doing that, each chemical substructure was codified by a binary repre-
sentation (1024 bits) to indicate the presence (1) or absence (0) of 
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specific characteristics. 

2.2. External set preparation 

We built two external sets using CB2R and CB1R data stored in 
Pubchem [24] (pub) and in the binding database (bdb) [35]. To achieve 
this, we downloaded 6098 (Pubchem) and 13,159 (BindingDB) entries 
annotated as CB2R Ki measures. For PubChem, we recovered the relative 
SMILES strings using an in-house Python script with the PubChemPy 
library, allowing chemical searches by the compound identifier (CID). 
We then curated these databases using the in-house KNIME Workflow 
described above to remove compounds already included in 
CB2R-qsarDB. As for the Binding DB is concerned, we also removed 
those compounds already present in PubChem. As a result, we built two 
External datasets (ES(pub)/ES(bdb)) consisting of 373 and 355 com-
pounds, respectively. As for CB1R data, we initially collected 6133 en-
tries from PubChem and 14,568 from Binding DB, which became 238 
(ES(pub)/268 (ES(bdb)) after the data curation pathway. We then 
merged the ES of CB2R and CB1R databases and followed the approach 
described above for building ES_CBRs. As a result, we created a new ES 
consisting of 129 (selective and non-selective) compounds based on 
their pKi(CB2R− CB1R) values. 

2.3. Data set splitting 

Following a rational splitting approach, we split each starting dataset 
(CB1R-qsarDB and CB2R-qsarDB) into a training set (TS) and a valida-
tion set (VS). Notably, the RDkit Picker Diversity node [36] was 
employed separately on the two classes (i.e., HAF and LAF) resulting 
from the considered affinity thresholds (pKi = 6.5 and pKi = 7 for CB2R; 
pKi = 6 and pKi = 5.5 for CB1R). This node utilizes the considered 
fingerprint, atom pair (AP) in our case, and picks 80% of the most 
diverse molecules based on the Tanimoto distance [37]. In doing so, the 
resulting TS included 80% of the total molecules while the remaining 
20% constituted the VS. Noteworthy, several studies underline the 
remarkable predictive power of these fingerprints in ligand-based 
models, being proved to be able to successfully capture essential struc-
tural details of small organic molecules [38]. We applied the same 
approach to the three classes of CBRs-qsarSEL (i.e., CB1R-sel (selective 
towards CB1R), CB2R-sel (towards CB2R), and no-sel (non-selective)). 
Table 1 summarizes, for each case, the final composition of TS, VS, and 

ES after the applicability domain (AD) evaluation [39,40] (see section 
2.6 for the methodological details) and the imbalanced ratio (IR) 
calculated as the ratio between the number of majority and minority 
instances [41]. Note that such a procedure allowed us to keep fixed the 
ratio between the classes in each subset. Furthermore, we assessed the 
coverage of the chemical space by the generated TS using a principal 
component analysis (PCA) [42]. To accomplish this, we calculated 16 
physicochemical descriptors for each ligand using the CDK toolkit and 
standardized them using the Normalizer KNIME node [43]. The PCA 
simplified the high-dimensional data deriving from the computed de-
scriptors and reduced it to two principal components (PC1 and PC2) that 
account for 70% of the variance. Then, we plotted each ligand in a 2D 
chemical space. 

2.4. Models implementation and validation 

We developed two sets of binary models differing for the considered 
affinity thresholds (pKi = 6.5 and pKi = 7 for CB2R; pKi = 6 and pKi =

5.5 for CB1R). We used five classification algorithms: Random forest 
(RF) [44], K-nearest neighbors (KNN) [45], Gradient boosting (GB) 
[46], eXtreme Gradient Boosting (Chen and Guestrin, 2016) [47], 
Multi-Layer Perceptron (MLP) [48]. We employed the following KNIME 
nodes: Tree Ensemble Learner/predictor, K Nearest Neighbor, Gradient 
Boosted Trees Learner/predictor, and RProp MLP Learner/predictor to 
develop RF, KNN, GB, and MLP classifiers [33]. As for XGB, we inte-
grated into KNIME an in-house python code employing Pandas and 
XGboost libraries. Finally, we developed the selectivity model (i.e., built 
on CBRs-qsarSEL data), based on the RF algorithm and using the Tree 
Ensemble Learner/predictor provided by the KNIME space. In all cases, 
we found the optimal algorithm setting for training the final model 
employing a hyperparameter tuning based on 5-fold cross-validation 
(CV) performance [49]. To do this, we performed a grid search [50], 
except for XGB and GB, where we used Bayesian optimization to reduce 
the computational cost [51]. Table S1, available as supplementary ma-
terial, reports the parameters chosen for each algorithm. 

2.5. Metrics 

Cooper’s statistics, including sensitivity (SE) (2), specificity (SP) (3), 
and balanced accuracy (BA) (4), were used to evaluate the performance 
of the classification models [52]. 

Table 1 
Partitioning schemes at each considered affinity threshold. For each dataset employed as training set (TS), validation set (VS) and external set (ES), the total number of 
chemicals (#), the number of high-affinity (HAF) ligands, the number of low-affinity (LAF) chemicals and the corresponding imbalanced ratio (IR) calculated as the 
ratio between the number of majority and minority instances are shown.  

CB2R Affinity threshold (pKi) 

6.5 7 

HAF LAF IR # HAF LAF IR # 

TS 1422 1358 1.05 2780 1094 1684 1.54 2778 
VS 377 357 1.06 734 320 416 1.30 736 
ES(pub) 231 142 1.63 373 181 192 1.06 373 
ES(bdb) 165 190 1.15 355 141 214 1.52 355 

CB1R 5.5 6 

HAF LAF IR # HAF LAF IR # 

TS 1566 1479 1.06 3045 1295 1755 1.36 3050 
VS 412 389 1.06 801 334 462 1.38 796 
ES(pub) 111 127 1.14 238 91 147 1.61 238 
ES(bdb) 162 106 1.52 268 132 136 1.03 268 

CBRs_sel Selectivity     

CB2R-sel CB1R-sel no-sel #     

TS 835 237 674 1746     
VS 209 59 169 437     
ES 58 21 50 129      
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SE =
TP

TP + FN
(2)  

SP=
TN

TN + FP
(3)  

BA=
SE + SP

2
(4)  

In equations (3) and (4), True Positives (TP) and True Negatives (TN) 
represent the correctly classified positive and negative samples by the 
models, respectively; false negatives (FN) and false positives (FP) are the 
misclassified positive and negative samples, respectively. The MCC 
(Matthews correlation coefficient) (5) was also used to indicate the 
quality of binary classification, with values ranging from − 1 to +1. A 
value of +1 defines a perfect performance, 0 is random, and − 1 repre-
sents complete misclassification [53]. 

MCC=
TP ∗ TN − FP ∗ FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (5) 

Finally, we computed the AUC (area under the curve) of the receiver 
operating characteristic (ROC) to evaluate the predictive accuracy of the 
developed models. The AUC ranges between 0 and 1, with 0 indicating 
that all the predictions are incorrect and 1 representing the ideal 
(optimal) performance (i.e., all predictions are correct). The AUC mea-
sures the ability of the models to rank positive compounds in the top 
positions compared to decoys. In particular, we evaluated the AUC for 
each model by classifying the compounds according to the estimated 
probability to be HAF returned by the developed classification model 
[54]. 

2.6. Applicability domain 

To ensure the reliability of the predictions [39,40] performed in both 
internal (VS) and external (ES) validation, we defined, for each devel-
oped model, the corresponding AD by using the Domain - Similarity 
node which enables the calculation of the Euclidean distances between 
the compounds belonging to the TS and those to be predicted [55,56]. In 
particular, this approach allows defining an AD threshold (ADP) 
following these steps: i) the computation of all the Euclidean distances 
between all the possible pairs of training compounds based on repre-
sentative descriptors (AP fingerprint in our case); ii) the creation of a set 
of all the distances lower than this average; iii) the calculation of the 
mean (d) and the standard deviation (σ) of this set and iv) the final 
definition of the ADP with this equation: 

ADP= d + Zσ (6)  

where Z is an empirical cut-off value equal to 0.5 by default [55,56]. In 
plain terms, based on this approach, predictions can be considered 
reliable only for those compounds returning a distance, with respect to 
the nearest neighbor compound of the TS, lower the computed APD 
threshold. 

3. Results and discussion 

As mentioned above, we developed 20 classifiers based on affinity 
data extracted from the ChEMBL database [23] (v30) and employing 
different ML algorithms, namely RF [44], KNN [45], GB [46], XGB [47], 
and MLP [48], available in the KNIME Analytics Platform (v. 4.5.2) [33]. 
In other words, for each affinity threshold used to distinguish HAF from 
LAF (pKi = 6.5 and pKi = 7 for CB2R; pKi = 6 and pKi = 5.5 for CB1R), 
five models were developed. For the sake of clarity, Fig. 1 displays the 

Fig. 1. Flowchart showing the main steps of the adopted computational workflow.  
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main steps of the adopted computational workflow. 
The dataset used to build the models consists of highly curated pKi 

values of 3846 (CB1R) and 3514 (CB2R) organic compounds along with 
the corresponding AtomPair (AP) fingerprints [34]. As depicted in 
Fig. 2, the datasets employed in this study encompass a diverse range of 
structural characteristics of CBRs ligands. 

It is noteworthy that CB1R and CB2R TS, generated through the 
rational splitting approach, exhibit a broad chemical space that not only 
overlaps with the relative VS but also encompasses the two employed 
ES, which originate from independent resources. This observation im-
plies that the developed models possess the capability to make pre-
dictions for compounds belonging to different chemical classes. 

3.1. Classification models of CB2R affinity 

3.1.1. pKi = 6.5 as affinity threshold 
Fig. 3A shows radar plots that compare the performances in VS of the 

CB2R affinity classifiers built using as threshold pKi = 6.5. 
For all the values of the quality metrics obtained from the developed 

models, we direct the interested reader to Table S2, which is available as 
supplementary material. It is worth noting that all the classifiers were 
trained using a balanced dataset, as evident looking at Table 1. In 
particular, the employed TS and VS returned an IR (ratio between the 
number of majority and minority instances) [41] equal to 1.05 and 1.06, 
respectively. 

Remarkably, RF, GB, and XGB emerged as the algorithms returning 
the top-performing models, being responsible for the highest AUC (0.97) 
and very similar SP and SE values (difference ranging from 0.04 to 0.06). 
Of note are also the very high MCC (0.80) and BA (0.90) values, strongly 
supporting the high predictive power of the developed classifiers. The 

performed 5-fold cross validation (5-CV) further confirms the robustness 
of the models built using RF, GB and XGB as algorithms, being all 
responsible for BA ≥ 0.78 and AUC ≥0.86 (Fig. 4A and Table S3). 

Encouraged by these results, these classifiers were challenged on two 
ES including 373 (ES(pb)) and 355 (ES(bdb)) compounds extracted from 
PubChem [24] and Binding DB [35] repositories, respectively. Although 
it is well known that validating predictive models on compounds coming 
from external and independent resources is particularly challenging 
[57], the models returned satisfactory performances, with BA values 
ranging from 0.76 (XGB) to 0.80 (RF) and from 0.73 (RF) to 0.74 (XGB) 
on ES(pub) (Fig. 5A and Table S4) and ES(bdb) (Fig. 6A and Table S4), 
respectively. 

In addition, the robustness and versatility of the models was sup-
ported also by the computed AUC values, all ≥0.82, irrespective of the 
considered algorithm and ES. 

3.1.2. pKi = 7 as affinity threshold 
Satisfactory performances in validation were obtained also when pKi 

= 7 was used as CB2R affinity threshold (Fig. 3B and Table S2) with, 
again, RF, GB, and XGB ensuring the highest BA (≥0.90), AUC (≥0.96) 
and MCC (≥0.81). Noteworthy, herein the use of a higher affinity 
threshold (pKi = 7 vs. pKi = 6.5) makes the TS slight unbalanced (IR ≈
1.5). It is worth mentioning that according to previous studies, models 
developed using a TS with an IR of 1.5 or less do not show significant 
improvement from the use of resampling techniques [58]. Therefore, in 
this study, these approaches were not considered for these models. It is 
interesting to note that the top-performing models demonstrate com-
parable values of sensitivity (SE) and specificity (SP), with differences 
ranging from 0.03 to 0.05. As previously experienced, the 5-fold 
cross-validation (Fig. 4B and Table S3) and the external validation 

Fig. 2. PCA based on the physicochemical properties returned by the compounds belonging to TS, VS, and ES: A) CB2R affinity classifiers (pKi = 6.5 as affinity 
threshold); B) CB2R affinity classifiers (pKi = 7); C) CB1R affinity classifiers (pKi = 5.5) and D) CB1R affinity classifiers (pKi = 6). 
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Fig. 3. Radar plots comparing the performance of the 
models on the VS using pKi thresholds of A) 6.5 for 
CB2R; B) 7.0 for CB2R; C) 5.5 for CB1R and D) 6.0 for 
CB1R. For each model, the following statistics are 
reported: Balanced Accuracy (BA), Sensitivity (SE), 
Specificity (SP), Matthews Correlation Coefficient 
(MCC) and Area Under the Curve (AUC). The top- 
performing model (RF) is represented by a solid 
line, and its statistics are reported within parentheses. 
All the others are depicted by dotted lines.   

Fig. 4. Radar plots comparing the performance of the 
models in 5-fold cross-validation (5-CV) using pKi 
thresholds of A) 6.5 for CB2R; B) 7.0 for CB2R; C) 5.5 
for CB1R and D) 6.0 for CB1R. For each model, the 
following statistics are reported: Balanced Accuracy 
(BA), Sensitivity (SE), Specificity (SP), Matthews 
Correlation Coefficient (MCC) and Area Under the 
Curve (AUC). The top-performing model (RF) is rep-
resented by a solid line, and its statistics are reported 
within parentheses. All the others are depicted by 
dotted lines.   
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Fig. 5. Radar plots comparing the performance of the 
models on the ES extracted by Pubchem (ES(pub)) 
using pKi thresholds of A) 6.5 for CB2R; B) 7.0 for 
CB2R; C) 5.5 for CB1R and D) 6.0 for CB1R. For each 
model, the following statistics are reported: Balanced 
Accuracy (BA), Sensitivity (SE), Specificity (SP), 
Matthews Correlation Coefficient (MCC) and Area 
Under the Curve (AUC). The top-performing model 
(RF) is represented by a solid line, and its statistics are 
reported within parentheses. All the others are 
depicted by dotted lines.   

Fig. 6. Radar plots comparing the performance of the 
models on the ES extracted by BindingDB (ES(bdb) 
using pKi thresholds of A) 6.5 for CB2R; B) 7.0 for 
CB2R; C) 5.5 for CB1R and D) 6.0 for CB1R. For each 
model, the following statistics are reported: Balanced 
Accuracy (BA), Sensitivity (SE), Specificity (SP), 
Matthews Correlation Coefficient (MCC) and Area 
Under the Curve (AUC). The top-performing model 
(RF) is represented by a solid line, and its statistics are 
reported within parentheses. All the others are 
depicted by dotted lines.   
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using two independent ES (Fig. 5B and 6B and Table S4) support the 
robustness and generalizability of these models. Indeed, BA values reach 
a maximum of 0.76 (XGB) and 0.74 (XGB) when ES(pub) and ES(bdb) are 
considered, respectively. Impressive AUC values were also observed, 
being all above 0.80 (Table S4). 

3.2. Classification models of CB1R affinity 

3.2.1. pKi = 5.5 as affinity threshold 
Fig. 3C reports the performances in validation obtained from the 

developed CB1R affinity classifiers using as affinity threshold pKi = 5.5 
(see Table S2 for reading the values of the quality metrics returned by all 
the models). It is important to note that all the models were trained 
using a dataset where the number of LAF examples slightly exceeded 
that of HAF examples, as indicated in Table 1 (IR = 1.06 for both TS and 
VS). Once again, RF, GB, and XGB emerged as the top-performing al-
gorithms, displaying high BA (0.84), MCC (0.70) and AUC (≥0.95) 
values during the validation process. Notably, these classifiers maintain 
their high predictive power during the performed 5-fold cross-validation 
(BA = 0.83 and AUC = 0.91), as reported in Fig. 4C and Table S3. 
Satisfactory performances were also achieved in external validation, 
with AUC values ranging from 0.82 to 0.85 and BA values ranging from 
0.73 to 0.75 ((Fig. 5C and 6C and Table S4). 

3.2.2. pKi = 6 as affinity threshold 
For the CB1R classifiers developed using a pKi of 6 as affinity 

threshold, the findings discussed earlier were further confirmed. Firstly, 
RF, GB, and XGB are the top-performing algorithms, as responsible for 
high values of BA ranging from 0.88 to 0.90, MCC ranging from 0.74 to 
0.78, and an AUC of 0.97 during the validation process (Fig. 3D and 
Table S2). Secondly, these models maintained their predictive power 
after undergoing 5-CV, as indicated by the BA value of 0.83 and AUC of 
0.91 (Fig. 4D and Table S3). Thirdly, the models demonstrated the 
ability to accurately predict compounds from the two considered ES, as 
reflected in the BA values ranging from 0.77 to 0.82 and AUC values 
from 0.84 to 0.87 (Fig. 5D and 6D and Table S4). 

3.3. Algorithm selection 

Taken as a whole, all the discussed data put forward the RF, GB and 
XGB algorithms as those of choice for obtaining reliable CB1R and CB2R 
affinity predictions. Remarkably, this finding is confirmed irrespective 
of the considered affinity threshold and receptor. Additionally, we 
developed a consensus model that utilizes the majority voting rule to 
assign a sample to the most frequent class. However, it is noteworthy 
that the results obtained from this model do not exhibit significant im-
provements compared to those obtained from a single model, as depic-
ted in Table S5. As a result, we chose to focus on selecting the best model 
rather than combining them through consensus. To make the final se-
lection, we prioritized the area under the curve (AUC), which indicates 
the ability of the models to differentiate between HAF and LAF. Based on 
obtained results, the RF algorithm appears the most promising for pre-
dicting CB1R and CB2R affinities. It displayed the highest AUC values for 
both receptors across all affinity thresholds and validation procedures 
(AUC ranging from 0.96 to 0.97 in validation and from 0.87 to 0.91 in 5- 
CV for CB2R and CB1R respectively). Encouraged by these results, we 
selected RF-based classifiers for a successive evaluation of performance 
stability. 

3.4. Stability evaluation 

In order to assess the stability of the selected RF-based models, an 
additional analysis was conducted. Specifically, for each model, 100 
additional classifiers were constructed using different randomly selected 
TS and VS. It is worth noting that the data splitting was performed ac-
cording to the methodology outlined in the Materials and Methods 

section. For each additional model, BA, SE, SP, AUC and MCC were 
computed, and the relative standard deviation evaluated to gauge the 
stability of these classifiers. Fig. 7A illustrates the average BA, AUC, SE, 
SP, and MCC values, along with their corresponding standard 
deviations. 

It is evident that all the classifiers exhibit robustness and indepen-
dence from the composition of the TS and VS. Notably, the computed 
standard deviations were consistently low (≤0.02). Additionally, the 
box plot in Fig. 7B–D demonstrates a symmetrical distribution of per-
formance metrics across the 100 models, with no significant outliers. 
The interquartile ranges (IQR) ranged from 0.01 to 0.03, indicating a 
narrow distribution of the obtained performance metrics around the 
mean. Overall, the stability assessment provides compelling evidence 
that the proposed models are robust and reliable, as they do not suffer 
from overfitting to the TS and be well-generalized to unseen data. 

3.5. Classification model of CB2R/CB1R selectivity 

Based on the developed models, a compound can be predicted to 
have high affinity towards CB2R (pKi > 7 or 6.5) and significant affinity 
towards CB1R (pKi > 6 or 5.5). In such cases, additional information on 
CB2R selectivity becomes valuable. To address this, we developed an RF- 
based model capable of directly predicting CB2R/CB1R selectivity 
rather than affinity towards a specific receptor only. The model was built 
using the CBRs-qsarSEL dataset, which includes 2183 compounds along 
with their relative pKi(CB2R− CB1R) values. Table 2 presents the quality 
metrics obtained from the model through 5-fold cross-validation, vali-
dation and external validation using an evaluation set consisting of 129 
compounds (ES_CBRs), both selective and non-selective (detailed in the 
Materials and Methods section). 

Notably, the classifier handles three classes of compounds: non- 
selective (no-sel), CB2R selective (CB2R-sel), and CB1R selective 
(CB1R-sel). Remarkably, the model demonstrated satisfactory and 
balanced performance in predicting all the three classes during valida-
tion. It achieved BA and MCC values above 0.80 and 0.65, respectively, 
with consistently high AUC values exceeding 0.90. The model also 
exhibited stability in 5-CV, with an average BA and MCC of 0.80 and 
0.60, respectively. Importantly, the reliability and generalizability of the 
model were confirmed during external validation, where BA ranged 
from 0.70 for the prediction of the no-sel class (non-selective com-
pounds) to 0.87 for the CB1R-sel class (CB1R selective compounds). 
Importantly, AUC values ranged from 0.74 (no-sel class) to 0.87 (CB1R- 
sel class), further supporting the model ability to distinguish between the 
three classes. 

3.6. ALPACA: a freely accessible web platform 

The high-performing classifiers, developed using the Random Forest 
(RF) algorithm, are available for use on a freely accessible web-platform 
called ALPACA (A machine Learning Platform for Affinity and selectivity 
profiling of CAnnabinoids receptors modulators), accessible at http 
s://www.ba.ic.cnr.it/softwareic/alpaca/. To use the platform, users 
have two options. They can either draw a 2D structure of their query 
molecule using the JSME canvas applet [59] or input a SMILES string 
directly into the provided text field. In addition, users can import a.txt 
file that contains a list of SMILES strings for virtual screening purposes 
by clicking on the “MASSIVE” button. Once the process is complete, the 
tool generates predictions concerning the affinity of the query towards 
CB2R and CB1R. For CB2R, the predictions are based on a threshold of 
pKi = 6.5 and pKi = 7, while for CB1R, the threshold is set at pKi = 5.5 
and pKi = 6. The results are displayed as “YES” if the affinity exceeds the 
specified threshold and “NO” if it falls below. Furthermore, the tool 
provides information on the reliability of the predictions, taking into 
account the considered AD. If the query is predicted to be affine towards 
both CB2R and CB1R (above the respective thresholds), the tertiary 
classifier of CB2R/CB1R selectivity also generates a prediction. Users 
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have the option to download the output as a.csv file. It is important to 
note that links to download the obtained data are sent to the user’s 
registered email address. Additionally, the “History” page keeps a record 
of all user executions, including input SMILES and corresponding 
output. Fig. 8 displays the output page generated by the tool when using 
a CB2R selective ligand, published in April 2023 [60], which is not 
present in ChEMBLv30. 

4. Conclusions 

Although highly desirable for treating cancer and neuro-
degeneration, designing selective CB2R ligands is extremely challenging 
due to the very high similarity with the CB1R binding site, whose 
modulation is responsible for severe psychotropic side-effects. To 
address this issue and provide a convenient tool for medicinal chemists 
working in this field, we developed a series of classifiers to predict i) 
CB2R affinity, ii) CB1R affinity, and iii) CB2R/CB1R selectivity. We 
applied the best data-curation practices on bioactivity data reported in 
ChEMBLv30 on human CB1R and human CB2R and employed five ML 
algorithms (RF, KNN, GB, XGB and MLP) to develop, based on AP fin-
gerprints, binary models differing for the considered affinity threshold. 

The analysis of the obtained performances in both internal and external 
validation put forward the RF, GB and XGB algorithms as those of choice 
for obtaining reliable CB1R and CB2R affinity predictions (BA and MCC 
in validation ranging from 0.84 to 0.91 and from 0.70 to 0.82, respec-
tively). Notably, this finding held true regardless of the affinity 
threshold or receptor under consideration. Among those, RF was 
selected as the top-performing algorithm being responsible for the 
highest AUC values in validation (≥0.96) and for this reason employed 
to build a tertiary classifier of CB2R/CB1R selectivity displaying satis-
factory performances (BA ≥ 0.83 and AUC ≥0.90). Altogether, these 
encouraging results prompted us to make available the top-performing 
classifiers in a user-friendly web platform developed by our group and 
called ALPACA (https://www.ba.ic.cnr.it/softwareic/alpaca/). 
ALPACA, which can be used in combination with structure-based stra-
tegies, offers the capability to conduct virtual screening campaigns by 
inputting a compound library, enabling the identification of highly 
probable CB2R selective molecules with a high level of confidence. It is 
worth noting that our approach differs from those employed in similar 
papers [26,28] in two key aspects. Firstly, we developed classifiers using 
specific thresholds instead of regression models. Secondly, we have 
made the developed predictive tools available on a freely accessible 

Fig. 7. A) Table showing the mean of each evaluated 
metric (BA, SP, SE, AUC, MCC) and the relative 
standard deviation returned by the performed stabil-
ity evaluation applied to the classifiers developed 
using RF as algorithm; B-C-D-E) Box plot reporting 
the stability evaluation results. Each box represents 
the distribution of values for a given metric at the 
different pKi threshold: B) 6.5 for CB2R; C) 7.0 for 
CB2R; D) 5.5 for CB1R and E) 6.0 for CB1R. The 
horizontal black line within each box represents the 
median value. The top and bottom of the coloured 
box represent the first and third quartiles, respec-
tively. The black horizontal lines (whiskers), upper 
the box limits, represent observations within 1.5 
times the Q1 and Q3. The point above the whiskers 
illustrates the outlier (observations above 1.5 times 
the Q1 and Q3).   

Table 2 
Quality metrics returned by the CB1R-CB2R_sel model on validation, 5-CV and external validation.  

RF Selectivity BA SE SP MCC AUC TP FP TN FN 

Validation CB1R-sel 0.88 0.78 0.97 0.76 0.95 46 11 367 13 
CB2R-sel 0.84 0.88 0.81 0.69 0.90 183 43 185 26 
no-sel 0.83 0.75 0.90 0.66 0.90 127 27 241 42 

5-CV CB1R-sel 0.84 0.71 0.96 0.71 0.94 171 49 1465 69 
CB2R-sel 0.81 0.83 0.80 0.63 0.90 694 188 731 141 
no-sel 0.81 0.75 0.87 0.62 0.90 507 145 930 172 

External Validation CB1R-sel 0.87 0.76 0.98 0.79 0.87 12 2 106 5 
CB2R-sel 0.74 0.74 0.73 0.47 0.77 43 19 52 15 
no-sel 0.70 0.62 0.77 0.39 0.74 31 18 61 19  
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web-platform, eliminating the need for specialized cheminformatics or 
programming skills. Based on the discussed data, we firmly believe that 
ALPACA can serve as a valuable tool for medicinal chemists interested in 
designing selective CB2R modulators for the treatment of cancer and 
neurodegenerative conditions. 

Data and software availability 

The following files are made available in the supporting information.  

• CB2R-qsarDB.xlsx Excel file containing the 3514 SMILES strings of 
the chemicals belonging to the CB2R-qsarDB dataset and the corre-
sponding experimental values (pKi mean).*  

• CB1R-qsarDB.xlsx Excel file containing the 3846 SMILES strings of 
the chemicals belonging to the CB1R-qsarDB dataset and the corre-
sponding experimental values (pKi mean).*  

• CBRs-qsarSEL.xslx Excel file containing the 2183 SMILES strings of 
the chemicals belonging to the CBRs-qsarSEL dataset and the corre-
sponding experimental values for CB2R and CB1R (pKi mean).  

• ES(pub)_CB2R.xslx Excel file containing the 373 SMILES strings of 
the chemicals belonging to the ES(pub)_CB2R dataset and the cor-
responding experimental values (pKi mean).*  

• ES(bdb)_CB2R.xslx Excel file containing the 355 SMILES strings of 
the chemicals belonging to the ES(bdb)_CB2R dataset and the cor-
responding experimental values (pKi mean).*  

• ES(pub)_CB1R.xslx Excel file containing the 238 SMILES strings of 
the chemicals belonging to the ES(pub)_CB1R dataset and the cor-
responding experimental values (pKi mean).*  

• ES(bdb)_CB1R.xslx Excel file containing the 268 SMILES strings of 
the chemicals belonging to the ES(bdb)_CB1R and the corresponding 
experimental values (pKi mean).*  

• ES_CBRs.xslx Excel file containing the 129 SMILES strings of the 
chemicals belonging to the ES_CBRs dataset and the corresponding 
experimental values for CB2R and CB1R (pKi mean). 

Please notice that within these files * NA in the field of pKi indicates 

the absence of any affinity. 
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S. Kuhn, T. Pluskal, M. Rojas-Chertó, O. Spjuth, G. Torrance, C.T. Evelo, R. Guha, 
C. Steinbeck, The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, 
molecular formulas, and substructure searching, J. Cheminf. 9 (2017) 33, https:// 
doi.org/10.1186/s13321-017-0220-4. 

[44] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32, https://doi.org/ 
10.1023/A:1010933404324. 

[45] N.S. Altman, An introduction to kernel and nearest-neighbor nonparametric 
regression, Am. Statistician 46 (1992) 175–185, https://doi.org/10.1080/ 
00031305.1992.10475879. 

[46] J.H. Friedman, Greedy function approximation: a gradient boosting machine, Ann. 
Stat. 29 (2001) 1189–1232, https://doi.org/10.1214/aos/1013203451. 

[47] T. Chen, C. Guestrin, XGBoost: a scalable tree boosting system, in: Proceedings of 
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and 
Data Mining, Association for Computing Machinery, New York, NY, USA, 2016, 
pp. 785–794, https://doi.org/10.1145/2939672.2939785. 

[48] M. Kubat, Neural networks: a comprehensive foundation by simon haykin, 
macmillan, 1994, ISBN 0-02-352781-7, Knowl. Eng. Rev. 13 (1999) 409–412, 
https://doi.org/10.1017/S0269888998214044. 

[49] P. Refaeilzadeh, L. Tang, H. Liu, Cross-validation, in: L. LIU, M.T. ÖZSU (Eds.), 
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