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Abstract: In healthy conditions, blood was considered a sterile environment until the development
of new analytical approaches that allowed for the detection of circulating bacterial ribosomal DNA.
Currently, debate exists on the origin of the blood microbiota. According to advanced research using
dark field microscopy, fluorescent in situ hybridization, flow cytometry, and electron microscopy, so-
called microbiota have been detected in the blood. Conversely, others have reported no evidence of a
common blood microbiota. Then, it was hypothesized that blood microbiota may derive from distant
sites, e.g., the gut or external contamination of blood samples. Alteration of the blood microbiota’s
equilibrium may lead to dysbiosis and, in certain cases, disease. Cardiovascular, respiratory, hepatic,
kidney, neoplastic, and immune diseases have been associated with the presence of Gram-positive
and Gram-negative bacteria and/or their products in the blood. For instance, lipopolysaccharides
(LPSs) and endotoxins may contribute to tissue damage, fueling chronic inflammation. Blood
bacteria can interact with immune cells, especially with monocytes that engulf microorganisms and T
lymphocytes via spontaneous binding to their membranes. Moreover, LPSs, extracellular vesicles, and
outer membrane vesicles interact with red blood cells and immune cells, reaching distant organs. This
review aims to describe the composition of blood microbiota in healthy individuals and those with
disease conditions. Furthermore, special emphasis is placed on the interaction of blood microbiota
with host cells to better understand disease mechanisms.
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1. Introduction

For many years, in the absence of specific diseases, blood was considered a sterile
environment. However, the development of new analytical approaches, i.e., real-time PCR,
allowed the detection of bacterial ribosomal DNA in healthy individuals [1]. Moreover,
using techniques such as dark field microscopy, fluorescent in situ hybridization, and flow
cytometry, pleiomorphic bacteria have been identified in the blood, forming the so-called
blood microbiota or microbiome [2]. The microbiota refers to bacteria, viruses, and fungji,
while the microbiome is a collection of genomes or genomic fragments, such as the DNA
and/or RNA of microorganisms. Moreover, light and electron microscopy have revealed
that the blood microbiota undergoes a few transformations in the context of peripheral
blood mononuclear cells (PBMCs), such as vesiculation, tubulation, budding, and the pro-
trusion of progeny cells from large electron-dense bodies [3]. Current research on healthy
blood microbiota has documented that the Bacillota, Actinomycetota, Pseudomonadota, and
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Bacteroidota phyla are dominant [4-6]. Microbial DNA detected in the blood of healthy
subjects coexists in harmony with the host and exhibits immunomodulatory phenotypes.
Their absence or presence may determine health or disease (sepsis) conditions [7]. Con-
versely, recent research based on the characterization of DNA signatures in the blood of
9.770 healthy individuals indicated no evidence of a common blood microbiota [8]. These
findings suggest a transient process of commensal microbes’ translocation to the blood-
stream from other sites. Others have suggested that blood microbiota may derive from
microbial contamination in low-biomass samples and that the undetermined viability of
blood microbiota depends on culture-independent procedures [9,10]. In this framework,
there is a general debate on the source of blood microbiota. According to more recent views,
it may directly derive from gut microbiota or the skin—oral-gut axis [11,12].

Maternal origin of the blood microbiota cannot be ruled out, since its presence has
been found in certain prenatal tissues, such as umbilical cord blood, meconium, amnion,
and the placenta [13]. In recent years, some research has suggested the hypothesis that a
certain combination of bacteria in the placenta may have an important role in premature
births. In addition, periodontal disease in pregnant women may be associated with an
increased probability of premature births. This hypothesis, although intriguing in light
of the well-known correlation between oral disease and preterm birth, also highlights
the importance of oral hygiene during pregnancy as a preventative practice for pregnant
women. According to more recent studies, the presence of a placental microbiota has been
denied, whereas placental asepticity has been confirmed. These findings reinforce the
idea that the fetus lives in a sterile environment that allows for metabolic exchanges with
the maternal blood, recalling the hypothesis that first contact with bacteria occurs during
childbirth through the birth canal.

Although this research requires more in-depth analysis and methodological refinement,
the mechanisms behind the maternal transfer of blood microbiota are still unknown, despite
proposals of oral and gut fetal compartment colonization or the fetal ingestion of amniotic
fluid during gestation [14-16].

Interestingly, blood microbiota sequencing studies have demonstrated differences
according to geographical areas. For instance, Germany and Poland are characterized
by higher blood microbiota values, with intermediate levels seen in Italy and Finland,
and lower levels in Belgium and Austria [17]. Differences in bacterial DNA distribution
may rely on hosts” genetic and immune factors or diet, hygienic factors, and parasitic
loads [18-20]. It appears that the environment may have a greater impact than age, even if
an association between blood microbiota and senescence cannot be excluded [21].

The persistence of microbes in the blood can cause several diseases involving the car-
diovascular system, liver, and kidneys [21,22]. Compared to the gut, the blood microbiota
can interact with the host to different extents, especially with leukocytes whose responses
may determine disease status. Moreover, in healthy humans, the blood microbiota interacts
with host cells via an array of products, e.g., metabolites, lipoglycans, quorum-sensing
peptides, proteins, and bacterial extracellular vesicles (EVs) [23]. Outer membrane vesicles
(OMVs) produced by Gram-negative bacteria are enriched in lipopolysaccharides (LPSs)
and membrane proteins [24]. It is well known that LPSs are key molecules that interact
with Toll-like receptors (TLR)-4 on monocytes and endothelial cells, activating the NF-kB
pathway with the subsequent release of proinflammatory cytokines [25,26]. On the other
hand, LPS micelles can be tolerated by the immune system, thus becoming innocuous to
the host [27].

The disturbance of a core healthy microbiota in the blood may contribute to disease
outcomes. In patients with myocardial infarction (MI) and chronic coronary syndrome,
microbial diversity was reported to be higher than healthy individuals [28,29]. Liver
fibrosis and cirrhosis are characterized by diverse blood microbiota. Certain bacteria
provoke the release of proinflammatory cytokines and nitric oxide [30,31]. In kidney
disease, circulating bacteria are not typical commensals of the urinary tract, thus suggesting
their derivation from other sources, e.g., the gut [32,33]. In cancer, the blood microbiota
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profile helps distinguish different cancer types and predicts the response to advanced
colon cancer [34,35]. In patients with autoimmune disease, immunosuppression, HIV, and
inflammatory bowel disease (IBD), blood bacteria have also been detected. However, it is
unclear whether bacteria are the causative agents of disease or are provoked by disease
outcomes [36-39].

The objectives of the present review include describing the blood microbiota com-
position in either healthy individuals or sick subjects. Furthermore, illustrating blood
microbiota/host cell interaction will help to better understand the pathogenic mechanisms
elicited by blood microbiota.

2. Data Selection

A comprehensive analysis of the current literature, searching related biological and
clinical data on Scopus, Clarivate Analytics/Web of Science, PubMed, and EMBASE, as
well as using the “cited by’ and ‘similar articles” options available in PubMed, was carried
out to prepare this review. All relevant data, mainly from original articles and clinical trials,
were extracted and reported after a critical appraisal process by two independent authors
(I.A.C. and M.C.).

3. Healthy Blood Microbiota

The concept of blood microbiota has been accepted, though controversial. According
to some researchers, the blood microbiota naturally exists from birth throughout life, con-
sisting of unharmful organisms living in equilibrium with the host [40,41]. Others have
identified circulating microbial cell-free DNA in the blood or microbial vesicles containing
metabolites and fragmented DNA or RNA [42—44]. Conversely, other groups deny the
existence of blood microbiota [45,46]. Researchers who support blood microbiota existence
have no consensus on its composition. Staphylococcus spp. is a common genus detected
in the blood, but information at the species level is very poor [47-49]. Pseudomonadota
phylum and Cutibacterium acnes are also found in the blood [50,51]. Bacterial diversity
varies between the buffy coat, red blood cells, and plasma with 117 blood microbial species,
including 110 bacteria, 5 viruses, and 2 fungi. These data point to the absence of a core
healthy blood microbiota, with transient and sporadic translocation of commensals into
the circulation. These commensals are rapidly cleared out and do not colonize. Recently,
electron microscopy has contributed to blood microbiota research. Circulating microbiota
in PBMCs from healthy donors undergo complex life cycles, involving different morpho-
logical transformations [52]. Blood microbiota can reproduce by irregular binary fission,
budding, protrusion—extrusion of progeny cells from large electron-dense bodies, vesic-
ulation, tubulation, or a combination of all types. The morphology of blood microbiota
supports the existence of microorganisms in the blood of healthy people.

Blood microbiota profiles are assessed in healthy individuals or in patients to iden-
tify genetic signatures for risk stratification, diagnosis, disease surveillance, as well as
drug development. However, the existence of human blood microbiota is still debatable,
considering two major issues: high-risk contamination in low-biomass samples and the
undetermined viability of blood microbiota via culture-independent profiling methods [53].

4. Dysbiosis of Blood Microbiota and Disease Outcome

Many factors influence the composition of the blood microbiota, such as leaking
epithelial junctions, mucosal disruption, periodontal disease, chewing, and tooth brush-
ing [52,54,55]. Alteration of the blood microbiota equilibrium may result in dysbiosis,
which, in turn, may cause several diseases and induce a state of low-grade inflammation.
Chronic low-intensity inflammation is a condition defined in recent years as one that can
develop pathophysiologically for a long period without symptoms and then trigger even se-
rious diseases. Although there are no specific tests to allow diagnosis, suspicion is possible
through careful collection of the patient’s medical history. In the following sections, blood
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bacteria in the pathogenesis of cardiovascular, respiratory, hepatic, and kidney diseases as
well as cancers and immune diseases are discussed.

4.1. Cardiovascular Diseases

Bacteria, fragments, and their DNA have been identified in cardiovascular disease
patients [56-59]. Importantly, LPS from blood bacteria participates in the atherosclerotic
process via the formation of macrophage-derived foam cells [60-62].

Pseudomonadota, Actinomycetota, Cyanobacteria, and Verrucomicrobia from the circulat-
ing microbiota play a role in cardiovascular disease outcomes, with the Proteobacteria
phylum predominant in acute coronary patients [63—67]. In light of the above findings,
dysbiosis of the human blood microbiota has been proposed as a marker for cardiovascular
disease prediction.

Blood Desulfobacterota is increased in acute coronary syndrome but decreased in chronic
coronary syndrome. Desulfobacterota can reduce sulfur compounds, thus contributing to
butyrate breakdown via the butyrate beta-oxidation pathway, maintaining the catabolic
reaction’s equilibrium [68,69]. Desulfobacterota also releases LPS, promoting atherosclerotic
progression.

Elevated amounts of both Escherichia and Shigella, associated with high levels of inter-
leukin (IL)-8, have been detected in coronary artery disease patients [70]. LPS from these
bacteria likely cause inflammation via TLR or the inflammasome pathway, contributing to
the pathogenesis of chronic coronary syndrome [71].

A higher abundance of Bifidobacterium and reduced numbers of Bacteroidota were
detected in MI patients’ blood [72]. MI patients’ diverse blood microbiota composition
can be attributed to various factors, such as geographic region, type of diet, genetics, and
environmental changes [73]. Of note, blood bacteria associated with cholesterol and lipid
metabolism are reduced in MI patients, potentially favoring atherosclerosis [74]. Of note,
among cholesterol-degrading bacteria belonging to the Nocardiaceae and Aerocollaceae fami-
lies, Gordonia, Propionibacterium, Chryseobacterium, and Rhodococcus are the most common.

4.2. Respiratory Diseases

Studies on blood microbiota in respiratory disease are scarce. Bacteroides, Alistipes,
Parabacteroides, and Prevotella are predominant in the blood, with a decrease in Actinobacter,
Verrucomicrobia, and Cyanobacteria [75]. When patients are subgrouped according to in-
flammatory subtypes, lung function, and corticosteroid therapy, differential blood bacteria
profiles allow accurate asthma diagnosis with elevated sensitivity and specificity. Moreover,
through RNA-sequencing of peripheral blood samples, the genera Acinetobacter, Serratia,
Streptococcus, and Bacillus have been associated with severe dyspnea in former and cur-
rent smokers [76-78]. Interestingly, certain genera, such as Streptococcus, Cutibacterium,
Corynebacterium, Lactobacillus, Staphylococcus, and Bacillus activate oxidative phosphory-
lation, mTOR, and Wnt/Beta-catenin pathways in circulating cells [79]. Similarly, blood
Escherichia coli, Bacillus spp., Campylobacter hominis, Pseudomonas spp., Thermoanaerobacter
pseudethanolicus, Thermoanaerobacterium thermosaccharolyticum, and Staphylococcus epidermis
detection is correlated with severe COVID-19 [80-82].

4.3. Liver Diseases

Liver fibrosis and cirrhosis are responsible for the abundance of diverse gut-derived
circulating bacteria [83,84]. In this respect, the genus Bacteroides and the family Enterobateri-
aceae are more elevated in the blood of cirrhotic patients than in healthy individuals [85,86].

From a pathogenic point of view, certain circulating bacteria, i.e., Corynebacteriales, are
inversely associated with gamma-interferon, IL-17A, and tumor necrosis factor (TNF)-alpha
and may predict the reversal of portal hypertension in hepatitis C virus (HCV)-induced
cirrhosis upon termination of antiviral treatment [87]. The presence of circulating LPSs
in HCV patients supports the above data, with resulting endotoxemia contributing to
inflammatory damage via the release of proinflammatory cytokines [88-92].
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4.4. Kidney Diseases

Evidence suggests that blood microbiota dysbiosis plays a role in chronic kidney
disease (CKD). An inverse correlation between glomerular filtration rate and an increase in
circulating Pseudomonadota has also been documented [93]. The genus Devosia in the blood
appears to predict increased mortality risk in CKD patients on peritoneal dialysis with
or without vascular calcification [94]. Furthermore, blood Legionella was elevated in IgA
nephropathy patients, with putative involvement in kidney impairment and mortality [95].
It is worth noting that blood bacteria implicated in kidney diseases are not of urinary
origin, suggesting that urinary mucosa alterations may not participate in blood microbiota
dysbiosis [96].

4.5. Neoplastic Diseases

In a recent study, microbiome analysis of blood and tissue revealed sequence reads
not mapped to the human genome; rather, they belong to microorganisms such as bacteria,
archaea, and viruses [97]. In this context, the blood microbiota profile of cancer patients
helped distinguish different cancer types at very early stages, e.g., hepatocellular carcinoma,
myeloid cancer, and gastric cancer [98-100]. Furthermore, bacterial genetic material in the
blood could predict the cancer therapy response. Among patients with advanced colorectal
cancer being treated with oxaliplatin/capecitabine/adoptive T cell immunotherapy, respon-
ders exhibited lactobacilli and the genera Bifidobacterium and Enterococcus more abundantly
than non-responders [101]. Similarly, the genera Lewinella and Paludibaculum predicted
a better clinical response to nivolumab in a non-small cell lung carcinoma patient [102].
Specific beta-glucoronidase and / or beta-galactosidase microbes in the gut regulate estrogen
metabolism and the so-called estrobolome. Their increase has been associated with a higher
risk of estrogen receptor-positive breast cancer in post-menopausal women [103,104]. In the
blood, beta-glucuronidase-producing bacteria were predominant in breast cancer patients,
while beta-galactosidase bacteria were predominant in healthy subjects [105]. Importantly,
treatment of estrogen-receptor positive breast tumor cells with tamoxifen, an anti-estrogen,
and Staphylococcus aureus EVs suppressed the AKT and ERK oncogenic pathways, causing
more cell death [106]. Evidence suggests that Staphylococcus is reduced in breast cancer
patients. In summary, the reported data suggest that the blood microbiota may play a role
in cancer diagnosis, prognosis, and therapy.

4.6. Immune and Inflammatory Diseases

In autoimmune diseases, blood microbiota dysbiosis may play a pathogenic role.
Elevated blood levels of the genera Desulfoconvexum, Desulfofrigus, Desulfovibrio, Draconi-
bacterium, Planococcus, and Psychrilyobacter and the phylum Gemmatimonadetes have been
identified in patients with systemic lupus erythematosus (SLE). They are also associated
with plasma autoantibody levels [107]. In vitro experiments that exposed PBMCs from SLE
patients to heat-inactivated Planococcus released IL-1 beta, IL-6, and TNF-alpha, suggesting
that this bacterium maintains an inflammatory status in circulation [108]. Similarly, rheuma-
toid arthritis (RA) abundance in the blood of Halomonas and Shewanella may be implicated
in joint inflammation [109]. Evidence suggests that RA is associated with increased gut
permeability; therefore, microbial translocation to the blood may account for inflamma-
tion [110]. These data suggest that RA outcomes provoke blood microbiota dysbiosis;
however, dysbiosis, once established, may fuel the inflammatory process and promote
disease progression.

In immunosuppressed patients who received liver transplantation, the families Mi-
crobacteriaceae, Nocardiaceae, and Anelloviridae were increased with a decrease in Enterobac-
teriaceae [111,112]. Furthermore, an association between an increase in Xanthomonadaceae
and Enterobacteriaceae growth and acute host-versus-graft rejection was reported [113]. Op-
portunistic bacteria growth may be a side effect of immunosuppressant therapy; therefore,
research in this direction may contribute to organ transplantation success. In the blood of
patients with HIV, an increase in many genera, such as Veillonella, Massilia, Haemophilus,
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Arthrobacter, and Fusobacterium, was observed. Furthermore, in vitro coculture of HIV+
PBMcs with Massilia and Haemophilus led to a massive release of proinflammatory cy-
tokines [114]. These data suggest that in HIV patients’ blood, dysbiosis may exacerbate
disease progression. In inflammatory bowel disease, plasma EVs aggravate the inflam-
matory status and increase Escherichia/Shigella numbers in the blood [115]. These data are
supported by the notion that circulating LPSs have been detected in patients with IBD,
aggravating pre-existing inflammatory conditions [116]. In a feces-induced peritonitis
porcine model, the emergence of new circulating bacteria was revealed, including Es-
cherichia/Shigella, Staphylococcus, Cloacibacterium, Diaphorobacter, and Rhodanobacter [117].
These bacteria are related to ABC transporters and oxidative phosphorylation, which may
sustain the pathogenesis of peritonitis. Additionally, patients with acute pancreatitis have
shown a severe depletion of the phylum Actinobacteria and an increase in Bacteroidota com-
pared to healthy subjects [118]. In patients with large vessel vasculitis, changes in blood
microbiota composition have been detected in terms of elevation of the classes Cytophagia
and Clostridia compared to healthy subjects [119]. These data indicate the pathogenic role
of blood microbes in host inflammatory conditions.
In Table 1, the predominant blood microbiota in various diseases is illustrated.

Table 1. The components of blood microbiota associated with various diseases in humans.

Blood Microbiota and Pathologic Conditions

DISEASES

Associate Bacterial Species

CARDIOVASCULAR

RESPIRATORY

LIVER

KIDNEY

NEOPLASTIC

IMMUNE

- Pseudomonadota and Desulfobacteria ----> coronary disease;

- Escherichia-Shigella ----> coronary disease ---> IL-8;

- Increase in Bifidobacterium and decrease in Bacteroidota and bacteria associated with cholesterol
and lipid excess in myocardial infarction;

- Increase in Bacteroides, Alistipes, Parabacteroides, and Prevotella, and a decrease in Actinobacter,
Verrucomicrobia, and Cyanobacteria;

- Increase in Bacteroides and Enterobacteriaceae in cirrhotic patients;
- Increase in Corynebacteriales ----> reversal of portal hypertension in HCV patients;

- Devosia products ----> increase in mortality risk in CKD patients;
- Increase in Legionella spp. in IgA nephropathy patients;

- Increase in Bifidobacterium and Enterococcus ----> distinction of different cancer types and
prediction of response to therapy;
- Increase of beta-glucuronidase-producing bacteria in breast cancer patients;

- Increase in Desulfoconvexum, Desulfofrigus, Draconibacterium, Planococcus, and Psychrilyobacter
in SLE patients;

- Increase in Halomonas and Shewanella in RA patients;

- Increase in Anelloviridae, Nocardiaceae, and Microbacteriaceae and decrease in Enterobacteriaceae
in liver transplanted patients;

- Increase in Veillonella, Massilia, Haemophilus, Arthrobacter, and Fusobacterium ---->
proinflammatory cytokine release in HIV patients;

- Increase in Escherichia/Shigella in IBD.

Abbreviations: HCV: Hepatitis C Virus; CKD: Chronic Kidney Disease; SLE Systemic Lupus Erythematosus;
RA: Rheumatoid Arthritis; HIV: Human Immunodeficiency Virus; IBD: Inflammatory Bowel Disease.

5. Mechanisms of Interaction in Blood Microbiota with Host Cells

The microbiota belonging to mucosal sites, e.g., the respiratory system, gut, and
urogenital tract, interacts with several epithelial cell types, including immune cells. Con-
versely, blood microbes make contact with red blood cells and leukocytes only. Bacteria are
engulfed by macrophages and polymorphonuclear cells before their destruction by lytic
enzymes. On the other hand, spontaneous binding of Gram-negative and Gram-positive
bacteria to T lymphocytes has been demonstrated in vitro and in vivo in patients with
typhoid fever [117-119]. According to the intensity of the stimulus, both phagocytes and
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lymphocytes secrete various mediators that protect or damage the host. A weak stimulus
cannot trigger immune reactions, so bacteria survive in full harmony with bacteria. Besides
direct contact, bacteria mostly interact with PBMCs via their products. Once released into
the bloodstream, LPS from the outer membrane of Gram-negative bacteria, lipoteichoic
acid, peptidoglycans, and mycolic acids from Gram-positive bacteria activate immune cells
via the production of proinflammatory cytokines and free radicals [120]. This process is
upregulated in septicemia and endotoxemia characterized by elevated blood bacteria, as
previously mentioned [121]. In this framework, microbiota-derived EVs have been detected
in human blood from healthy volunteers [122]. They promote intercellular communication
by carrying proteins, lipids, sugars, nucleic acids, and metabolites [123,124]. OMVs are an
EV subtype produced by Gram-negative bacteria. They are natural proteo-liposomes with
a double leaflet membrane containing bacterial metabolites, cytosolic proteins, and nucleic
acids [125]. OMVs from Pseudomonas aeruginosa induce a potent innate immune response
via LPS and protein components [126]. In healthy individuals, it has been hypothesized
that OMVs derive from the gut following the disruption of epithelial cell tight junctions and
then diffuse into the bloodstream, ultimately reaching distant organs [127]. LPS-bearing
EVs have been detected via electron microscopy in leaky gut, and OMVs from Bacteroides
thetaiotamicron can translocate from the intestinal epithelium to distant organs [128,129]. A
recent study found that OMVs isolated from the red blood cells of healthy donors contained
bacterial proteins and lipids [130]. The same study tracked the fusion of fluorescent E. coli
EVs with PBMCs and discovered that EVs interacted with monocytes only. Furthermore,
there is evidence that LPSs from E. coli OMVs can interact with TLR4 in monocytes but not
with T cells, B cells, or y8-2 unconventional T cells. These data suggest that bacterial EVs
participate in the interaction between the blood microbiota and host cells, leading to the
activation of the NF-kB pathway and the subsequent release of proinflammatory cytokines
and free radicals.

The main mechanisms of the interaction between the blood microbiota and host cells
are depicted in Figure 1.

g Leukocytes
/.’ ‘\\
A Red Blood Cells "-_‘ Bacterial engulfment by
f' (RBCs) \*. monocytes and

olymorphonuclear cells
OMVs from healthy RBCs [FLbpLTEly

with a high content of
bacterial proteins and LPS
--> Release of cytokines

Bacterial bindingto T
lymphocytes ---> production
of inflammatory mediators)

Blood EVs-OMVs (gut origin)
Proteoliposomes enriched in proteins, LPS and nucleic acids --->
activation of the innate immunity and interaction with
TLR4 on monocytes ---> NF-kB activation and release of

proinflammatory cytokines ---> dissemination to distant organs)

Figure 1. Interaction of the blood microbiota with host cells. Blood bacteria can directly interact
with monocytes (engulfment) or T lymphocytes (binding). Bacterial products, e.g., EVs and OMVs,
contain toxic products, such as LPSs, which can stimulate innate immunity and interact with TLR4
on monocytes. EVs: extracellular vesicles; OMVs: outer membrane vesicles.
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Based on the data reported above, we can clearly affirm that systemic dysbiosis
accounts for many pathologic conditions mediated by blood microbes. Conversely, com-
mensal microbiota and restored eubiosis play an important role in host recovery.

6. Conclusions

Research on the blood microbiota requires further investigation since data are scarce
and, sometimes, controversial. For instance, studies based on the bacteriome do not con-
sider the viriome, archaeome, or mycobiome. Research on the blood microbiota is limited
by these examples. To better understand the pathogenesis of various human diseases, the
relationship between microorganisms from different kingdoms must be investigated. Cur-
rent investigations into blood core bacteria are based on observational studies only, which
indicate correlations but not causal relationships. Consequently, additional exploration
should be carried out to decipher the disease mechanisms elicited by these core bacteria.
Moreover, they originate from the host commensals, and diverse core bacteria have been
observed in the same disease. In this regard, contrasting results about the existence and
origin of fetal/placental microbiota, as determined by different sampling techniques and
study methods, offer interesting definitions for the unborn child’s microbiota acquisition
mechanisms, the infection mechanisms in utero, and their consequences.

These findings suggest that diverse core microbiota may contribute to the pathogenesis
of common diseases, indicating a redundancy of microbes in different communities, with a
convergent evolution when exposed to similar environments. Therefore, pooling and meta-
analyzing data from independent studies with appropriate adjustments to confounding
variables is needed. In conclusion, evidence supporting a core healthy blood microbiota
is still limited. However, microbial gene signatures may be of diagnostic, prognostic, and
therapeutic value, prompting further studies and better validation of current data.
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CKD Chronic Kidney Disease

EVs Extracellular Vesicles
HCV Hepatitis C Virus

IL Interleukin

LPS Lipopolysaccharides
MI Myocardial Infarction
NO Nitric Oxide

OMVs  Outer Membrane Vesicles

PBMCs Peripheral Blood Mononuclear Cells
RA Rheumatoid Arthritis

SLE Systemic Lupus Erythematosus
TLR Toll-like receptor

TNF Tumor Necrosis Factor
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