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Abstract

The early detection of malignant lung nodules can strongly increase the
chances of life in lung cancer patients. A computer tomography scan rep-
resents an effective way to identify and locate malignant nodules in the
body and monitor their growth. However, the reading and interpreta-
tion of tomography scans are subject to errors that can be reduced with
a second reader. The adoption of image processing systems can reduce
the possibility of errors and can support radiologists in ensuring multiple
readings of tomography scans. This study proposes a new approach for
accurate 3D lung nodule detection starting from computer tomography
scans. This work exploits an evolutionary algorithm to build variants of a
UNet-based architecture, called GUNet3++, to detect patients affected by
lung cancer, from the analysis of CT-scan images of lungs. The approach is
validated on the LIDC-IDRI real dataset and results show that it improves
segmentation quality metrics (IoU and Dice) over baselines, leading to bet-
ter 3D models reconstruction of lesions.

Keywords: U-Net, CT scan Images, Lung Cancer, Segmentation, Genetic
Algorithms

1. Introduction

Lung cancer is the leading cause of cancer mortality in the last years
[1] and according to the estimations [2] it will increase its deadliness in the
next years. However, the level of mortality can be significantly reduced by
performing a regular screening of high-risk individuals [3, 4] with com-
puted tomography scans (CTs). Indeed, CTs represents an effective way to
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identify and locate the malignant nodules in the body and monitor their
growth. However, the reading and interpretation of tomography scans
are highly error-prone and require that radiologists read several scans to
detect possible nodules. This can cause incorrect diagnoses with serious
risks for the patient life. The adoption of computer-aided detection (CAD)
systems (i.e., image processing systems) can significantly reduce the pos-
sibility of errors, can detect almost half of the lesions missed by humans
[5] and can support radiologists by reducing the reading times or acting as
a second reader [6] of the CTs [7]. For this reason, several CAD systems for
the detection of lung nodules in CT images systems have been developed
in the last years [8, 9]. Some machine learning approaches [10] are based
on the analysis of common features (i.e., shape, volume, solidity) to dis-
criminate malignant or benign nodules. In the last years, Deep Learning
(DL) approaches also show good performances to detect and classify lung
nodules [11]. These approaches show higher performance with respect to
the traditional lung nodule detection systems. An example of a DL-based
approach for lung nodule detection using CT scan images is proposed in
[12]. Here a lobe-driven CT image clustering [13] is used to improve the
detection performance compared to existing approaches.
In this study, a novel DL-based evolutionary approach for automatic and
accurate 3D lung cancer model detection using CT scan images is pro-
posed. The cancer lesions detector, performing semantic segmentation,
is obtained by searching an extended version of a generalized UNet-based
architecture, called GUNet3++, evolved with a direct coding scheme based
on genetic programming, and fine-tuned using hyperparameter optimiza-
tion.

Concerning existing approaches, the one proposed collects all the in-
formation related to a complete CT scan session to obtain a 3D model of
the detected lung nodules. The main assumption at the base of this ap-
proach is that each CT scan produces a large number of images that repre-
sent different sections of the nodule. A more complete model of the nodule
can be obtained by collecting all these images in a single 3D model of the
nodule. This, for example, improves the capability to detect small nodules
that are overlooked since they require the analysis of a large number of
images [9].
Section 2 presents and discusses the most relevant related work, highlight-
ing differences and common aspects. In Section 3, some basic notions on
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the adopted pre-trained neural networks are provided. The proposed ap-
proach is described in Section 4, whereas the experiment description is
explained in Section 5. A discussion of the experiment results is reported
in Section 6. Finally, Section 7 highlights some threats to the validity of the
described experiments, while Section 8 discusses some final remarks and
future research directions.

2. Related Work

Lung nodule detection aims at identifying the features and the loca-
tions of different nodules. This is still a complex task because the sizes and
features of the nodules vary. For example, juxta-pleural and juxta-vascular
nodules, are hard to differentiate from the pleura and vessels. Recently, to
learn discriminative features automatically, several researchers have ap-
plied DL methods to detect lung nodules. The obtained results are encour-
aging [14]. DL shows, infact, improved detection capability with respect
to the traditional lung cancer detection systems [15]. An example of DL
application for the early-stage diagnosis is described in [16]. Authors use
a DL technique to perform nodules detection and classification and they
reduce the possible mistakes and the number of false positives by using
additional information (i.e., clinical factors). A good accuracy (85.4% and
90.1% at 1 and 4 false positives per scan in the best case) in lung cancer
CT detection is obtained in [17] where multi-view convolutional networks
(2-D ConvNets consisting of 3 consecutive convolutional layers and max-
pooling layer) are used. The detection of nodule from the CT scans is also
performed in [18] using the so-called DeepLung approach. It consists of
a first step for detecting candidate nodules from the CT images and a fol-
lowing step for the extraction of the deep features and the detection of the
nodules. The first step is based on a 3D Faster R-CNN while the following
step is performed using a dual-path network (DPN). [19] proposed a 3D
Deep Convolutional Neural Network where, to leverage 3-dimensional in-
formation from Computed Tomography (CT) scans, they applied median
intensity projection and multi-Region Proposal Network (mRPN) for au-
tomatic selection of potential region of-interests. They obtained a 97.4%
sensitivity value for 2.1 false positives per scan. [12] propose a DL-based
ensemble approach based on an image clustering step that allows to spe-
cialize each classifier to a specific lobe zone. This approach ensures an in-
creased detection accuracy since each classifier is specialized to capture the
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patterns of a specific lung lobe. The detection is performed using different
pre-trained convolutional neural networks (the best classifier for each case
is selected) obtaining an accuracy of 0.96 in single image classification and
0.94 in the patient classification.

More recently, [20] propose the UNEt TRansformers (UNETR) network,
based on a transformer as the encoder with the aim of learning sequence
representations of the input volume to capture multi-scale information.
The UNETR network is still based on the "U-shaped" network design for
the encoder and decoder. However, the transformer encoder is directly
connected to a decoder via skip connections at various resolutions to gen-
erate the output providing the semantic segmentation.

Another approach, based on AutoML, is described by [21]. The authors
propose a new automated machine learning algorithm (called T-AutoML)
which performs a jointly search of the best neural architecture along with
the best combination of hyperparameters and data augmentation strate-
gies simultaneously. The proposed method utilizes a transformer model
to adapt to the specific properties of search space embeddings, improving
the search performances.

Differently from the above techniques, our proposal exploits evolution-
ary algorithms to derive a U-Net based network [22] which is better suited
to the specific segmentation task for which the search is performed, ex-
hibiting final better performance. This is confirmed by several studies that
mainly used U-Net and U-Net based approaches to perform image seg-
mentation in the medical domain with good results [23, 24, 25]. However,
the variants of the original U-Net come with a limitation. The diversity of
features is lost due to the fixed receptive field of the convolution kernel.
The same scale feature maps extracted from the convolution kernel with
different receptive fields are semantically different. As a result, the perfor-
mance of the network may vary with the size of the receptive field, and the
performance depends on the size of the receptive field in the convolution
kernel.

This study proposes, with respect to the discussed related work, a new
architecture called GUNet3++ characterized by multi-scale skip-connections
allowing the network to learn from contextual information across differ-
ent regions of growing sizes at multiple scales. Moreover, the proposed
approach exploits a genetic algorithm to drive an architectural search pro-
cess in the frame of the GUNet3++ structure to select the best architecture
variant for the given segmentation task.
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3. Background

Image segmentation is a typical computer vision activity where each
pixel of the image is labeled according to what’s being shown. Differ-
ent from other approaches, semantic segmentation does not distinguish
among images of the same class but only cares about the category of each
pixel (i.e., all the pixels of the same nodule are grouped in the same class).
This makes semantic segmentation very useful in the medical domain
where it supports radiologists in their diagnostic tasks. In the following
the major variants of UNet networks, that have inspired the architecture
used as building block of the proposed approach (called GUNET3++), are
briefly described.

3.1. UNET
UNet is a fully convolutional network [26] developed for ensuring

high-quality and quick segmentation of medical imagines and is able to
work with small training datasets thanks to heavy data augmentation. It
has also been successfully used in 3D imaging segmentation [27]. The U-
net network has 23 convolutional layers and is structured into two main
sections. The first one is the contracting path that exploits a classical CNN
architecture. Each block of this contracting path is made up of a sequence
of two 3 × 3 convolutions followed by an activation function unit (i.e., a
rectified linear unit — ReLU) and by a max-pooling layer (with a dou-
ble stride for downsampling — the feature channel are doubled at each
downsampling). The interesting part is the second one, named the expan-
sive path, where each stage performs up-sampling on the feature maps
using up-convolutions. The network is characterized by a high number
of feature channels in the upsampling data allowing the propagation of
context information to the layers with higher resolution. For this reason,
the expansion of this architecture can be more or less symmetric since the
network tends to use only valid nodes (the layers are not fully connected).

The result is an overall network with a shape similar to a big U . Through
the network, layers propagate contextual information, allowing to seg-
ment objects in a region using the context data arising from a larger over-
lapping one. The feature maps from the corresponding layer in the con-
tracting path are cropped and concatenated to form the upsampled feature
maps. This crop step is necessary to discard pixel features at the edges that
have the lower amount of contextual information. Finally, in the last layer,
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a 1x1 convolution relates every single component of the feature vector to
the desired number of classes.

The energy function for the network can be written as:

E(x) =
∑
x∈Ω

w(x) · Log(Sℓ(x)(x)) (1)

where w(x) defined as w : Ω −→ R is a weights map to give at each
pixel x ∈ Ω ⊂ Z2 a lower or higher importance during training, ℓ : Ω −→ {1, . . . ,K}
is the true label of each pixel, and Sk(x) is the pixel-wise SoftMax formal-
ized as:

Sk(x) = exp (ak(x))/
K∑

h=1

exp (ah(x)) (2)

where ak(x) is the activation in feature channel k at pixel x ∈ Ω, and K is
the number of classes. Since Sk(x) ≈ 1 for the k that has the maximum ac-
tivation ak(x) and Sk(x) ≈ 0 for all the other k, the cross entropy penalizes,
at each position, the deviation of Sℓ(x)(x) from one.

3.2. UNET+ and UNET++ variants
In [28] three UNet variants are proposed, namely UNete, UNet+ and

UNet++. The first one is an ensemble architecture, called UNete, which
combines U-Nets of varying depths into a single unified architecture. All
inner U-Nets (partially) share the same encoders, but each one has its own
decoder. As pointed out by the authors themselves, this network has some
limitations: since the decoders are not connected the subsequent U-Nets
do not provide supervision signals to the decoders of the previous U-Nets.
Moreover, the skip connections used in the U-Nete is too restrictive, com-
bining the decoder feature maps only at the same-scale. From this ensem-
ble version, the UNet+, depicted in Fig. 1-(a), is derived by modifying the
original skip connections. In this variant, every two adjacent nodes are
connected with a direct skip connection, allowing the deeper decoders to
pass the supervision signals to the shallower decoders. For this reason,
while UNete needs deep supervision in order to train the inner U-Nets,
due to these direct skip connections, UNet+ can be trained in both nor-
mal and deep supervised fashion (i.e., the loss function shown in Fig. 1-(b)
can be linked only to X0,4 when performing normal training or to all X0,j

nodes with j ∈ {0, . . . , 4} when training with deep supervision).
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The final UNet++ architecture, depicted in Fig. 1-(b), is a further im-
provement over UNet+ for what concerns connectivity density. Specif-
ically, UNet++ is constructed from U-Net+ by connecting the decoders,
resulting in densely connected skip connections, enabling dense feature
propagation along skip connections and thus more flexible feature fusion
at the decoder nodes. Each node in a decoder is presented with not only
the final aggregated feature maps but also with the intermediate aggre-
gated feature maps and the original same-scale feature maps from the en-
coder. For this reason, each node in the UNet++ decoders combines multi-
scale features (horizontally, at same-scale) from its all preceding nodes(i.e.,
at the same resolution). Conversely, it integrates, vertically, multiscale fea-
tures over different resolutions from the shallower previous node. The
feature aggregation at multiple scales synthesizes the segmentation over
layers more gently resulting in better accuracy and a more stable training
process with improved convergence. This arrangement minimizes the loss
of semantic information between the two UNet notable paths.

Let xi,j be the output of the node X i,j where i identifies the down-
sampling layer on the encoders path and j identifies the convolution layer
across the skip connections. The operation of the skip connection unit in
which x is the feature map and (i, j) are the indexes down the contracting
path and across the skip connections, can be defined as:

xi,j =

{
Θc(Do(x

i−1,j)) j = 0

Θc(
[
[xi,k]j−1

k=0,Up(x
i+1,j−1)

]
) j > 0

where Θc(·) is the convolution followed by the activation operation, Do(·)
is the down-sampling operation, Up(·) represents the up-sampling oper-
ation, and [·] is the concatenation operator. The number of intermediary
skip connection units depends on the layer number and decreases linearly
when traversing the contracting path. Specifically, as shown in Fig. 1-(b),
nodes at level j > 1 are feeded with j + 1 inputs, of which j inputs are the
outputs of the previous j nodes at the same resolution and the (j + 1)th

input is the output from the skip connection up-sampled from a lower
resolution.

3.3. UNET3+ variant
Another notable variant derived from UNet is the UNet 3+ which merge

the multi-scale features by modifying the skip connections and exploits
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Figure 1: Major variants of UNet architecture.

a deep supervision approach for training that spans over multiple scales.
Specifically, both UNet and UNet++ do not use sufficient information from
all available scales. For this reason in UNET3+, as shown in Figure 1-(c),
each decoder layer acquires both smaller-or-same-scale feature maps from
its corresponding encoder and larger-scale feature maps from the decoder.
This results in capturing both coarse-grained contextual/semantic infor-
mation and fine-grained details across all the available scales. To combine
the shallow data with deep semantic data, a feature aggregation mecha-
nism is applied (exploiting bilinear interpolation and a non-overlapping
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max pooling operation) on the concatenated feature map from the avail-
able five scales and resulting, at decoding stages, in 320 filters of size 3×3,
as reported in Fig. 1-(c). As suggested by the figure, the feature maps of
X i

d can be evaluated as:

X i
d =

{
X i

e, i = N

Θc(
[
C
(
Do(X

k
e )
)j−1

k=1
, C

(
X i

e

)
, C

(
Up(X

k
d )
)N
k=j+1

]
) i = 1, . . . ,N − 1

where C(·) is the convolution operation, Θc(·) is the feature aggregation
operation followed by a convolution and by the activation function, Do(·)
is the down-sampling operation, Up(·) represents the up-sampling oper-
ation, and [·] is the concatenation operator. The number of intermediary
skip connection units depends on the layer number and decreases linearly
when traversing the contracting path. Even if UNet3+ has fewer parame-
ters than UNet++, on some tasks this arrangement yields a more accurate
segmentation map improving both regions’ positioning and boundaries
identification.

4. The Evo-GUNet3++ approach

In this work, to find best suited UNet-based architectures for CT-scan
semantic segmentation for cancer lesions detection, we propose to use a
genetic algorithm to drive the architectural search process based on a more
generalized UNet template network (called GUNet3++).

The overall process is highlighted in Figure 2: on the left side of the fig-
ure is depicted the overall structure of the genetic algorithm (GA) used for
architectural search whereas on the right side the training process, using
a partitioned dataset (training/validation), executes an hyper-parameters
optimization step training each candidate network.

Specifically, as the figure shows, the algorithm executes an evolution-
ary process to discover the best architecture adaptation of the GUnet3++
model to perform segmentation of the CT scans provided as input. To this
aim, it takes as input: (i) the set of predefined building blocks belonging to
the GUnet3++ model, (ii) the population size (iii) the maximal generation
number for the GA, and (iv) the image classification dataset.

The starting population is initialized using random choices with a pre-
defined population size and exploiting an encoding strategy able to repre-
sent a set of possible desired adaptations of the original model along with
their hyper-parameters. Then, during evolution, the fitness function of
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Figure 2: Overview of the proposed approach.

each individual, which encodes a particular architecture of the pre-trained
model, is evaluated on the input datasets. At this point, the parent in-
dividuals are selected based on the fitness function, and then generate a
new offspring by applying suitable genetic operators (e.g., mutation and
crossover). Finally, the population of individuals that survives into the
next generation is selected by applying environmental selection to the cur-
rent population, composed of the generated offspring population and the
parent one. The evolution cycle proceeds until the optimal performance is
obtained or the maximum number of iterations is reached.

More specifically, the procedure of the used GA can be detailed as fol-
lows:

1. Instantiate the initial population of individuals P , each one gener-
ating a GUnet3++ model, and train the networks represented by P
using the average dice as a fitness function. For each network, hyper-
parameters optimization is performed by the Tree-Structured Parzen
Estimator (TPE) algorithm as highlighted in figure;

2. Generate a set of λ offspring O, by applying the mutations to P . Mu-
tation enforce the diversity of the population and avoid the search
from ending in a local minimum. For this reason, the offspring is
generated using crossover that has the probability Mp of for muta-
tion, and each bit in the encoding has an independent probability
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for flipping. The value is small enough (e.g., 0.035) to avoid exces-
sive changes due to a single mutation operation.

3. Perform training on the λ modified pre-trained CNNs represented
by offspring O, and assign the validation accuracy to the model as a
fitness function;

4. Select elite individuals from the union of the sets of P and O, and
then replace P with them;

5. Repeat from step 2 until the stopping criterion is satisfied.

The algorithm starts from individuals based on the considered pre-
trained models, giving to each model equal chances to produce individ-
uals that perform well on the specific classification task. However, if a
pre-trained model is not suitable and produces individuals that are less
performing, it is quickly discarded since it will be not included in the elite
set at step 3 after several iterations.

4.1. GUNet3++ backbone architecture
The building block of the proposed evolutionary approach is the GUNet3++

network. The GUNet3++ architecture derives from the generalization of
both UNet++ and UNet3+ networks. Looking at bottom of Figure 1, we
can see that, with respect to UNet, the UNet++ network introduces dense
skip-connections on each scale whereas UNET3+ does not use redesigned
dense skip-connections but adopt, for each decoder, multi-scale feature
aggregation.

The GUNet3++ architecture is modified to include both these aspects
obtaining the structure depicted in Figure 4. As the figure shows, the ar-
chitecture maintains the dense pyramidal block of transducers allowing
to propagate, at each scale, information from shallow nodes to deeper
ones. This is complemented with multi-scale skip-connections allowing
the network to learn from contextual information across different regions
of growing sizes at multiple scales.

Figure 3 shows, for instance, the generation of output signal of de-
coder X2,2 using upscaling and downscaling to perform aggregation on
that scale.

In this case, there are six feature maps to be unified. We used the con-
volution with 64 filters of size 3x3 leading to a feature map of 384 filters. As
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Figure 3: Aggregated feature map of decoder X2,2.

shown in the figure, the third channels (X2,0,X2,1) are sent without scaling
since they are at the same-resolution whereas the remaining are up-scaled
or down-scaled accordingly to the source with respect to the destination.

Following the same notation of Section 3.2, the output of the node X i,j ,
where i identifies the down-sampling layer on the encoders path, j iden-
tifies the convolution layer across the skip connection and N + 1 is the
number of scales, is defined as:
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Figure 4: The GUNet3++ architecture.

xi,j =



Hc(D (xi−1,j)) i>0
j=0

Hc

([
[xi,k]j−1

k=0,U(xi+1,j−1)
])

i∈[0,N/2]
j∈[1,N−i−1]

Hc

([
[X i,k

]N−i−1

k=0
, C

(
D
(
X i−(k+1),j+k

))N−1−j

k=0
, i∈[0,N−1]

j=N−i

C
(
U
(
X i+(k+1),j−(k+1))

)N−(i+1)

k=0
]
)

where C(·) is the convolution operation, Hc(·) is the convolution followed
by the activation operation, D(·) is the down-sampling operation, U(·) rep-
resents the up-sampling operation, and [·] is the concatenation operator.

13



The network allows deep supervision at two levels. At maximum res-
olution, involving the decoded outputs X0,j with j ∈ {0, . . . ,N}, where
outputs can also be pruned to improve inference times when needed. The
deep supervision also can be performed across multiple scales, to learn hi-
erarchical representations from feature maps of all the scales, at the deep-
est decoder segment (i.e., X i,N−i with i ∈ {1, . . . ,N − 1}).

To train the network we then used a hybrid loss function combining
pixel-wise cross-entropy loss and soft dice-coefficient loss, at each seman-
tic scale. The overall loss function for GUNet3++ is defined as a weighted
sum of the hybrid loss of each decoder:

HLoss =
D∑
i=1

HLoss(T ,P
i)

where D is an index across decoders, (T ,P i) are the true labels and the la-
bels evaluated by decoder i for every pixels in the batch, and HLoss(T ,P

i),
defined as the sum of pixel-wise cross-entropy and dice-coefficient contri-
bution, can be formulated as:

HLoss(T ,P
i) = −1/SP

K∑
c=1

SP∑
n=1

(
l(xn, c) ∗ log(p(xn, c)) +

2 ∗ l(x, c) ∗ p(xn, c)

l(xn, c)2 + p(xn, c)2

)
where, for class c and pixel xn belonging to the current batch, l(xn, c) ∈ T
are the target labels, p(xn, c) ∈ P i are the predicted labels by decoder i, and
SP is the number of pixels within the batch.

4.2. GNet3++ building block and the encoding strategy
To represent a trainable model, starting from the original GUnet3++

template, an encoding scheme must be defined for both the hyper-parameters
and the model structure.

To avoid having to define a distinct structure for each node, which
would not have particular useful and would make the evolutionary pro-
cess unnecessarily heavy, we divide the network into few distinct cod-
ing segments: therefore a node obtains an encoding which determines its
structure on the basis of its position in the network.

Specifically, the GUNet3++ network has been divided in three seg-
ments: SP to encode pyramidal transducers, SE for encoders and SD to
represent decoders.
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Figure 5: GUNet3++ encoding segments.

As shown in Figure 5 each segment defines the elements to be encoded
in the overall architecture genotype: each element of SE ∪ SD (i.e., en-
coders and decoders) has an individual block gene to define its internal
structure during the evolutionary search whereas for the pyramidal seg-
ment SP each scale has several blocks sharing the same structure (i.e., one
block gene for each scale, to reduce the search space).

Each gene is structured in two portions, one encoding the block struc-
ture in terms of nodes and connections and the other specifying the node
structure in terms of performed operations, as depicted in the upper part
of Figure 6.

The gene structure is replicated on each element over the three seg-
ments (SE,SD,SP ) to generate the overall genotype of the architecture
(shown in the bottom part of Figure 6). This allows different blocks to
have different operations and layout resulting in a very flexible architec-
ture design. Concerning the block part of the encoding, it defines a graph
(i.e., a DAG) specifying nodes and their connections. Each node repre-
sents an atomic operation sequence (defined in the node encoding), and
the edges are linked among them generating a feature map from the node
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Figure 6: Encoding scheme and architecture genotype.

inputs. If the maximum number of nodes that is permitted in the DAG is
N, then the binary digits used to encode the block is N ∗ (N − 1)/2.

Figure 7 reports two block-level encodings along with the resulting
graphs for N = 6 (resulting in a block encoding of fifteen digits). As high-
lighted in the two examples 7-(a) and 7-(b), each digit specifies if an edge
is present or not among the corresponding nodes. The maximum number
of nodes is fixed same but, if connections generate isolated nodes, they
are removed from the resulting blocks, like the node N5 in the example
(a). This makes it possible to generate blocks with a reduced number of
nodes.

For what relates to the node-encoding part of each gene, it is used
to specify the basic operation sequence to be used. The nodes in a stan-
dard network have a fixed sequence of operations (e.g., conv(3 × 3) −→
BNorm −→ ReLU). Each individual in the evolutionary search can encode
a different sequence of operations as specified in Table 1.

As the table shows, there are eight basic sequences of operations that
adopted at the node-encoding level, resulting in a node encoding of three
binary digits. The sequences of operations differ among themselves for
kernel size of convolutional operations, for the used activation function,
and for the batch normalization presence.

5. Experiment Description

In the following sub-sections, the research questions, the dataset con-
structed and the experiment evaluation setting are described.
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Figure 7: Two block-level encoding examples

5.1. Research questions
In this section, the high-level research goals discussed in the introduc-

tion are detailed through the following research questions:
RQ1: Is the performance of the best fine-tuned GUNet3++ network found by the
proposed genetic algorithm higher than the one obtained by baseline models?
This research question aims to assess, evaluate and compare the perfor-
mance of the proposed UNET-based variants derived using evolutionary
algorithms in detecting lung cancer nodules in CT scans with respect to
standard UNET variants used as baselines.
RQ2: What is the impact of the ensemble-based correction at nodule-level on the
lesion detection performance of the best fine-tuned GUNet3++?
This research question aims at assessing and evaluating the performance
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Encoding Operations Sequence
000 conv(3× 3) −→ ReLU
001 conv(3× 3) −→ Swish
010 conv(3× 3) −→ BNorm −→ ReLU
011 conv(3× 3) −→ BNorm −→ Swish
100 conv(5× 5) −→ ReLU
101 conv(5× 5) −→ Swish
110 conv(5× 5) −→ BNorm −→ ReLU
111 conv(5× 5) −→ BNorm −→ Swish

Table 1: Node-level encodings (sequences of operations)

Table 2: Performance of the ten best GUNET3++ configurations.

of the proposed approach when tested at the nodule-level using ensemble-
based correction. To answer this question, an ablation study to investigate
the impact of ensemble-based correction to reduce the false negatives is
performed. The ensemble correction is performed by using the three best
performing GUNet3++ networks. In this case, the ROIs are evaluated by
averaging the ones produced by the single networks of the ensemble.

5.2. Dataset construction
In this experiment, we used an international publicly available dataset

called Lung Image Database Consortium image collection (LIDC-IDRI)
[29]. It is composed of images of digital radiography, computed radiog-
raphy, and thoracic CT scans of 1010 patients. In particular, all the images
are annotated after a double-check performed by four experienced radiol-
ogists to identify all the lung nodules contained in each image for a given
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Table 3: Best results of baseline methods.

patient. Each nodule is identified when all four radiologists indicated the
presence of a lesion having a diameter equal to or greater than 3 mm.
Moreover, at each image, a set of metadata is associated indicating the
characteristics of the contained nodules (if any). In particular, the descrip-
tion of the complete three-dimensional contour of the nodule is described
by a metric called Nodule Contour ROI. A more extended description
of this metric is reported in [29]. Starting from this data, three different
datasets are obtained. The Nodules Oracle dataset is built considering all
the images collected in the LIDC-IDRI database having the same format
and resolution (BMP format with a resolution of 512×512 pixel). More-
over, a cleaning step is executed by removing all the low-quality scans and
all the images corresponding to a patient having a reduced or incomplete
number of CT images.

After the cleaning, we obtained three datasets for training, validation
and test respectively relative to 715 patients. The training dataset is com-
posed of 32,606 images of 500 patients with their corresponding meta-
data. The same images are also contained in the CT scan training dataset,
wherein 28,2027 images are labeled as not containing nodules and the rest
as containing nodules. The validation test included 71 additional patients
(representing 10% of the total number of patients). Finally, the test dataset
contains the images of the remaining 143 patients (representing 20% of the
total number of patients) and is used for the assessment.

In the training phase, an Images Masks Generation step is performed.
This allows obtaining, from the ROI provided in the DICOM files of the
dataset, a set of images masks (a mask for each image of the original
dataset representing all the nodules specified in the oracle or an empty
mask for images with no nodules). The masks are then used to train the
U-Net-based classifier that takes as input the original CT scans images and
as output the corresponding masks learning to perform semantic segmen-
tation of nodules.
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5.3. Experimental setting
The goal of the proposed experimental validation spans over three lev-

els of assessment:

• to evaluate the capability of each GUNet3++ network to detect the
RoI of a lesion in a CT-scan (at image-level, investigated in RQ1);

• to evaluate the effectiveness in identifying complete nodules across
different images of a CT-scan using window-based correction (at
nodule-level, investigated in RQ2);

Within the first point, that involve image-level assessment, different
variants of GUNet3++ and different hyperparameters configurations are
evaluated. In addition to the evolutionary search that defines the con-
crete structure of the network, the considered hyperparameters are the
dropout rate (D), learning rate (LR), and batch size (BS). The dropout rate
represents the probability of training a given node in a layer and in this
study belongs to the interval [0.15, 0.35] with a step of 0.10. The learning
rate indicates the step size at each training iteration while moving toward
the minimum of the loss function. In this study, it belongs to the interval
[0.01, 0.02]. The batch size represents the number of training samples used
in one iteration of update of the neural network internal parameters. We
consider in this study three batch sizes, namely 16, 32, and 64.

Considering a nodule as a sequence of images representing its differ-
ent regions, the nodule-level assessment generalizes the image-level as-
sessment to evaluate if a nodule is correctly identified as a whole. At this
level, we use a window-based correction approach: the resulting masks
provided by three networks are used to generate an improved RoI per-
forming a correction pass during the detection.

Finally, to validate the model we have adopted a metric that is usu-
ally used to evaluate segmentation: the sørensen-Dice similarity coeffi-
cient, which measures the similarity between two samples and is based
on presence and absence data [30], and is similar to the Intersection over
Union (IoU) metric, a good metric for measuring the overlap between two
bounding boxes or masks [31].

Defined G as the correct mask and P as the segmentation generated by
the network, the Dice can be defined as:

Dice =
2 ∗ |G ∩ P |
|G|+ |P |
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To validate pixel classification performance and correctness of the seg-
mentation area we adopted the sensitivity (SEN) and the positive predic-
tive value (PPV) metrics, which are defined as:

SEN =
|G ∩ P |
|G|

PPV =
|G ∩ P |
|P |

All the single classifiers have been developed using PyTorch1, Tensor-
flow2, and Keras3, three open-source neural network libraries with Python
bindings (used to implement the classifiers). The genetic algorithm is im-
plemented in Java, using the Jenetics4 open-source library

For this experimentation the following two workstations:

• AMD Ryzen Threadripper 3960X 24-Core, with 128GB of RAM and
two GPU NVIDIA RTX 3090 (with 24Gb of RAM)

• Intel Core i9 9940X (14 cores), with 64GB of RAM and four GPU
NVIDIA Tesla T4 (with 16Gb of RAM)

have been used.

6. Results and Discussion

RQ1: Is the performance of the best fine-tuned GUNet3++ network found by the
proposed genetic algorithm higher than the one obtained by baseline models?

Table 2 shows the performance of the best GUNET3++ configurations.
The first column of the table reports a configuration ID. The following
columns contain respectively information about the encoder, decoder, and
pyramidal blocks. Finally, the considered hyperparameters and the per-
formance metrics are described in the last columns. The yellow row of the
table shows the best configuration reaching very good performance (the

1https://pytorch.org/
2https://www.tensorflow.org/
3https://keras.io/
4https://jenetics.io
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Figure 8: Hyper-parameters influence on the average dice score.

Dice is equal to 0.972, the SEN is equal to 0.977 and the PPV is equal to
0.923). It is interesting to investigate the properties of the best encoding re-
ported in Table 2 looking at Table 1 that shows the operation sequences for
each encoding. Specifically, we can observe that the top five configurations
are all characterized by an encoder block having conv(5× 5) −→ Swish at
node level. Similarly, the top two configurations are also characterized by
a conv(5× 5) −→ BNorm −→ Swish operations sequence for the pyrami-
dal blocks. This suggests that initial and internal paths that extract and ag-
gregates features at different scales (i.e., encoding and pyramidal sections)
benefit most from the use of larger convolutions, Swish activation func-
tion and batch normalization with respect to decoder blocks which prefer
smaller filters often with a simple ReLU. Further considerations can be
made about the influence of each considered hyper-parameter (dropout,
learning rate, and batch size) on the performance of the GUNet3++.

Figure 8 reports the average Dice score obtained for different values of
dropout, learning rate, and batch size. In all the cases, we can observe that
the Dice score is influenced by the considered hyper-parameters values.
For the dropout, the best scores are obtained when the value is fixed to 0.15
while the worst dice score is obtained when the dropout is 0.1. Similarly, a
greater dice score is obtained when the learning rate is 0.02 and the batch
size is 64 and 32 (this is also confirmed by Table 2 that shows that in all the
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Figure 9: Performance comparison of GUNET3++ with baselines.

best configurations the DO is equal to 0.02 and the BS is 32 or 64).
Table 3 reports the best results obtained for different baseline methods

and different hyperparameters configurations.
The table shows that good performance is always obtained for UNET++

and UNET3+ (the Dice, SEN, and PPV are always greater than 0.82). Lower
values are then obtained by the UNET (in the worst case the PPV is equal
to 0.605). The yellow row of the table shows the best configuration for each
considered variant. In particular, the highest values of Dice, SEN, and PPV
are obtained for UNET3+ (they are respectively 0.934, 0.936, 0.918). Finally,
a comparison between Table 3 and Table 2 shows that the performance of
the GUNET3++ is improved with respect to the performance of the base-
line methods. The performance comparison of GUNET3++ with the base-
line is highlighted in Figure 9. The figure reports the Dice, SEN, and PPV
values for the top ten GUNET3++ and the best UNET++ and UNET3+.
The figure shows that the Dice values of the best four GUNET3++ config-
urations are always better than the UNET3+ best Dice. Moreover, six of the
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Figure 10: Qualitative analysis of predicted ROI for GUNET3++ and baselines for differ-
ent kind of lesions.

ten considered GUNET3++ give better Dice of the UNET++ best configu-
ration. Similar considerations can be made for the SEN and PPV values.
The performance of the GUUNet3++ with respect to the baselines is also
explored by considering a different kinds of lesions. Figure 10 reports in
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each row four different kinds of lesions. For each row, the figure shows the
predicted ROI (the lesion border is represented with a colored line) and the
reference ROI (dotted line). Each column of the image reports a different
method (UNET, UNET++, UNET3+, GUNET3++) so that a different color
of the lesion border represents a different adopted method. Looking at the
figure, the first row reports the kind of lesion characterized by symmetric
and soft borders and no calcification. The lesion border obtained by the
UNET (it is colored in red), is quite different from the reference border. The
best matching between the reference ROI and the predicted ROI is then
obtained by the GUNET++ (it is colored in green). Good matching is also
obtained by UNET3+ and UNET++ (clear and dark blue borders). These
results are also confirmed by the Dice values obtained for each method
and reported in the figure. These considerations can be extended to the
other rows of the figure. We can observe that the best matching between
predicted ROI and reference ROI (Dice=0.978) is obtained when the le-
sion has an asymmetric and irregular border and there is no calcification.
Generally, good results for all the considered methods are obtained when
the lesion is symmetric and has a regular border with solid calcification.
Finally, despite the described advantages of the proposed approach with
respect to the baseline models, it is worth noting that the GUNet3++ net-
work is characterized by multi-scale skip connections requiring more ef-
fort for both training and inference times. However, the impact of these
additional connections on the inference times is particularly high. Specifi-
cally, inference times remain comparable with times exhibited by the other
segmentation networks. As a consequence, even if the training process of
GUNET3++ is slower and more demanding, it allows to obtain more pre-
cise segmentation networks that are characterized by inference times sim-
ilar to the ones of the comparable segmentation networks.
RQ2: What is the impact of the ensemble-based correction at nodule-level on the
lesion detection performance of the best fine-tuned GUNet3++?

The impact of ensemble-based correction to reduce the false negatives
is then evaluated to answer this question. Figure 11 reports (in green) the
estimation of the nodule volume of the proposed approach when tested at
the nodule level using ensemble-based correction. The curve is compared
with the corresponding values obtained by the reference slices (black line)
and the best GUNet3++ (red line). The figure highlights that the ensemble-
based correction allows reducing the curve oscillations with increased sim-
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Figure 11: Estimated nodules volume (by size) using the single best GUNET3++ selected
by the genetic algorithm (i.e., the ’Best-network’ curve) and using the best three trained
networks (i.e., the ’Ensemble-correction’ curve) compared to the one evaluated by radi-
ologists (i.e., the ’Reference’ curve).

ilarities between the estimated nodules volume and the reference model.
This is also confirmed by looking at the boxplots depicted in Figure 12
showing the distribution of the differences among the predicted volumes
and the reference ones evaluated using the ground truth. As we can see
the estimated values corrected using the ensemble of the best three net-
works found by the evolutionary algorithm have a smaller inter-quartile
range compared to the single best GUNET3++ network. This means that
the values are much more focused on the real values (meaning a much
more precise ROI of lesions found on nodules slices). It is interesting also
that using ensemble of different configurations allows to build a more ro-
bust segmenter. This is because different "best" configurations behave in
a slightly different way, making errors on different kinds of nodules (and
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Figure 12: Boxplot of delta volumes distributions for GUNET3++ and best ensemble.

this makes ensembling beneficial).
We conclude the section by reporting, in Table 4, a comparison between

the training times of the various networks on the considered dataset. This
allows you to have purchasing information on the complexity of the entire
workflow. From this point of view, as could be assumed from the high-
est number of parameters, GUNET3++ is the network that requires the
greatest training effort (approximately double the time of UNET++ and 5
times the training time of UNET3+). However, it is interesting to note that
it is easier for the evolutionary optimization process to find GUNET3+
networks that provide better performance with respect to other networks
(since GUNET3+ structure can be altered using segments encodings). In
fact, if we look at the global process training times, the GUNET3++ train-
ing times still dominate but with a smaller ratio (three times slower than
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Table 4: Training times in seconds for a single epoch, a single model and the total training
time of the hyper-parameter optimization.

UNET3+ and substantially equivalent to UNET++).

7. Threats to the validity

In this study there are three main threats to validity: construct validity,
internal validity, and external validity.

As regards the construct validity threats, a possible limitation could
be due to the quality of the adopted dataset. However, this risk is miti-
gated by the used dataset that has been largely adopted and referenced in
medical and engineering studies. Moreover, the dataset labeling has been
performed through an established process involving four radiologists.

In addition, in the proposed study, the dataset has been pre-processed
cleaning, filtering, and deleting all the images with low quality and/or
a different format. Referring to the internal validity threats, a limitation
could be due to possible variables that are not considered in our experi-
ment but can influence our observations. However, in this study, we split
the CT scan dataset into a test (20% of the data) and a training set (80%
of the data). We can not be sure that different splits could give different
results.

Similarly, detection performances are strongly influenced by the adopted
network architectures (this is also confirmed by the discussed results). For
this reason, we are aware that architectures not considered in this study
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could dive into different performances. However, to mitigate this threat
four different networks have been considered and evaluated in this study.

Finally, the threats to external validity regard the capability to gener-
alize the obtained outcomes. Even if the considered dataset includes a
high number of images and patients, it is necessary to further evaluate the
proposed approach on additional datasets including images of different
image resolution, color and format.

8. Conclusions

Several studies have been recently proposed to deal with the lung can-
cer detection problem. The relevance of the topic is due to the importance
of early diagnosis for people affected by lung cancer to increase survival
rates. In this paper, we have proposed an innovative approach that aims
at effectively supporting the diagnosis of patients affected by lung cancer
using CT scan images. According to this, the approach exploits an evo-
lutionary algorithm to build variants of a UNet-based architecture, called
GUNet3+, to detect patients affected by lung cancer, from the analysis of
CT-scan images. The approach is defined considering tomography images
of the lung. To validate the approach, a large and well-known dataset has
been used. The obtained results are very encouraging and provide fur-
ther perspectives. However, a limitation of this study can be the lack of
interpretability and transparency in the decision criteria which decreases
the possibility of using the approach in real-world practical cases. This
limitation is quite common to all the AI prediction models applied to the
clinical context [32]. According to this, as future work, we aim to integrate
into our proposed approach a GradCAM++ component able to identify
the lung regions where the most relevant features involved in classifica-
tion have been extracted [7]. Another limitation of this study regards the
necessity to include in the experimentation more larger and heterogeneous
datasets to better generalize the obtained results. However, with respect
to other fields, in the medical domain the collection of medical images, is
generally challenging. Medical images can be generated in different ways
using different tools and obtaining medical imaging is expensive as well
as patients’ privacy needs to be ensured [33]. In future work, the pro-
posed approach will be further experimented with using new datasets to
generalize the obtained results also thanks to the collaboration with med-
ical institutions. Referring to the limitations discussed in Section 7, the
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approach will be extended to include also heterogeneous data (image res-
olution, color, and format), not considered variables (different splits), and
a greater number of networks will be considered as alternative ones.
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