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Università degli Studi di Bari,

Via E. Orabona, 4, 70125 Bari, Italy
∗vitonofrio.crismale@uniba.it

†stefano.rossi@uniba.it
‡paola.zurlo@uniba.it

Received 11 February 2022
Revised 8 November 2022
Accepted 9 November 2022

Published 19 December 2022
Communicated by Michael Skeide

Local actions of PN, the group of finite permutations on N, on quasi-local algebras are
defined and proved to be PN-abelian. It turns out that invariant states under local
actions are automatically even, and extreme invariant states are strongly clustering.
Tail algebras of invariant states are shown to obey a form of the Hewitt and Savage
theorem, in that they coincide with the fixed-point von Neumann algebra. Infinite graded
tensor products of C∗-algebras, which include the CAR algebra, are then addressed as
particular examples of quasi-local algebras acted upon PN in a natural way. Extreme
invariant states are characterized as infinite products of a single even state, and a de
Finetti theorem is established. Finally, infinite products of factorial even states are shown
to be factorial by applying a twisted version of the tensor product commutation theorem,
which is also derived here.
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1. Introduction

Distributional symmetries for families of random variables concern invariance of any
finite joint distribution of them under some measurable transformations. For their
importance in probability theory, invariance under shifts, finite permutations or
rotations are certainly worth mentioning. In these cases, the random variables are,
respectively, named stationary, exchangeable or rotatable, and the reader is referred
to Ref. 15 for an extensive account of the subject in the setting of commutative
probability spaces. The investigation of distributional symmetries was initiated by
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de Finetti’s celebrated theorem, which shows that sequences of two-point valued
exchangeable random variables are conditionally independent and identically dis-
tributed. Phrased differently, any finite joint distribution of them is obtained by
randomization of the binomial distribution. This result has since found several gen-
eralizations. To name but one of these, the probability measures on the Tychonov
product of compact Hausdorff spaces which are invariant under the action of finite
permutations are in fact mixtures of product measures, as proved by Hewitt and
Savage in Ref. 14.

Now the C∗-algebraic counterpart of Tychonov products is provided by the
theory of tensor products of C∗-algebras. Therefore, it is no wonder that the earliest
non-commutative settings for the generalizations of de Finetti’s theorem came from
the infinite tensor products of a given unital C∗-algebra. In Ref. 20, Størmer carried
out a thorough analysis of all permutation-invariant states of the (minimal) infinite
tensor product ⊗NA of an assigned C∗-algebra A. Among the main results obtained
in that paper, it is worthwhile to mention that the extreme points of the (weakly-∗)
compact convex set of such states may be identified with infinite product states of
a single state on A. Furthermore, the convex set in question is actually a Choquet
simplex, which allows for a decomposition of any invariant state into an integral
of extreme invariant states with respect to a unique barycentric measure. To our
knowledge, though, it was not until the early 90s that this line of research got a new
lease of life, when far more emphasis was laid on the probabilistic interpretation.
In this respect, Accardi and Lu proved a general non-commutative version of the
Hewitt and Savage theorem.2 In a later paper,1 connections between exchangeability
and singleton conditions were also established. Not long after, Köstler obtained a
non-commutative de Finetti theorem within the formalism of von Neumann algebras
in Ref. 16, where exchangeability is seen to imply independence with respect to the
tail algebra, although the converse may fail to hold, as remarked by the author
himself. Finally, also motivated by the key role played in physics by the canonical
anti-commutation rules, Crismale and Fidaleo provided a version of the theorem for
states right on the CAR algebra.8 Although the CAR algebra is isomorphic with the
UHF algebra of type 2∞ and is thus an infinite tensor product of M2(C) with itself,
the de Finetti theorem proved in the last mentioned paper cannot be reached by an
application of the results in Ref. 20, not least because the action of the permutations
is not the same as the one considered by Størmer. In fact, the results obtained there
take into account the canonical Z2-grading of the CAR algebra as well. In particular,
any symmetric state turns out to be even, namely grading-invariant. Furthermore,
extreme symmetric states feature the same properties as in the work of Størmer.
The novelty, however, is that the product is now orange in the sense of Z2-graded
C∗-algebras, as first considered by Araki and Moriya in Ref. 4, and the factor state
must be an even state on M2(C), thought of as a graded C∗-algebra with even
(odd) part given by diagonal (anti-diagonal) matrices, for the product state to even
make sense. Unlike what happens with usual tensor products, the action of PN, the
group of finite permutations on N, on the CAR algebra is no longer asymptotically
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abelian. Nevertheless, the corresponding C∗-dynamical system is PN-abelian, see
Ref. 18 for the definition. It is ultimately this circumstance which guarantees that
the set of symmetric states is still a Choquet simplex.

This paper in part aims to resume the analysis carried out in Ref. 8 for the
CAR algebra in order to frame it in the broader scope of quasi-local algebras, the
interest in which is undoubtedly justified by the many appearances they make in
quantum field theory and statistical mechanics.

In particular, in Sec. 2, we first single out actions of PN which are fully com-
patible with the local structure of the algebras addressed, see Definition 2.3. More
in detail, Proposition 2.4 shows that any such action is PN-abelian. Moreover, its
invariant states are automatically even, with extreme states being weakly cluster-
ing. These are then shown to be strongly clustering in Theorem 2.6. Tail algebras
of invariant states are then given a good deal of attention. In Proposition 2.9, we
show that the tail algebra of an extreme invariant state is always trivial. Tail alge-
bras corresponding to non-extreme invariant states, too, can be analyzed in full
detail. In the first place, their structure is disciplined by a form of the Hewitt and
Savage theorem, in so far as they coincide with the PN-invariant part of the center
of the von Neumann algebra generated by the given state. As a consequence, they
are always abelian and decompose into a direct integral of ergodic components, as
proved in Proposition 2.10. The section ends with Propositions 2.12 and 2.13, which
provide de Finetti-type theorems for nets of local algebras. In particular, under the
assumption of additivity of the net, Proposition 2.13 characterizes symmetry of
states in terms of a condition reminiscent of identical distribution and conditional
independence of the local algebras with respect to the conditional expectation onto
the tail algebra.

Section 3 is devoted to infinite Z2-graded tensor products as distinguished and
particularly well-behaved instances of quasi-local algebras. After providing a quick
exposition of infinite graded tensor products, we show in Example 3.2 how the
CAR algebra can be recovered as a suitable infinite product of this type. The group
of finite permutations acts in a natural way on infinite graded tensors products.
Invariant states for this action can be given a more accomplished description as
opposed to the case of quasi-local algebras. In particular, extreme states can be
identified with infinite products of a single even state, Proposition 3.5. Moreover,
as shown in Proposition 3.6, the action also turns out to be weakly ergodic when
it is the minimal product to be dealt with. Finally, infinite graded tensor products
offer quite a natural setting to state a fully-fledged version of de Finetti’s theorem,
for in this case invariant states correspond to exchangeable quantum stochastic
processes, see also Refs. 9 and 10. This is done in Theorem 3.9, where such processes
are characterized in terms of identical distribution and conditional independence.

In Sec. 4, we further develop the analysis of infinite product states by showing
pureness (factoriality) when each factor is pure (factorial), Proposition 4.6 (Propo-
sition 4.10). The proof of these results heavily relies on a twisted version of the
well-known tensor product commutation theorem, which is obtained in Theorem 4.4
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for the tensor product of two graded von Neumann algebras, and in Theorem 4.5
for the tensor product of infinitely many von Neumann algebras. Finally, following
the analysis by Størmer in Ref. 20 on the type of factor, one can obtain the GNS
representation of product states applied to the present framework, and the relative
results are gathered in Proposition 4.12.

2. Symmetric States on Quasi-Local Algebras

By a Z2-graded C∗-algebra, we mean a pair (A, θ) made up of a (unital) C∗-algebra
and a (unital) ∗-automorphism θ which is involutive, that is θ2 = idA. Setting
A1 := {a ∈ A : θ(a) = a} and A−1 := {a ∈ A : θ(a) = −a}, one easily sees that A

decomposes as

A = A1 ⊕ A−1,

where the direct sum is topological, and

(Ai)∗ = (A∗)i, AiAj ⊂ Aij , i, j = 1,−1.

Note that A1 is a (unital) C∗-subalgebra of A, while A−1 is only an involutive closed
subspace of A. The subspaces Ai, i = 1,−1 are often referred to as the homogeneous
components of A, and correspondingly any element of Ai is called a homogeneous
element of A. For any homogeneous element x ∈ A±1 we denote its grade by

∂(x) = ±1.

It is easy to see that considering an involutive ∗-automorphism θ on A amounts to
assigning a decomposition of A into a topological direct sum as above. Indeed, if
one is given such a decomposition, then the corresponding automorphism θ can be
defined as

θ�A1 := idA1 , θ�A−1 := −idA−1 .

Note that

εθ :=
1
2
(idA + θ),

defines a faithful conditional expectation onto A1. When there is no risk of confu-
sion, we will suppress the subscript from εθ and simply write ε. The ∗-subalgebra
A+ := A1 and the subspace A− := A−1 are commonly referred to as the even part
and the odd part of A, respectively. Clearly, any a ∈ A can be written as a sum
a = a+ + a−, with a+ ∈ A+, a− ∈ A−, and this decomposition is unique. Taking
θ = idA, one sees that any ∗-algebra A is equipped with a trivial Z2-grading. Here,
A+ = A and A− = {0}.

A simple example of Z2-graded ∗-algebra is obtained by taking a Hilbert space
H and a bounded self-adjoint unitary U on H. The adjoint action adU (·) := U ·U∗

is an involutive ∗-automorphism which induces a Z2-grading on B(H).

2250028-4



March 15, 2023 14:33 WSPC/S0219-0257 102-IDAQPRT 2250028

De Finetti-type theorems on quasi-local algebras

Let (Ai, θi), i = 1, 2, be two Z2-graded ∗-algebras. A linear map T : A1 → A2 is
said to be even if it is grading-equivariant, i.e.

T ◦ θ1 = θ2 ◦ T.
When θ2 = idA2 , the map T :A1 → A2 is even if and only if it is grading-invariant,
that is T ◦ θ1 = T or, equivalently, if T �A1,−= 0. When (A2, θ2) = (C, idC), a
functional f : A1 → C is even if and only if f ◦ θ = f .

In the sequel, we will denote by S+(A) the weakly-∗ compact convex subset of all
even states. Even states play a role in giving a Z2-grading to their GNS structures.
More in detail, suppose that (A, θ) is a Z2-graded C∗-algebra, and ϕ ∈ S+(A).
Let (Hϕ, πϕ, ξϕ, Vθ,ϕ) be the GNS covariant representation of ϕ, where the unitary
self-adjoint Vθ,ϕ is defined by

Vθ,ϕπϕ(a)ξϕ := πϕ(θ(a))ξϕ a ∈ A.

Then, (B(H), adVθ,ϕ ) is a Z2-graded C∗-algebra. If ϕ is a pure state, though,
evenness is no longer necessary for a unitary on Hϕ implementing the grading to
exist. In fact, all is needed is that πϕ and πϕ◦θ are not disjoint representations.a

More precisely, one has the following.

Proposition 2.1. Let ϕ ∈ S(A) be a pure state such that πϕ and πϕ◦θ are not
disjoint. Then there exists a self-adjoint unitary U ∈ πϕ(A+)′′ such that

Uπϕ(a)U∗ = πϕ(θ(a)), a ∈ A and 〈Uξϕ, ξϕ〉 ≥ 0.

Proof. Same proof as Lemma 3.1 in Ref. 4.

We can now move on to consider quasi-local algebras as notable examples of
Z2-graded C∗-algebra. To this aim, denote by P0(N) the set of all finite subsets
of N.

Definition 2.2. By a quasi-local algebra over P0(N) we mean a unital Z2-graded
C∗-algebra (A, θ), where A is the inductive limit of a net {A(I) : I ∈ P0(N)} of local
unital C∗-subalgebras A(I) ⊂ A such that

(i) for every I, J ∈ P0(N) with I ⊂ J , one has A(I) ⊂ A(J);
(ii) for every I ∈ P0(N), one has θ(A(I)) = A(I);
(iii) for every I, J ∈ P0(N) with I ∩ J = ∅, and homogeneous x ∈ A(I) and

y ∈ A(J), x and y commute when one of them is even, and anticommute when
they are both odd.

We should mention that the net of local algebras can of course be indexed by
more general sets than P0(N), see e.g., Ref. 6. However, the choice of P0(N) made
here is the most appropriate insofar as we want our quasi local-algebra to be acted

aThis means that there exists a non-null intertwining operator T , i.e. a 0 �= T ∈ B(Hϕ,Hϕ◦θ)
such that Tπϕ(a) = πϕ◦θ(a)T for all a ∈ A.
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upon by PN, the group of finite permutations of N. More precisely, throughout this
section we will be focusing on local actions of PN on A, as defined below.

Definition 2.3. A local action of PN on a quasi-local C∗-algebra A is a group
homomorphism α : PN → Aut(A) such that

(i) the action is grading-equivariant, that is ασ ◦ θ = θ ◦ασ, for every permutation
σ ∈ PN;

(ii) for every finite subset I ⊂ N and σ ∈ PN, one has ασ(A(I)) = A(σ(I)).

We next show that the states of A which are invariant under such an action of PN

enjoy good properties. First, they are automatically even. Second, they are weakly
(and in fact strongly) clustering as soon as they are extreme. These properties are
proved in the propositions below. Before stating them, though, some notation and
definitions need to be set first.

A state ω on A is called α-invariant if it is invariant under the action of all
automorphisms ασ, that is if ω ◦ασ = ω for every σ ∈ PN. The set of all α-invariant
states, which we denote by SPN(A), is weakly-∗ compact and convex. Its extreme
states are called the ergodic states for the action of PN. The set of all invariant
extreme states will be denoted by E(SPN(A)). We will be using the terms invariant
states and symmetric states interchangeably throughout the paper.

If now (Hω, πω, ξω) is the GNS triple associated with a given state ω in SPN(A),
the action of every ασ can be implemented on the Hilbert space Hω by a unitary
Uωσ uniquely determined by

Uωσ πω(a)ξω := πω(ασ(a))ξω , a ∈ A.

We denote by HPN

ω ⊂ Hω the closed subspace of all invariant vectors under the
action of the unitaries Uωσ , namely

HPN

ω := {ξ ∈ Hω : Uωσ ξ = ξ, for allσ ∈ PN}.

The orthogonal projection onto HPN

ω is denoted by Pω . As is clear, the one-
dimensional subspace Cξω is contained in HPN

ω , which means Pω is never 0. As
is known from the general theory of group actions through automorphisms on C∗-
algebras, the condition that HPN

ω equals Cξω implies that ω is extreme in SPN(A),
see e.g., Proposition 3.1.10 of Ref. 18. The reverse implication may well fail to hold
for a given action of a given group G on a general C∗-algebra A. However, it does
hold provided that the system (A, G, α) is what is known as a G-abelian dynamical
system. This is by definition the case when, for every G-invariant state ω, the set
Pωπω(A)Pω is an abelian family of operators acting on Hω. Among other things,
we next show that any local action of PN on a quasi-local C∗-algebra is PN-abelian.

For every natural n, denote by Pn ⊂ PN the finite subgroup of permutations
which act trivially from n + 1 onwards. Note that PN =

⋃
n Pn. We adopt the

notation in Ref. 8 and define the Cesaro average of an arbitrary operator-valued
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function f : PN → B(H) as

M(f(σ)) := lim
n→∞

1
n!

∑
σ∈Pn

f(σ)

as long as the limit exists in a suitable sense (for instance in the strong/weak opera-
tor topology). We recall that for any ω in SPN(A) and σ ∈ PN one has M(Uωσ ) = Pω ,
where the equality is understood in the strong operator topology, see Proposition 3.1
of Ref. 8.

Proposition 2.4. Let α be a local action of PN on a quasi-local algebra A. If
ω ∈ SPN(A), then

(1) ω is even;
(2) Pωπω(A)Pω is a commuting family of operators, hence the dynamical system is

PN-abelian;
(3) ω ∈ E(SPN(A)) if and only if dimHPN

ω = 1.

Proof. As for (1), we need to show that any symmetric state ω vanishes on all odd
elements of A. By density, it is enough to prove that ω(a) = 0 for every a which
is a localized odd element, say a ∈ A(I) for some finite subset I ⊂ N. Denoting by
{·, ·} the anticommutator, for an a as before we have

{Pωπω(a)Pω, Pωπω(a∗)Pω}
= M(Pωπω(a)Uωσ πω(a∗)Pω + Pωπω(a∗)Uωσ πω(a)Pω)

= M(Pωπω({a, ασ(a∗)})Pω)

= lim
n→∞

1
n!

∑
σ∈Pn

Pωπω({a, ασ(a∗)})Pω = 0,

where the last equality holds because for every n such that I ⊂ {1, . . . , n} one
has |{σ ∈ Pn :σ(I) ∩ I �= ∅}| ≤ C(n − 1)!, with C being a constant that does not
depend on n, see Lemma 3.3 of Ref. 8, whereas if σ is such that σ(I) ∩ I = ∅ then
{a, ασ(a∗)} = 0 by virtue of (iii) of Definition 2.2. This readily implies that

Pωπω(a)Pω = 0 for any odd a ∈ A. (2.1)

In particular, for such an a, one has

ω(a) = 〈πω(a)ξω , ξω〉 = 〈Pωπω(a)Pωξω, ξω〉 = 0,

and so (1) is proved.
As for (2), thanks to Eq. (2.1) it is enough to verify that the commutator

[Pωπω(a)Pω , Pωπω(b)Pω ] is 0 for even a, b ∈ A, which can be seen with similar
computations to those in (1).

Property (3) holds thanks to Proposition 3.1.12 in Ref. 18.
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For any fixed integer n ≥ 1, we denote by σn the permutation acting on N as

σn(k) =

⎧⎪⎪⎨⎪⎪⎩
k + 2n−1 1 ≤ k ≤ 2n−1,

k − 2n−1 2n−1 < k ≤ 2n,

k k > 2n.

(2.2)

The next result is key to further characterize extreme symmetric states.

Lemma 2.5. If ω ∈ S(A) is an extreme symmetric state with respect to a local
action α of PN on a quasi-local algebra A, then for every a ∈ A one has

lim
n→∞πω(ασn(a))ξω = ω(a)ξω,

in the weak operator topology.

Proof. The proof is the same as in Lemma 5.2 in Ref. 8. The only thing that
needs to be taken care of is that if a ∈ A(I) for some finite subset I ⊂ N and
σ ∈ PN, there exists Nσ,a ∈ N such that ασσn(a) = ασn(a) for every n ≥ NA,σ.
To this end, let r, s ∈ N such that I ⊂ {1, . . . , r} and the restriction of σ to
{n ∈ N :n ≥ s} is the identity. Set Nσ,a := max{r, s}. For n ≥ Nσ,a, we have
ασσn(a) = ασ(ασn(a)) = ασn(a) because ασ acts as the identity on each A(J) if
J ∩ {1, . . . , s− 1} = ∅.

Before stating the announced characterization, we recall that a symmetric state
ω is strongly clustering (or mixing) if for every a, b ∈ A one has limn ω(ασn(a)b) =
ω(a)ω(b),b cf.20

Theorem 2.6. For a symmetric state ω on a quasi-local algebra A acted upon PN

through a local action α, the following conditions are equivalent:

(1) ω is extreme;
(2) ω is strongly clustering;
(3) ω(ab) = ω(a)ω(b) for every a ∈ A(I) and b ∈ A(J) and finite subsets I, J ⊂ N

such that I ∩ J = ∅.

Proof. The equivalence (1) ⇔ (2) can be proved exactly as is done in Theorem 5.3
of Ref. 8. The implication (3) ⇒ (2) is obvious, so it remains to show that (2) ⇒ (3).
Let I, J ⊂ Z finite subsets with I ∩ J = ∅. Suppose that 2m0−1 > max{I ∪ J}. For
m > m0, one then has σm(J)∩I = ∅, where σm is the permutation defined in (2.2);
accordingly, there exists σ̂m ∈ PN such that σ̂m is the identity on I and coincides
with σm on J . It follows that ω(ab) = ω(ασ̂m(ab)) = ω(aασm(b)), for all a ∈ A(I)
and b ∈ A(J) and all m > m0. In particular, the sequence {ω(aασm(b))}m is
constant for m > m0 and limm ω(aασm(b)) = ω(ab). Since ω is strongly clustering,
we also have limm ω(aασm(b)) = ω(a)ω(b), which concludes the proof.

bAs σ2
n is the identity map, the condition is equivalent to limn ω(aασn (b)) = ω(a)ω(b).
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The next result shows that PN is represented by a large group of automorphisms
in the sense of Ref. 19 whenever it acts on a quasi-local C∗-algebra as in Definition
2.3. This means that for any invariant state ω ∈ S(A) and any self-adjoint a ∈ A

one has

conv{πω(ασ(a)) :σ ∈ PN} ∩ πω(A)′ �= ∅.
Proposition 2.7. Any local action α of PN on a quasi local C∗-algebra A is by a
large group of automorphisms.

Proof. The proof can be done as in Theorem 4.2 of Ref. 8 once we have first estab-
lished asymptotic abelianness in average of any symmetric state. More explicitly,
we need to show that if ω is a symmetric state on A, then M{ω(c[ασ(a), b]d)} = 0
for every a, b, c, d ∈ A.

We start by observing that

M{ω(cασ(a)bd)} = M{ω(ασ(a+)cbd)}
+M{ω(ασ(a−)(c+ − c−)bd)}

as follows by applying Lemma 3.3 of Ref. 8. Now the second summand in the right-
hand side of the equality above is 0 since Pωπω(a−)Pω = 0 thanks to (2.1). By
PN-abelianness we then have

M{ω(cασ(a)bd)} = M{ω(ασ(a+)cbd)}
= 〈πω(a+)Pωπω(cbd)ξω , ξω〉
= 〈πω(cbd)Pωπω(a+)ξω , ξω〉
= M{ω(cbdασ(a+))}
= M{ω(cbασ(a+)d)},

where the last equality is again due to Lemma 3.3 of Ref. 8. Now, arguing as above,
one easily sees that M{ω(cbασ(a−)d)} = 0, which ends the proof.

As the dynamical system (A,PN) is PN-abelian, by Theorem 3.1.14 of Ref. 18,
one has that the set of symmetric states is indeed a Choquet simplex. This means
that any PN-invariant state is the barycenter of a unique probability measure which
is pseudo-supported on the set of extreme states, see Ref. 6, p. 322. More in detail,
we have the following.

Proposition 2.8. Let α be a local action of PN on a quasi-local C∗-algebra A. If
ω ∈ SPN(A), then there exists a unique probability measure μ pseudo-supported on
E(SPN(A)) such that

ω(a) =
∫
E(SPN (A))

ψ(a)dμ(ψ), a ∈ A. (2.3)
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We recall that with any state ω on a quasi-local algebra A it is possible to
associate a von Neumann algebra Z⊥

ω ⊂ B(Hω) defined as

Z⊥
ω =

∞⋂
n=1

∨
I∈Fn

πω(A(I))′′,

where Fn collects all the finite subsets I ⊂ N such that I ⊂ {n, n + 1, . . .}. This
algebra is commonly known as the tail algebra of the state ω, although in quantum
statistical mechanics is typically referred to as the algebra at infinity, see also Def-
inition 2.6.4 of Ref. 6. The tail algebra of an ergodic symmetric state is shown to
be trivial below.

Proposition 2.9. Let α be a local action of PN on a quasi-local C∗-algebra A. The
tail algebra Z⊥

ω of any ω in E(SPN(A)) is trivial.

Proof. We first show that Z⊥
ω is contained in the fixed-point von Neumann algebra

{T ∈ B(Hω) :Uωσ T = TUωσ , σ ∈ PN}, where Uωσ is the unitary implementator of ασ
in Hω, i.e. Uωσ πω(a)ξω = πω(ασ(a))ξω , a ∈ A. Let T be in Z⊥

ω and σ ∈ PN. Then
there exists no such that σ acts trivially on {no, no + 1, . . . , }. In particular, adUωσ
acts trivially on πω(A(I)) for every finite subset I contained in {no, no+1, . . .}. As a
result, adUωσ still acts trivially on

∨
I∈Fno πω(A(I))′′. Now since T sits in particular

in
∨
I∈Fno πω(A(I))′′, we must have Uωσ T = TUωσ .

Furthermore, by Theorem 2.6.5 in Ref. 6 we also have that Z⊥
ω is contained in

πω(A)′ ∩ πω(A)′′. In particular, ξω is separating for Z⊥
ω ; indeed, from Z⊥

ω ⊂ πω(A)′

we see πω(A)′′ ⊂ (Z⊥
ω )′, hence ξω is cyclic for (Z⊥

ω )′.
We are ready to reach the conclusion. Indeed, if T lies in Z⊥

ω , then Tξω is an
invariant vector because of the equality Uωσ Tξω = TUωσ ξω. Since ω is extreme,
Proposition 2.4 applies and thus the subspace of invariant vectors is just Cξω , and
so Tξω = λξω for some λ ∈ C. But then T = λ1 since ξω is separating for πω(A)′

and T ∈ πω(A)′′ ∩ πω(A)′.

The next proposition provides a quantum analogue of the well-known Hewitt
and Savage theorem that the tail and the symmetric σ-algebras of an exchange-
able sequence of random variables actually coincide, see Ref. 14. We recall that a
sequence of random variables is exchangeable if the joint distribution of any finite
subset of variables is invariant under permutations.

Given ω in SPN(A), we set ZPN
(ω) := Z(πω(A)′′) ∩ Uω(PN)′, where

Uω(PN)′ := {T ∈ B(Hω) : Uωσ T = TUωσ , σ ∈ PN}
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and Z(πω(A)′′) := πω(A)′′∩πω(A)′ is the center of πω(A)′′. The vector state 〈·ξω, ξω〉
on πω(A)′′ will be denoted by ϕξω .

Proposition 2.10. The tail algebra Z⊥
ω of a symmetric state ω ∈ S(A) coincides

with ZPN
(ω), which decomposes as

ZPN
(ω) =

∫ ⊕

E(SPN (A))

C1Hψ
dμ(ψ) ∼= L∞(E(SPN(A)), μ).

Moreover, there exists a unique conditional expectation Eω :πω(A)′′ → Z⊥
ω . This is

given by

Eω(X) =
∫ ⊕

E(SPN (A))

〈Xψξψ , ξψ〉dμ(ψ), X ∈ πω(A)′′,

where μ is the measure appearing in (2.3), and X =
∫ ⊕
E(SPN (A))Xψdμ(ψ). In

addition, Eω preserves the vector state ϕξω .

Proof. By applying Theorem 4.4.3 in Ref. 6 and Proposition 3.1.10 in Ref. 18,
we see that the abelian von Neumann algebra ZPN

(ω) decomposes into a direct
integral as

ZPN
(ω) =

∫ ⊕

E(SPN (A))

C1Hψ
dμ(ψ) ∼= L∞(E(SPN(A)), μ).

Because the diagonal operators of
∫ ⊕
E(SPN (A))

Hψdμ(ψ) are contained in πω(A)′′, we

can apply Lemma 8.4.1 in Ref. 12 to find that

πω(A)′′ =
∫ ⊕

E(SPN (A))

πψ(A)′′dμ(ψ).

The above decomposition enables us to identify the tail algebra. Indeed, by Theorem
4.4.6 in Ref. 6 and Proposition 2.9 one has

Z⊥
ω =

∞⋂
n=1

∨
I∈Fn

πω(A(I))′′ =
∞⋂
n=1

∨
I∈Fn

∫ ⊕

E(SPN (A))

πψ(A(I))′′dμ(ψ)

=
∫ ⊕

E(SPN (A))

∞⋂
n=1

∨
I∈Fn

πψ(A(I))′′dμ(ψ)

=
∫ ⊕

E(SPN (A))

C1Hψ
dμ(ψ) = ZPN

(ω) .

Since by Proposition 2.7 PN acts as a large group of automorphisms on A, Theorem
3.1 in Ref. 19 applies yielding the existence of a unique conditional expectation,
Eω, from πω(A)′′ onto ZPN

(ω) = Z⊥
ω .

All that is left to do is prove the formula for Eω. To this end, note that
F (X) :=

∫ ⊕
E(SPN (A))〈Xψξψ, ξψ〉dμ(ψ), X in πω(A)′′, defines a conditional expec-

tation of πω(A)′′ onto Z⊥
ω as it is a direct integral of states. By uniqueness one sees

2250028-11



March 15, 2023 14:33 WSPC/S0219-0257 102-IDAQPRT 2250028

V. Crismale, S. Rossi & P. Zurlo

that F = Eω. Finally Eω is seen to preserve the vector state 〈·ξω, ξω〉 by means of
simple computations, see also Theorem 5.3 of Ref. 9.

Before we can state our version of de Finetti’s theorem tailored to the present
context, we need to recall what we mean by conditional independence for a net
of local algebras {A(I) : I ∈ P0(N)} with respect to a given state ω of the quasi-
local algebra A. We start by recalling that for any such state ω the tail algebra
Z⊥
ω will always be commutative, see Theorem 2.6.5 of Ref. 6. and thus expected. In

other words, there will always exist a conditional expectation Fω : πω(A)′′ → Z⊥
ω .

As is customary, we will need to work under the hypothesis that such conditional
expectation is normal and ϕξω -preserving, that is 〈Fω [X ]ξω, ξω〉 = 〈Xξω, ξω〉 for
any X ∈ πω(A)′′.

Definition 2.11. The net {A(I) : I ∈ P0(N)} of the local algebras is conditionally
independent with respect to a conditional expectation Fω as above if for any I, J ∈
P0(N) with I ∩ J = ∅ we have

Fω[XY ] = Fω [X ]Fω[Y ]

for every X ∈ πω(A(I))′′
∨

Z⊥
ω and Y ∈ πω(A(J))′′

∨
Z⊥
ω ;

We are now ready to state our result.

Proposition 2.12. Let α be a local action of PN on a net of local C∗-algebras with
quasi-local algebra A. If ω ∈ S(A) is symmetric, then Eω ◦ adUωσ = Eω for every
σ ∈ PN. Conversely, if a state ω ∈ S(A) satisfies Fω ◦ adUωσ = Fω , σ ∈ PN, for
some normal ϕξω -preserving conditional expectation Fω :πω(A)′′ → Z⊥

ω , then ω is
symmetric and Fω = Eω.

Proof. Suppose that ω is a symmetric state. Then by Proposition 2.10, the tail
algebra is given by Z⊥

ω =
∫ ⊕
E(SPN (A))

C1Hψ
dμ(ψ) and the unique conditional expec-

tation Eω : πω(A)′′ → Z⊥
ω decomposes as Eω(X) =

∫ ⊕
E(SPN (A))

〈Xψξψ , ξψ〉dμ(ψ) for
every X ∈ πω(A)′′. We observe that for any σ ∈ PN the unitary Uωσ decomposes
into a direct integral as well. More precisely, Uωσ =

∫ ⊕
E(SPN (A)) U

ψ
σ dμ(ψ), where Uψσ is

the unitary acting on Hψ as Uψσ πψ(x)ξψ = πψ(ασ(x))ξψ , x ∈ A. Using this decom-
position of Uωσ , it is now straightforward to check that Eω ◦ adUωσ = Eω, for every
σ ∈ PN.

The converse implication follows by direct computation. Indeed, let
Fω :πω(A)′′ → Z⊥

ω be a conditional expectation such that Fω ◦ adUωσ = Fω for
every σ ∈ PN. For a ∈ A and σ ∈ PN one then has

ω(ασ(a)) = 〈πω(ασ(a))ξω , ξω〉 = 〈Fω ◦ adUωσ (πω(a))ξω , ξω〉
= 〈Fω(πω(a))ξω , ξω〉 = ω(a),

which shows that ω is symmetric, and thus Fω = Eω thanks to Proposition 2.10.
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As for conditional independence, fix now I1, I2 ⊂ N finite subsets with I1∩I2 = ∅,
and for i = 1, 2 take Xi ∈ πω(A(Ii))′′

∨
Z⊥
ω . We need to show that Eω(X1X2) =

Eω(X1)Eω(X2). To this end, we start by considering two localized elements, that
is Xi ∈ πω(A(Ii)), i = 1, 2, with I1 ∩ I2 = ∅. In this case, by using Proposition 2.10
and (3) in the statement of Theorem 2.6 we have

Eω(X1X2) =
∫ ⊕

E(SPN (A))

〈X1,ψX2,ψ ξψ, ξψ〉1Hψ
dμ(ψ)

=
∫ ⊕

E(SPN (A))

〈X1,ψ ξψ, ξψ〉〈X2,ψ ξψ, ξψ〉1Hωdμ(ψ)

=
∫ ⊕

E(SPN (A))

〈X1,ψ ξψ, ξψ〉1Hωdμ(ψ)
∫ ⊕

E(SPN (A))

〈X2,ψ ξψ , ξψ〉1Hωdμ(ψ)

= Eω(X1)Eω(X2).

Since Eω is a normal conditional expectation, by density the above equality still
holds for Xi ∈ πω(A(Ii))′′, i = 1, 2.

We are now ready to deal with the general case. As Z⊥
ω is contained in the center

of πω(A)′′, the von Neumann algebra πω(A(I))′′
∨

Z⊥
ω is easily seen to be the strong

closure of the ∗-algebra of operators of the form
∑

j∈F TjCj , where Cj lie in Z⊥
ω

and Tj ∈ πω(A(I))′′, for all j in the finite set F . Therefore, we may assume that
Xi, i = 1, 2, are of the form Xi =

∑
j∈F T

i
jC

i
j . Since X1X2 =

∑
j,l∈F T

1
j T

2
l C

1
jC

2
l ,

we find

Eω(X1X2) =
∑
j,l∈F

Eω(T 1
j T

2
l )C1

jC
2
l =

∑
j,l∈F

Eω(T 1
j )Eω(T 2

l )C1
jC

2
l

=
∑
j∈F

Eω(T 1
j )C1

j

∑
l∈F

Eω(T 2
l )C2

l = Eω(X1)Eω(X2)

and the proof is complete.

If more assumptions are made on the structure of the net of the local algebras,
the global invariance condition Eω ◦adUωσ = Eω can be recast in a seemingly weaker
way. To this end, from now on we will assume that the net {A(I) : I ∈ P0(N)}
is additive,c namely that A(I ∪ J) = C∗(A(I),A(J)) for every I, J ∈ P0(N). In
particular, for any finite subset I ⊂ N we have A(I) = C∗(A({i}) : i ∈ I).

In the present context, Proposition 2.12 can be stated as follows.

Proposition 2.13. Let α be a local action of PN on an additive net of local C∗-
algebras. A state ω ∈ S(A) on the quasi-local algebra A is symmetric if and only if

(i) the local algebras are conditionally independent w.r.t. Eω ;
(ii) for every i ∈ N, Eω [πω(ασ(a))] = Eω[πω(a)], a ∈ A({i}), σ ∈ PN.

cThe terminology is borrowed from algebraic quantum field theory, see Definition 4.13 in Ref. 3.
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Proof. By virtue of Proposition 2.12 we need only show that (i) and (ii) imply
that Eω ◦ adUωσ = Eω.

Since Eω is a normal conditional expectation, by density of πω(A) in the bicom-
mutant πω(A)′′, it is enough to verify the equality on πω(A). As A is in turn the
inductive limit of the local algebras, the conclusion will be achieved if we show
that for any fixed finite subset I ⊂ N one has Eω[ασ(πω(a))] = Eω [πω(a)] for every
a ∈ A(I). By additivity there is no loss of generality to assume that a factors into a
product as a = ai1ai2 · · · ain , with il �= ik (possible repetitions of the same index at
different places are dealt with by means of (iii) in Definition 2.2). For any σ ∈ PN

we then have

Eω [πω(ai1ai2 · · · ain)] = Eω[πω(ai1 )]Eω[πω(ai2)] · · ·Eω[πω(ain)]

= Eω[πω(ασ(ai1))]Eω [πω(ασ(ai2 ))] · · ·Eω[πω(ασ(ain))]

= Eω[πω(ασ(ai1ai2 · · ·ain)] ,

which ends the proof.

It is worth noting that when the quasi-local algebra arises as a quotient of
the infinite free product ∗NB of a sample C∗-algebra B, the conditions (i) and
(ii) in the statement above return the usual notion for a (quantum) stochastic
process to be conditionally independent and identically distributed with respect to
the tail algebra. Indeed, in this case the states of the quotient are in a one-to-one
correspondence with the stochastic processes on the sample algebra B, see e.g.,
Theorem 3.4 and Definition 4.1 in Ref. 9 or Theorem 2.3 in Ref. 10.

3. Processes on Infinite Graded Tensor Products

In this section, we collect some results on Z2-graded algebraic structures obtained
as tensor products of graded ∗-algebras. Consider the C∗-algebras A1 and A2, and
denote by A1 ⊗ A2 their algebraic tensor product with product and involution
given by

(a1 ⊗ a2)(a′1 ⊗ a′2) := a1a
′
1 ⊗ a2a

′
2, (a1 ⊗ a2)∗ := a∗1 ⊗ a∗2,

for all a1, a
′
1 ∈ A1, a2, a

′
2 ∈ A2. Let us denote by A1

⊗
max A2 and A1

⊗
min A2 the

completions of A1 ⊗ A2 with respect to the maximal and minimal C∗-cross norm,
respectively, see Ref. 21.

If one takes ω1 ∈ S(A1) and ω2 ∈ S(A2), their product state ψω1,ω2 ∈
S(A1

⊗
min A2) is well defined also on A1

⊗
max A2, and consequently the notation

ψω1,ω2 ∈ S(A1 ⊗ A2) will be used in the sequel.
Suppose that (A1, θ1) and (A2, θ2) are Z2-graded ∗-algebras, and consider the

linear space A1�A2, their tensor product as vector spaces. In what follows, we recall
the definition of the involutive Z2-graded tensor product, which will be henceforth
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denoted by A1⊗̂A2. For homogeneous elements a1 ∈ A1, a2 ∈ A2 and i, j ∈ Z2, we
set

ε(a1, a2) :=

{−1 if ∂(a1) = ∂(a2) = −1,

1 otherwise.

ε(i, j) :=

{−1 if i = j = −1,

1 otherwise.

Given x, y ∈ A1 � A2 with

x :=
⊕
i,j∈Z2

xi,j ∈
⊕
i,j∈Z2

(A1,i � A2,j),

y :=
⊕
i,j∈Z2

yi,j ∈
⊕
i,j∈Z2

(A1,i � A2,j),

the involution, which by a minor abuse of notation we continue to denote by ∗, and
the multiplication on A1⊗̂A2 are defined as (see also e.g., Ref. 7)

x∗ :=
∑
i,j∈Z2

ε(i, j)x∗i,j ,

xy :=
∑

i,j,k,l∈Z2

ε(j, k)xi,jyk,l.

The ∗-algebra thus obtained, in Ref. 7 referred to as the Fermi tensor product
of A1 and A2, also carries a Z2-grading. This is induced by the ∗-automorphism
θ = θ1⊗̂θ2, whose action on simple tensors is given by

θ1⊗̂θ2(a1⊗̂a2) := θ1(a1)⊗̂θ2(a2), a1 ∈ A1, a2 ∈ A2, (3.1)

where a1⊗̂a2 is nothing but a1 ⊗ a2 thought of as an element of the Z2-graded
∗-algebra A1⊗̂A2, since the underlying vector spaces of A1⊗̂A2 and A1 ⊗ A2 are
identical. As of now, we will use a1 ⊗ a2 and a1⊗̂a2 interchangeably when no con-
fusion can occur.

The even and odd parts of the Fermi product are, respectively,

(A1⊗̂A2)+ = (A1,+ � A2,+) ⊕ (A1,− � A2,−),

(A1⊗̂A2)− = (A1,+ � A2,−) ⊕ (A1,− � A2,+).

The construction of the algebraic Fermi tensor product can of course be
performed with an arbitrary number n of C∗-algebras Ai, i = 1, 2, . . . , n. As
usual, as a linear space A1⊗̂A2⊗̂ · · · ⊗̂An is given by the algebraic tensor product
A1 �A2 � · · · � An. Product and involution can be defined by carefully exploiting
the associativity of the usual tensor product. The ∗-algebra A1⊗̂A2⊗̂ · · · ⊗̂An can
be turned into a Z2-graded algebra by the grading θ(n) := θ1⊗̂θ2⊗̂ · · · ⊗̂θn defined
analogously to (3.1).
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For ωi ∈ S(Ai), i = 1, 2, the state ψω1,ω2 has a counterpart in A1⊗̂A2 by means
of the product functional ω1 × ω2, defined as usual by

ω1 × ω2

⎛⎝ n∑
j=1

a1,j⊗̂a2,j

⎞⎠ :=
n∑
j=1

ω1(a1,j)ω2(a2,j),

for all
∑n

j=1 a1,j⊗̂a2,j ∈ A1⊗̂A2. Contrary to the case of a trivial grading, the
functional defined above is not necessarily positive, unless at least one between ω1

and ω2 is even, see Proposition 7.1 of Ref. 7. More in general, given ωi ∈ S(Ai), we
denote by ω1 × ω2 × · · · × ωn the linear functional on A1⊗̂A2⊗̂ · · · ⊗̂An defined on
simple tensors as

ω1 × ω2 × · · · × ωn(a1⊗̂a2⊗̂ · · · ⊗̂an) := ω1(a1)ω2(a2) · · ·ωn(an)
for every ai ∈ Ai. The following proposition is a straightforward generalization of
Proposition 2.6 of Ref. 11.

Proposition 3.1. Let (Ai, θi) be graded C∗-algebras, i = 1, 2, . . . n. Given ωi ∈
S(Ai), then their product state ω1 × ω2 × · · · × ωn is positive if and only if at least
n−1 of them are even. Moreover, ω1×ω2×· · ·×ωn is even if and only if all states
ω1, ω2, . . . , ωn are even.

Proof. A simple induction on n.

As in the case with only two factors, which has been addressed in Ref. 11,
the product A1⊗̂A2⊗̂ · · · ⊗̂An will in general admit many C∗-completions. We first
consider the minimal completion, namely the one obtained by completing with
respect to the norm

‖x‖min := sup{‖πω(x)‖ : ω = ω1 × ω2 · · · × ωn, ωi ∈ S+(Ai), i = 1, . . . , n},
which we denote by A1

⊗̂
minA2

⊗̂
min · · ·

⊗̂
minAn. It is still a Z2-graded C∗-algebra,

with the grading obtained by extending θ(n) to the minimal completion, cf. Propo-
sition 4.7 of Ref. 11.

Minimal infinite tensor Fermi products can be defined through inductive limits.
More precisely, if {(Ai, θi) : i ∈ N} is a countable family of unital Z2-graded C∗-
algebras, then for each n ∈ N we can consider the injective homomorphism

Φn : A1

⊗̂
min

A2

⊗̂
min

· · ·
⊗̂
min

An → A1

⊗̂
min

A2

⊗̂
min

· · ·
⊗̂
min

An
⊗̂
min

An+1

completely determined by

Φn(a1⊗̂a2⊗̂ · · · ⊗̂an) = a1⊗̂a2⊗̂ · · · ⊗̂an⊗̂1,

for every ai ∈ Ai and i = 1, . . . , n, where by a slight abuse of notation 1 denotes
the unity of Ai for every i ∈ N.
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Clearly, {A1

⊗̂
minA2

⊗̂
min · · ·

⊗̂
minAn,Φn} is an inductive system of C∗-

algebras, whose limit we denote by
⊗̂i∈N

minAi and call the (minimal) infinite Fermi
tensor product.

We denote by ιn the embedding of A1

⊗̂
minA2

⊗̂
min · · ·

⊗̂
minAn into

⊗̂i∈N

minAi.
Henceforth, we will often write a1⊗̂a2⊗̂ · · · ⊗̂an⊗̂1 ⊗̂1 · · · rather than write
ιn(a1⊗̂a2⊗̂ · · · ⊗̂an), as is commonly done in the literature.

Infinite Fermi tensor products provide examples of quasi-local algebras. Here,
the net of local subalgebras is as follows. For every I = {i1, . . . , i|I|} finite subset

of N, we denote by A(I) ⊂ ⊗̂i∈N

minAi the unital C∗-subalgebra generated by simple
tensors of the type

1⊗̂ · · · ⊗̂ai1⊗̂ · · · ⊗̂ai2⊗̂ · · · ⊗̂ai|I|⊗̂1⊗̂1 · · ·
when the aij ’s vary in Aij , j = 1, . . . , |I|.

If now A is a fixed unital C∗-algebra, we denote by A(n) the minimal Fermi

tensor product of A with itself n times and by
⊗̂N

minA the corresponding infinite

graded tensor product. We still denote by ιn : A(n) → ⊗̂N

minA the embeddings of

A(n) into
⊗̂N

minA.

Finally, note that
⊗̂N

minA is still a Z2-graded C∗-algebra, whose grading, which
we denote by ⊗̂N

θ, is obtained as the inductive limit of the θ(n)’s.
In the following example, we show how the CAR algebra can be re-obtained as

an infinite Fermi tensor product.

Example 3.2. Our starting data is the Z2-graded C∗-algebra (A, θ) =
(M2(C), ad(U)), where U is the (Pauli) unitary matrix U =

(1 0
0 −1

)
. Note that,

given B ∈ M2(C), one has UBU∗ = B if and only if B is a diagonal matrix and
UBU∗ = −B if and only if B is anti-diagonal.

We next show that ⊗̂N
M2(C) is ∗-isomorphic with the CAR algebra and

⊗̂Nad(U) is its usual grading. To this end, set A :=
(0 1
0 0

)
. Note that A is odd

and A2 = 0, A∗A + AA∗ = I. For every j ∈ N, denote by ij : M2(C) → ⊗̂N
M2(C)

the injective ∗-homomorphism given by

ij(B) = 1⊗̂1⊗̂ · · · ⊗̂ B︸︷︷︸
jth place

⊗̂1⊗̂1 · · · , B ∈ M2(C).

and define aj := ij(A), j ∈ N. Since A generates M2(C), {aj : j ∈ N} is a set
of generators of the infinite Fermi tensor product of M2(C) with itself. Now the
relations ajak + akaj = 0 and aja

∗
k + a∗kaj = δj,kI, j, k ∈ N, are a straightforward

consequence of the equalities A2 = 0, A∗A + AA∗ = I and of the fact that A
is odd. As the CAR algebra, CAR(N), is the universal C∗-algebra generated by
bj ’s satisfying the above relations, we find that there must exist a surjective ∗-
homomorphism Ψ :CAR(N) → ⊗̂N

M2(C) such that Ψ(bj) = aj , for every j ∈ N.
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By simplicity of CAR(N), Ψ is also injective and so CAR(N) ∼= ⊗̂N
M2(C). Finally,

as for the grading, it is enough to observe that each aj is odd w.r.t. ⊗̂Nad(U).

If ωi ∈ S+(Ai) are even states for every i ∈ N, then their infinite product,
×i∈Nωi, is the state on ⊗̂i∈N

minAi uniquely determined by

×i∈Nωi(x1 ⊗̂ · · · ⊗̂xn ⊗̂1 ⊗̂1 ⊗̂ · · ·) = ω1(x1)ω2(x2) · · ·ωn(xn)
for every xi ∈ Ai, i = 1, 2, . . . , n, and every n ∈ N.

If ωi is a fixed even state ω on A for each i ∈ N, we then simply denote by ×Nω

the product state ×i∈Nωi on ⊗̂N

minA.
Similarly to what we have seen for C∗-algebras, the definition of the Z2-graded

tensor product of two Hilbert spaces, as given in Ref. 11, can easily be extended
to an arbitrary number of spaces. We start by recalling that a Z2-graded Hilbert
space is a pair (H, U), where H is a (complex) Hilbert space and U a self-adjoint
unitary acting on H. In such a situation, H decomposes into an orthogonal direct
sum of the type

H = H+ ⊕H−,

where H+ := Ker(I − U) and H− := Ker(I + U). As usual, vectors in H+ (H−)
are called even (odd) vectors. Even or odd vectors are collectively referred to as
homogeneous vectors.

The Hilbert tensor product H1 ⊗H2 of two Z2-graded Hilbert spaces (H1, U1)
and (H2, U2) will always be conceived of as a graded Hilbert space, with the natural
grading associated with U1 ⊗ U2.

We also recall that infinite tensor products of Hilbert spaces can be defined as
direct limits of finite products following a construction due to von Neumann, which
we rather quickly sketch for convenience. We first observe that, given two Hilbert
spaces H1 and H2, for any unit vector ξ ∈ H2 the map H1 � x→ x⊗ξ ∈ H1 ⊗H2 is
isometric. Given a sequence {(Hi, ξi) : i ∈ N} of Hilbert spaces, where for each i ∈ N

ξi ∈ Hi is a unit vector, we can consider the isometries Φn :H1⊗H2⊗ · · · ⊗Hn →
H1⊗H2⊗ · · · ⊗Hn+1 given by

Φn(x1⊗x2⊗ · · · ⊗xn) := x1⊗x2⊗ · · · ⊗xn⊗ξn+1.

The infinite tensor product of the Hilbert spaces Hi with respect to the
sequence ξ = {ξi}i∈N is by definition the inductive limit of the direct system
{(H1⊗H2⊗ · · ·⊗Hn,Φn) :n ∈ N}, and will be denoted by

⊗
ξ Hi. For each inte-

ger n, we denote by ιn the isometric embedding of H1⊗H2⊗ · · · ⊗Hn into
⊗

ξ Hi.
Note that ιn+1 ◦ Φn = ιn for every n by definition of inductive limit. Instead of
ιn(x1⊗x2⊗ · · · ⊗xn) we will every so often write x1⊗x2⊗ · · · ⊗xn⊗ξn+1⊗ξn+2⊗ · · ·.
When all the Hilbert spaces Hi are graded, say by self-adjoint unitaries Ui ∈ B(Hi),
then the infinite product

⊗
ξ Hi can be equipped with a Z2-grading through the

self-adjoint unitary ⊗n∈NUn, whose definition is deferred to Sec. 4.
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In Ref. 11, the Fermi product of grading-equivariant representations was defined
for two representations. Obviously, the construction given there continues to work
with an arbitrary number n of representations. In other terms, if πi : Ai → B(Hi),
with i = 1, 2, . . . , n, are grading-equivariant representations acting on the Z2-graded
Hilbert spaces (Hi, Ui), then it is possible to define a representation π of the Fermi
product A1⊗̂A2⊗̂ · · · ⊗̂An acting on the Hilbert space H := H1⊗H2⊗ · · ·⊗Hn as

π(a1⊗̂a2⊗̂ · · · ⊗̂an) := π1(a1)⊗̂π2(a2)⊗̂ · · · ⊗̂πn(an)

for every ai ∈ Ai, i = 1, 2, . . . , n. Note that in the formula above the symbol ⊗̂ is
actually used to denote the Fermi tensor product of two or more operators acting
on (possibly different) Hilbert spaces, as defined in Ref. 11. For convenience, we
recall the definition with two (homogeneous) operators Ti ∈ B(Hi), i = 1, 2:

T1⊗̂T2(ξ1 ⊗ ξ2) := ε(T2, ξ1)T1ξ1 ⊗ T2ξ2

for homogeneous vectors ξi ∈ Hi, where, as usual, the sign ε(T2, ξ1) is −1 if T2 and
ξ1 are both odd. Note that if T1 and T2 are both even, then T1⊗̂T2 is nothing but
the usual tensor product T1 ⊗ T2 of operators.

We will say that π is the Fermi tensor product of the representations πi and
write π = π1⊗̂π2⊗̂ · · · ⊗̂πn. It is easy to verify that π can be extended to a rep-
resentation of the completion A1

⊗̂
minA2

⊗̂
min · · ·

⊗̂
minAn. With a slight abuse of

notation, we continue to denote this extension by π1⊗̂π2⊗̂ · · · ⊗̂πn. Once finitely
many representations have been dealt with, infinitely many representations can be
handled easily. For the sake of simplicity, we only consider cyclic representations.

If πωi :Ai → B(Hωi), with i ∈ N, are the GNS representations of the even
states ωi ∈ S+(Ai), then their Fermi product is the representation

⊗̂
i∈N

πωi of
the Fermi product C∗-algebra ⊗̂minAi acting on the Hilbert space

⊗
ξ Hωi , with

ξ := {ξωi}i∈N, uniquely determined by⊗̂
i∈N

πωi(a1 ⊗̂ · · · ⊗̂an ⊗̂1 ⊗̂1 ⊗̂ · · ·) = πω1(a1)⊗̂ · · · ⊗̂πωn(an) ⊗̂1 ⊗̂1 ⊗̂ · · · .

Remark 3.3. The representation
⊗̂

i∈N
πωi is still cyclic and coincides (up to uni-

tary equivalence) with the GNS representation of the product state ω = ×i∈Nωi.
Indeed, the unit vector ξ defined as

ξ := ιn(ξω1 ⊗ · · · ⊗ξωn) =:
⊗
i∈N

ξωi

(note that the definition does not depend on n) is cyclic, and the equality ω(·) =
〈⊗̂i∈N

πωi(·)ξ, ξ〉 is easily checked.

Remark 3.4. Note that if we start with a faithful even state ω on A, then its

product ×Nω will be a faithful state on
⊗̂N

minA. This can actually be seen much in
the same way as in the proof of Proposition 5 in Ref. 13, p. 22.
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Finally, we will simply denote by ⊗N Hω the infinite product
⊗

ξ Hωi , with
Hωi = Hω and ξ being sequence constantly equal to ξω.

As already remarked, the infinite Fermi tensor product
⊗̂N

minA of a given C∗-

algebra A is a quasi-local algebra. In addition,
⊗̂N

minA is acted upon by PN in
a natural way. Indeed, associated with any σ ∈ PN there is a ∗-automorphism

ασ ∈ Aut(
⊗̂N

minA), which is completely determined by

ασ(ιn(a1⊗̂a2⊗̂ · · · ⊗̂an)) = ιn(aσ(1)⊗̂aσ(2)⊗̂ · · · ⊗̂aσ(n)),

for n ∈ N, ai ∈ A, i = 1, 2, . . . , n. Clearly, this is a local action of PN in the sense
of Definition 2.3. In particular, Theorem 2.6 applies to the present context in a
strengthened fashion. More precisely, the extreme symmetric states can now be
characterized as infinite products of a given state on A.

Proposition 3.5. Let (A, θ) be a Z2-graded C∗-algebra. If ω is a symmetric state

on
⊗̂N

minA, then the following are equivalent:

(1) ω is extreme;
(2) ω is strongly clustering;
(3) there exists an even state ρ ∈ S(A) such that ω = ×Nρ.

Proof. In light of Theorem 2.6 we need only show that (2) and (3) are equivalent,
which can be done exactly as in Theorem 5.3 of Ref. 8.

As a consequence of the above result, we find that the extreme symmetric states

of
⊗̂N

minA are sufficiently many to separate its points. This circumstance plays an
instrumental role in proving weak ergodicity of the permutation action on an infinite
product, as shown below.

Proposition 3.6. For any given Z2-graded C∗-algebra (A, θ), the C∗-dynamical

system (
⊗̂N

minA,PN, {ασ :σ ∈ PN}) is weakly ergodic, i.e. x ∈ ⊗̂N

minA with ασ(x) =
x for every σ ∈ PN implies x = λ1 for some λ ∈ C.

Proof. We start by showing that for any given x in
⊗̂N

minA there exists a separable

Z2-graded subalgebra Ã ⊂ A such that x belongs to
⊗̂N

minÃ. Indeed, by definition
x is the limit in norm of a sequence {xn}n∈N, where the xn’s are elements of the
following form:

xn =
∑
k≤Kn

a
(n)
1,k ⊗̂a(n)

2,k ⊗̂ · · · ⊗̂a(n)
Ln,k

⊗̂1⊗̂1 · · · ,

where Kn, Ln are suitable integers and a
(n)
i,k belongs to A for all integers k ≤ Kn

and i ≤ Ln. The countably generated C∗-subalgebra

Ã := C∗{a(n)
i,k , θ(a

(n)
i,k ) : i ≤ Ln, k ≤ Kn, n ∈ N} ⊂ A
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clearly does the job. Let now x in
⊗̂N

minA be a fixed point, that is ασ(x) = x for
every σ ∈ PN, and let ρ be a faithful even state on the separable C∗-algebra Ã

considered above. Note that the action of PN leaves
⊗̂N

minÃ invariant. Define ω as
the infinite product of ρ with itself. By Remark 3.4, ω is still faithful. Since x is
invariant under the action of all σ’s in PN, we have that πω(x)ξω lies in HPN

ω . By
virtue of Propositions 2.4 and 3.5 there exists λ ∈ C such that πω(x)ξω = λξω . By
faithfulness of ω we find x = λ1.

Example 3.7. Consider the Z2-graded C∗-algebra (A, θ), where A = C[−1, 1] is
the C∗-algebra of all continuous functions on the interval [−1, 1] and the grading θ
is the automorphism θ(f) = f ◦Φ, for every f ∈ C[−1, 1], with Φ(x) = −x, for every
x ∈ [−1, 1]. Since A is a commutative C∗-algebra, there is only one way to complete
the (algebraic) infinite Z2-graded product of A with itself, cf. Proposition 4.10 in
Ref. 11, which we simply denote by ⊗̂N

A. Note that ⊗̂N
A is no longer commutative

even though A is. In any case, Proposition 3.6 applies and says that the dynamical
system (⊗̂N

A,PN, {ασ :σ ∈ PN}) is weakly ergodic.

The compact convex set SPN(
⊗̂N

minA) is again a Choquet simplex. Moreover, its
extreme points make up a closed set.

To prove this, let us first note that S+(A) is compact. Now the map S+(A) �
ρ

T�→ ×Nρ ∈ E(SPN(
⊗̂N

minA)) is a continuous bijection between the former and

the latter sets, cf. Theorem 2.8 of Ref. 20. As a consequence, E(SPN(
⊗̂N

minA)) is
compact, and hence closed.

In particular, for any ω ∈ SPN

(⊗̂N

minA
)
, there exists a unique probability mea-

sure μ which is now genuinely supported on E(SPN(
⊗̂N

minA)) such that

ω =
∫
E(SPN (

N̂N

minA))

ψ dμ(ψ).

Because S+(A) and E(SPN

(⊗̂N

minA
))

are homeomorphic compact spaces, the above
equality can also be rewritten as

ω =
∫
S+(A)

×Nρ dμ∗(ρ),

where μ∗ is the probability measure on S+(A) induced by μ through T , i.e. μ∗(B) =
μ(T (B)), for any Borel set B ⊂ S+(A).

The structure of our Choquet simplex can be further analyzed by spotting its
faces. This was done in Ref. 20 in the case of usual infinite tensor products and
can be easily adapted to the present situation. More explicitly, Theorem 2.9 and
Corollary 2.10 in Ref. 20 admit a straightforward extension to the graded case. In
order to the state it, we keep the same notation as in the above mentioned paper
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and denote by X the generic type of a given von Neumann algebra. In other words,
X can be I, II1, II∞, III.

Proposition 3.8. For any X as above, define the convex subsets

SPN

⎛⎝ N⊗̂
min

A

⎞⎠
X

:=

⎧⎨⎩ω ∈ SPN

⎛⎝ N⊗̂
min

A

⎞⎠ :πω

⎛⎝ N⊗̂
min

A

⎞⎠′′

is of typeX

⎫⎬⎭.
Then SPN(

⊗̂N

minA)X is a face of SPN(
⊗̂N

minA). Moreover, SPN(
⊗̂N

minA) is the closed

convex hull of the faces SPN(
⊗̂N

minA)X .

We next draw our attention to maximal completions of infinite graded tensor
products. As we will recall, these can also be obtained as quotients of a universal C∗-
algebra, the infinite free product of a given C∗-algebra. It is this very property that
makes maximal completions particularly suited for establishing a correspondence
between their symmetric states and quantum stochastic processes of a particular
form. Notably, this allows us to come to a version of de Finetti’s theorem for the
processes thus obtained. With this in mind, we start by quickly outlining how
maximal completions of infinite products can be got to.

For finitely many factors Ai, i = 1, 2, . . . , n, the maximal Fermi tensor prod-
uct A1

⊗̂
maxA2

⊗̂
max · · ·

⊗̂
maxAn is nothing but the completion of the algebraic

product A1⊗̂A2⊗̂ · · · ⊗̂An with respect to the maximal C∗-norm, see Ref. 7 for the
details. Infinite products, as usual, are dealt with by taking inductive limits. Hence-

forth we will be focusing on the maximal infinite tensor product
⊗̂N

maxA of a given
Z2-graded C∗-algebra (A, θ).

First, we observe that
⊗̂N

maxA can also be recovered as a suitable quotient
of the infinite free product ∗NA of A with itself, see5 for a thorough account of
free products. Note that ∗NA is a Z2-graded C∗-algebra with grading given by
θ∗ := ∗Nθ. For every j ∈ N, we will denote by ij : A → ∗NA the jth embedding of A

into its infinite free product, cf..5 Consider now the closed two-sided ideal I of ∗NA

generated by elements of the form [ij(a), ik(b)]θ∗ as a, b vary in A and j �= k, where
for homogeneous x, y in ∗NA the symbol [x, y]θ∗ is the commutator of x and y if at
least one of them is even, or the anti-commutator when x and y are both odd.

An easy application of Theorem 8.4 of Ref.7 shows that the quotient C∗-algebra

∗NA/I is ∗-isomorphic with
⊗̂N

maxA. We will denote by Ψ : ∗N A → ⊗̂N

maxA the
canonical projection onto the quotient.

Following Ref. 9, by a quantum stochastic process, we mean a quadruple
(A, {ιj : j ∈ N},H, ξ), where A is a unital C∗-algebra, H is a Hilbert space,
ιj : A → B(H) is a ∗-representation for every j ∈ N, and ξ ∈ H is a cyclic vector
for the von Neumann algebra

∨
j∈N

ιj(A). As shown in Ref. 9, there is a one-to-
one correspondence between stochastic processes on A and states on the infinite
free product ∗NA. This is realized as follows. Starting from a state ω on ∗NA, the
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corresponding process is obtained as

ιj := πω ◦ ij , j ∈ N. (3.2)

Note that the GNS vector ξω is certainly cyclic for
∨
j∈N

ιj(A). Now PN acts nat-
urally on the infinite free product ∗NA. Indeed for any σ ∈ PN there is a unique
automorphism ασ of ∗NA determined by

ασ(ij1(a1)ij2(a2) · · · ijn(an)) = iσ(j1)(a1)iσ(j2)(a2) · · · iσ(jn)(an)

for j1 �= j2 �= · · · �= jn ∈ N, a1, a2, . . . , an ∈ A, n ∈ N. Invariant states under this
action of PN are again referred to as symmetric states and correspond to so-called
exchangeable processes. We recall that a process (A, {ιj : j ∈ N},H, ξ) is said to
be exchangeable if for every j1 �= j2 �= · · · �= jn ∈ N, n ∈ N, a1, a2, . . . , an ∈ A, and
σ ∈ PN one has

〈ιj1 (a1)ιj2 (a2) · · · ιjn(an)ξ, ξ〉 = 〈ισ(j1)(a1)ισ(j2)(a2) · · · ισ(jn)(an)ξ, ξ〉.
We are actually interested in processes (A, {ιj : j ∈ N},H, ξ) where the sample

algebra A is in fact a Z2-graded C∗-algebra, and such that for homogeneous a, b ∈ A

and j �= k ιj(a) and ιk(b) commute if at least one between a or b is even and anti-
commute otherwise. Clearly, processes of this type arise from states of the quotient

∗NA/I ∼= ⊗̂N

maxA, and therefore they will be referred to as Z2-graded processes on
the sample algebra A. Like minimal graded infinite products, maximal ones are seen
at once to be quasi-local algebras. In addition, the natural action of PN on them is
of course local. As a consequence, Proposition 2.10 applies, so if ω is a symmetric

state on
⊗̂N

maxA, we denote by Eω :πω(
⊗̂N

maxA)′′ → Z⊥
ω the unique conditional

expectation onto the (commutative) tail algebra. That said, we are now ready to
state a de Finetti-type theorem for graded processes.

Theorem 3.9. A Z2-graded process (A, {ιj : j ∈ N},H, ξ), with corresponding ω ∈
S(

⊗̂N

maxA), is exchangeable if and only if

(i) the process is conditionally independent w.r.t. Eω, namely

Eω[XY ] = Eω [X ]Eω[Y ]

for every X ∈ (
∨
i∈I ιi(A))

∨
Z⊥
ω and Y ∈ (

∨
j∈J ιj(A))

∨
Z⊥
ω , and I, J ⊂ N

finite disjoint subsets;
(ii) the process is identically distributed w.r.t. Eω , namely

Eω[ιj(a)] = Eω[ιk(a)]

for every j, k ∈ N and a ∈ A.

Proof. It is an application of Proposition 2.13. Indeed,
⊗̂N

maxA is a quasi-local C∗-
algebra coming from the additive net of local algebras {A(I) : I ∈ P0(N)}, where
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A(I) is the unital C∗-subalgebra generated by simple tensors of the type

1⊗̂ · · · ⊗̂ai1⊗̂ · · · ⊗̂ai2⊗̂ · · · ⊗̂ai|I|⊗̂1⊗̂1 · · ·
when the aij ’s vary in A, j = 1, . . . , |I|.

In order to apply the aforementioned proposition, though, we first need to ascer-
tain that the equality

∨
i∈I ιi(A) = πω(A(I))′′ holds for any finite subset I. This

follows by additivity and (3.2), for we have∨
j∈I

ιj(A) =
∨
j∈I

πω(ij(A)) = πω(C∗(ij(A) : j ∈ I))′′ = πω(A(I))′′,

where by a slight abuse of notation, ij : A → ⊗̂N

maxA denotes the map Ψ ◦ ij.

4. The Twisted Commutant of a Fermi Product
and Product States

The main goal of this section is to prove that an infinite product of even factorial
states is still factorial. This task will be accomplished by making use of the so-
called twisted commutant, see Ref. 7 and the references therein. For the reader’s
convenience, though, we recall some basic definitions. By a Z2-graded von Neumann
algebra we mean a pair (M, U), where M ⊂ B(H) is a von Neumann algebra and
U ∈ U(H) is a self-adjoint unitary such that UMU = M. With such a U it is
possible to associate a ∗-automorphism of (B(H), adU ), commonly known as twisted
automorphism, see e.g., Ref. 7 and references therein, which is defined as

ηU (T+ + T−) := T+ + iUT−

for T = T++T− in B(H). The twisted commutant of M is M� := ηU (M′) = ηU (M)′.
Obviously, the definition makes sense with any subset of B(H). Again, more details
are found in Ref. 7. Here, we will limit ourselves to observing that η2

U = adU . We
start with a preliminary lemma.

Lemma 4.1. Let (H, U) be a Z2-graded Hilbert space and let A ⊂ B(H) be a ∗-
algebra such that UAU = A. A vector ξ ∈ H with Uξ = ξ is cyclic for A if and
only if it is cyclic for ηU (A).

Proof. We will show that Aξ = ηU (A)ξ. To this end, we start by observing that
if T ∈ A, then both T+ := T+UTU

2 and T− := T−UTU
2 are still in A. The inclusion

ηU (A)ξ ⊂ Aξ follows from the computation

ηU (T )ξ = T+ξ + iUT−ξ = (T+ − iT−)ξ ∈ Aξ.
For the reverse inclusion, note that for any T ∈ A one has

Tξ = (T+ + T−)ξ = ηU (T+ − iT−)ξ ∈ ηU (A)ξ.

Here follows a twisted version of Theorem 2 in Ref. 17. We denote by As the
set of all self-adjoint elements of a given ∗-algebra A. Following Ref. 17, for any
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subspace K ⊂ H we denote by K⊥ the real orthogonal complement, namely K⊥ =
{x ∈ H :�〈x, k〉 = 0, k ∈ K}, where � is the real part of a complex number.

Lemma 4.2. Let (H, U) be a Z2-graded Hilbert space and let A,B ⊂ B(H) be unital
∗-subalgebras such that UAU = A and UBU = B. If ξ ∈ H is an even cyclic vector
for A and A ⊂ B�, then the following conditions are equivalent:

(1) A� = B��;
(2) ηU (As)ξ + iBsξ is dense in H;
(3) [ηU (As)ξ]⊥ = iBsξ.

Proof. Throughout the proof ηU will be simply written as η to ease the nota-
tion. We start by showing that (2) and (3) are equivalent. First, observe iBsξ ⊂
[η(As)ξ]⊥. Indeed, for B ∈ Bs and A ∈ As, we have that η(A)B is self-adjoint
because η(A) and B commute since A ⊂ B� (that is η(A) ⊂ B′), but then
�〈iBξ, η(A)ξ〉 = �〈iη(A)Bξ, ξ〉 = 0. From the observation above, (2) and (3) are
seen to be equivalent by a straightforward application of the following general fact:
X +X⊥ is dense in H for any real subspace X ⊂ H.

We next show that either (2) or (3) implies (1). First, note that (2) or (3)
implies (A�)sξ ⊂ Bsξ. Indeed, the same computation as above shows that in general
(A�)sξ ⊂ [iη(As)]⊥. Obviously, we only have to prove the inclusion A� ⊂ B�� = B′′.
To this aim, fix T in (A�)s and R ∈ B′

s. We need to show that RT = TR. Since ξ
is cyclic for A, by Lemma 4.1 it is also cyclic for η(A), which means it suffices to
verify that

〈RTAξ,Cξ〉 = 〈TRAξ,Cξ〉
for every A,C ∈ η(A). Now there exists a sequence {Bn}n∈N ⊂ Bs such that
‖Tξ −Bnξ‖ → 0, and we have

〈RTAξ,Cξ〉 = 〈RATξ,Cξ〉 = lim
n
〈RABnξ, Cξ〉 = lim

n
〈BnRAξ,Cξ〉,

where in the last equality we have used that by hypothesis the inclusion η(A) ⊂ B′

holds, so R and A are both in B′. Then

lim
n
〈BnRAξ,Cξ〉 = lim

n
〈RAξ,BnCξ〉 = lim

n
〈RAξ,CBnξ〉

= 〈RAξ,CTξ〉 = 〈RAξ, TCξ〉 = 〈TRAξ,Cξ〉 ,
and we are done.

That (1) implies (2) can be seen in the exact same way as in the proof of
Theorem 2 in Ref. 17 provided that A is replaced with η(A).

Remark 4.3. Let (H, U) be a Z2-graded Hilbert space. If A ⊂ B(H) is a unital
∗-algebra such that UAU = A, then Asξ + i(A�)sξ is a dense subspace of H and
[ηU (As)ξ]⊥ = i(A�)sξ.

This follows from Lemma 4.2 by taking A = B�.

2250028-25



March 15, 2023 14:33 WSPC/S0219-0257 102-IDAQPRT 2250028

V. Crismale, S. Rossi & P. Zurlo

Our aim now is to use Lemma 4.2 to come to a twisted version of the tensor
product commutation theorem. For completeness’ sake, we recall that this states
that the commutant of the tensor product of two (or infinitely many) von Neumann
algebras equals the tensor product of their commutants. The first general proof was
obtained in Ref. 22 and later simplified in Ref. 17.

We first need to introduce graded (or Fermi) products of von Neumann algebras.
We directly discuss infinite products. If {(Mn, Un) :n ∈ N} is a family of Z2-graded
von Neumann algebras on the Hilbert spaces Hn and ξ := {ξn :n ∈ N} is a sequence
of unit vectors ξn ∈ Hn such that Unξn = ξn for every n ∈ N, the infinite graded
product

⊗̂
ξMn is the von Neumann algebra on the Hilbert space

⊗
ξ Hn generated

by operators T1⊗̂T2⊗̂ · · · ⊗̂Tk⊗̂1⊗̂1 · · · with Ti ∈ Mi for i = 1, 2, . . . , k and k ∈ N.
The condition Unξn = ξn, n ∈ N, comes in useful to define a self-adjoint unitary

on
⊗

ξ Hn as the infinite product ⊗n∈NUn. This is understood as the strong limit
of the sequence given by finite products of the type

⊗ni=1Ui⊗1⊗1⊗ · · ·
which is easily verified to be Cauchy in the strong operator topology. The operator
⊗n∈NUn thus obtained is a self-adjoint unitary as it is the limit of self-adjoint uni-
taries. Moreover,

⊗̂
ξMn is invariant under the adjoint action of ⊗n∈NUn. Phrased

differently, (
⊗̂

ξMn,⊗n∈NUn) is a Z2-graded von Neumann algebra.
In order to arrive at the general form of our product commutation theorem, we

start by attacking the case of a product of two von Neumann algebras.

Theorem 4.4. If M ⊂ B(H) and N ⊂ B(K) are von Neumann algebras on Z2-
graded Hilbert spaces (H, U) and (K, V ) such that UMU = M and VNV = N ,

then

(M⊗̂N )� = M� ⊗̂N �.

Proof. We start with the inclusion M� ⊗̂N � ⊂ (M⊗̂N )�, which can be checked by
direct computation as follows. Since for any von Neumann algebra L by definition
one has L� = η(L′), we need to show that

[ηU (M ′)⊗̂ηV (N ′), ηU ⊗V (M⊗̂N)] = 0

for every homogeneous M ∈ M, N ∈ N ,M ′ ∈ M′, N ′ ∈ N ′. This requires an easy
but tedious inspection of the signs, which we leave out.

The converse implication is obtained as an application of Lemma 4.2 with A =
M⊗̂N and B = M� ⊗̂N �. First note that without loss of generality we may assume
that M has an even cyclic vector ξ1 ∈ H and N has an even cyclic vector ξ2 ∈ K.
This can be seen as in Ref. 17 and references therein because even normal states
on a graded von Neumann algebra separate its points. In particular, ξ := ξ1⊗ξ2 is
an even cyclic vector for M⊗̂N .

In order to apply Lemma 4.2, we need to make sure that η(M⊗̂N )sξ +
i(M� ⊗̂N �)sξ is dense in H⊗K, where η := ηU ⊗̂ηV . Now, as is easily checked,
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η(M⊗̂N )sξ ⊃ ηU (Ms)ξ1 ⊗ηV (Ns)ξ2 and (M� ⊗̂N �)sξ ⊃ (M�)sξ1 ⊗(N �)sξ2, which
means it is enough to verify that

ηU (Ms)ξ1 ⊗ηV (Ns)ξ2 + i(M�)sξ1 ⊗(N �)sξ2

is dense in H⊗K. In light of Remark 4.3, we are reduced to verifying that

ηU (Ms)ξ1 ⊗ηV (Ns)ξ2 + i([ηU (Ms)ξ1]⊥ ⊗[ηV (Ns)ξ2]⊥)

is dense, which follows from the final lemma in Ref. 17.

We can finally state the general version.

Theorem 4.5. If {(Hi, Ui) : i ∈ N} is a family of Z2-graded Hilbert spaces, and
Ni ⊂ B(Hi) are von Neumann algebras such that UiNiUi = Ni, i ∈ N, then⎛⎝⊗̂

ξ

Ni

⎞⎠�

=
⊗̂

ξ

N �
i

for any sequence ξ := {ξi : i ∈ N} of unit vectors ξi ∈ Hi with Uiξi = ξi, i ∈ N.

Proof. First note that a straightforward induction shows that Theorem 4.4 holds
for any finite Fermi tensor product. Again, the inclusion

⊗̂
ξN �

i ⊂ (
⊗̂

ξNi)� is
trivially satisfied.

For the converse inclusion, take T in (
⊗̂

ξNi)�. We will show that T sits in the

weak closure of
⊗̂

ξN �
i . Set H :=

⊗
ξ Hi. Now a neighborhood of T for the weak

operator topology is of the form

G = {S ∈ B(H) : |〈(T − S)xi, yi〉| < ε, i = 1, 2, . . . , n},
for some xi, yi ∈ H, i = 1, 2, . . . , n, and ε > 0. By definition of H, there exists
N ∈ N such that

‖Pxi − xi‖ ≤ ε and ‖Pyi − yi‖ ≤ ε, for every i = 1, 2, . . . , n,

where P is the projection uniquely determined on simple tensors
⊗

i∈N
ui in H by

P (⊗ui) =
N⊗
i=1

ui⊗
⎛⎝ ⊗
i≥N+1

〈ui, ξi〉ξi
⎞⎠.

The same calculations as in the proof of Proposition 9 on p. 34 of Ref. 13 show that

PT lies in (
⊗̂N

i=1Ni)� ⊗̂C ⊗̂C · · ·. Since we have⎛⎝ N⊗̂
i=1

Ni

⎞⎠�

⊗̂C ⊗̂C · · · =
N⊗̂
i=1

N �
i ⊗̂C ⊗̂C · · · ⊂

⊗̂
ξ

N �
i

the thesis will be arrived at as long as we make sure that PT ∈ G. This follows
exactly as in the above reference.
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As an easy application of the theorem above, we provide the following result,
where pureness of product states is addressed.

Proposition 4.6. Let (Ai, θi) be Z2-graded C∗-algebras, and let ωi ∈ S(Ai) be pure
states, i ∈ N. Suppose all of these states are even but one, say ω1. If πω1 and πω1◦θ
are unitarily equivalent, then the product state ×iωi is pure as well.

Proof. It suffices to note that under the above hypotheses π×iωi is still (unitar-
ily equivalent to)

⊗̂
ξπωi with ξ := {ξωi}i∈N, see Proposition 2.1, which means

Theorem 4.5 applies.

We further apply Theorem 4.5 to infer factoriality of an infinite product of even
factorial states. To do so, we first establish a couple of related results.

Lemma 4.7. Let (H, U) be a Z2-graded Hilbert space and let N1,N2 ⊂ B(H) be
von Neumann algebras with UNiU = Ni, i = 1, 2, then

(N1 ∩ N2)� = N �
1 ∨ N �

2 and (N1 ∨ N2)� = N �
1 ∩ N �

2.

Proof. The first equality is arrived at through the following chain of equalities:

(N1 ∩ N2)� = ηU ((N1 ∩ N2)′) = ηU (N ′
1 ∨N ′

2)

= ηU (N ′
1) ∨ ηU (N ′

2) = N �
1 ∨ N �

2.

The second follows analogously.

Proposition 4.8. Let (H, U) and (K, V ) be Z2-graded Hilbert spaces. If Mi ⊂
B(H) and Ni ⊂ B(K), i = 1, 2, are von Neumann algebras such that UMiU = Mi

and VNiV = Ni, i = 1, 2, then

(M1 ⊗̂N1) ∩ (M2 ⊗̂N2) = (M1 ∩M2)⊗̂(N1 ∩ N2)

and

(M1 ⊗̂N1) ∨ (M2 ⊗̂N2) = (M1 ∨M2)⊗̂(N1 ∨ N2).

Proof. As for the first equality, only the inclusion

(M1 ⊗̂N1) ∩ (M2 ⊗̂N2) ⊂ (M1 ∩M2)⊗̂(N1 ∩ N2)

needs to be dealt with, for the converse inclusion is trivially verified.
To this aim, we show that

((M1 ∩M2)⊗̂(N1 ∩ N2))� ⊂ ((M1 ⊗̂N1) ∩ (M2 ⊗̂N2))�.

Now by Theorem 4.4 and Lemma 4.7 we have

((M1 ∩M2)⊗̂(N1 ∩ N2))� = (M1 ∩M2)�⊗̂(N1 ∩ N2)�

= (M�
1 ∨M�

2)⊗̂(N �
1 ∨ N �

2)

⊂ (M�
1 ⊗̂N �

1) ∨ (M�
2 ⊗̂N �

2)
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= (M1⊗̂N1)� ∨ (M2⊗̂N2)�

= ((M1⊗̂N1) ∩ (M2⊗̂N2))�.

In the second equality, both inclusions can be verified directly.

Remark 4.9. By using Theorem 4.5 one sees that the first equality of the above
result holds with infinite graded tensor products as well.

Before stating our next result, we recall that a factor is a von Neumann algebra
with trivial center.

Proposition 4.10. Under the same hypotheses as in Theorem 4.5, an infinite
Fermi tensor product is a factor if and only if each component is a factor.

Proof. Set R :=
⊗̂

ξ Ri, where the Ri’s are all factors. With U =
⊗

i∈N
Ui, thanks

to Theorem 4.5 and Remark 4.9 we have

ηU (R) ∩R� =
⊗̂

ξ

ηUi(Ri) ∩
⊗̂

ξ

R�
i =

⊗̂
ξ

(ηUi(Ri) ∩R�
i) = C,

which shows that R is still a factor because

ηU (R) ∩R� = ηU (R) ∩ ηU (R′) = ηU (R∩R′).

The converse implication is obvious.

A representation π : A → B(H) of a given C∗-algebra is said to be factorial if
π(A)′′ is a factor, i.e. if π(A)′′ ∩ π(A)′ = C1. A state ϕ of a C∗-algebra is called
factorial if its GNS representation is. Moreover, the type of a factorial state is by
definition the same as the type of the factor generated by its GNS representation.

Proposition 4.11. Let (Ai, θi) be Z2-graded C∗-algebras, and let ωi be in S+(Ai),
i ∈ N. The product state ω = ×iωi is factorial if and only if each ωi is a factor.

Proof. A straightforward application of Remark 3.3 and Proposition 4.10.

Actually, far more can be said about the type of factor one can obtain from a
GNS representation as above. In fact, the analysis conducted in Ref. 20 for tensor
products carries over almost verbatim to the graded case. More precisely, we can
provide a graded version of Theorem 2.2 in Ref. 20. We limit ourselves to stating
the result since the proof is exactly the same as the original by Størmer.

Proposition 4.12. If ω is an even factorial state on a Z-graded C∗-algebra (A, θ),
then

(i) ×Nω is of type I1 if and only if ω is mutiplicative;
(ii) ×Nω is of type I∞ if and only if ω is pure but is not multiplicative;
(iii) ×Nω is of type II1 if and only if ω is a trace but is not multiplicative.
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(iv) ×Nω is of type II∞ if and only if the restriction of the vector state ϕξω to
πω(A)′ is a trace, and ω is neither pure nor a trace.

(v) ×Nω is of type III if and only if the restriction of the vector state ϕξω to
πω(A)′ is not a trace.

Acknowledgments

We would like to thank the anonymous referee for their useful comments, which
improved the paper in many respects.

The authors also acknowledge the support from Italian INDAM-GNAMPA.

References

1. L. Accardi, A. Ben Ghorbal, V. Crismale and Y. G. Lu, Singleton conditions and
quantum de Finetti’s theorems, Infin. Dimens. Anal. Quantum Probab. Relat. Top.
11 (2008) 639–660.

2. L. Accardi and Y. G. Lu, A continuous version of de Finetti’s theorem, Ann. Probab.
21 (1993) 1478–1493.

3. H. Araki, Mathematical Theory of Quantum Fields, International Series of Mono-
graphs on Physics, Vol. 101 (Oxford University Press, 2009).

4. H. Araki and H. Moriya, Joint extension of states of subsystems for a CAR system,
Commun. Math. Phys. 237 (2003) 105–122.

5. D. Avitzour, Free products of C∗-algebras, Trans. Am. Math. Soc. 271 (1982) 423–
435.

6. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechan-
ics 1, 2nd edn. (Springer-Verlag, 1997).

7. V. Crismale, R. Duvenhage and F. Fidaleo, C∗-fermi systems and detailed balance,
Anal. Math. Phys. 11 (2021).

8. V. Crismale and F. Fidaleo, de Finetti theorem on the CAR algebra, Commun. Math.
Phys. 315 (2012) 135–152.

9. V. Crismale and F. Fidaleo, Exchangeable stochastic processes and symmetric states
in quantum probability, Ann. Mat. Pura Appl. 194 (2015) 969–993.

10. V. Crismale and F. Fidaleo, Symmetries and ergodic properties in quantum probabil-
ity, Colloq. Math. 149 (2017) 1–20.

11. V. Crismale, S. Rossi and P. Zurlo, On C∗-norms on Z2-graded tensor products,
Banach J. Math. Anal. 16 (2022) 19.

12. J. Dixmier, C∗-algebras (North Holland, 1977).
13. A. Guichardet, Tensor products of C∗-algebras Part II. Infinite Tensor Products, Lec-

ture Notes Series No. 13, Aahrus Universitet, 1969.
14. E. Hewitt and L. F. Savage, Symmetric measures on Cartesian products, Trans. Am.

Math. Soc. 80 (1955) 470–501.
15. O. Kallenberg, Probabilistic Symmetries and Invariance Principles (Springer, 2005).
16. C. Köstler, A noncommutative extended De Finetti theorem, J. Funct. Anal. 258

(2010) 1073–1120.
17. M. Rieffel and A. Van Daele, The commutation theorem for tensor products of von

Neumann algebras, Bull. London Math. Soc. 7 (1975) 257–260.
18. S. Sakai, C∗-Algebras and W ∗-Algebras (Springer, 1971).
19. E. Størmer, Large groups of automorphims of C∗-algebras, Commun. Math. Phys. 5

(1967) 1–22.

2250028-30



March 15, 2023 14:33 WSPC/S0219-0257 102-IDAQPRT 2250028

De Finetti-type theorems on quasi-local algebras

20. E. Størmer, Symmetric states of infinite tensor products of C*-algebras, J. Funct.
Anal. 3 (1969) 48–68.

21. M. Takesaki, Theory of Operator Algebras I (Springer, 1979).
22. M. Tomita, On canonical forms of von Neumann algebras, in Vth Functional Analysis

Symp. (Mathematical Society of Japan, 1967), pp. 101–102.

2250028-31


	Introduction
	Symmetric States on Quasi-Local Algebras
	Processes on Infinite Graded Tensor Products
	The Twisted Commutant of a Fermi Product and Product States


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 900
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


