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Abstract
Neural networks have recently been established as state-of-the-art in forecasting 
financial time series. However, many studies show how one architecture, the Long-
Short Term Memory, is the most widespread in financial sectors due to its high per-
formance over time series. Considering some stocks traded in financial markets and 
a crypto ticker, this paper tries to study the effectiveness of the Boltzmann entropy 
as a financial indicator to improve forecasting, comparing it with financial analysts’ 
most commonly used indicators. The results show how Boltzmann’s entropy, born 
from an Agent-Based Model, is an efficient indicator that can also be applied to 
stocks and cryptocurrencies alone and in combination with some classic indicators. 
This critical fact allows obtaining good results in prediction ability using Network 
architecture that is not excessively complex.

Keywords  Neural networks · Price forecasting · LSTM · Boltzmann entropy · 
Financial markets · Cryptocurrency

JEL Classification  C45 · C63 · C88 · G17

1  Introduction

Attention to the dynamics of financial markets and forecast of stock prices has 
always prompted researchers to develop - and focus - on different-type methodolo-
gies. Through the increasingly strong use of neural networks, it has been possible 
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to improve the previous regressive models used in the past. These network-based 
models’ characteristics lie in the choice of variables, the so-called features, which 
can be obtained directly from the markets. Using many features to make predictions 
is unnecessary, but the main task is to select the most appropriate ones. Among the 
most used features to forecast prices in the financial markets, we count those relat-
ing to the prices recorded at different moments in time and some financial indicators 
(e.g., MACD, RSI).

In this paper, we want to demonstrate that Boltzmann’s entropy is a reliable 
indicator for forecasting using a Long Short Term Memory (LSTM) architecture. 
This indicator, developed by Grilli and Santoro (2021), considers an Agent-Based 
Model (ABM) in which, in a specific phase space, the particles are replaced by N 
economic subjects (agents) and where the movement of these economic agents are 
proxied by the entropy. Thus, in this way, it is possible to determine the position 
of the agents—represented by the ability to sell and buy a certain quantity—only 
through the price—using the Boltzmann formula. The main difference between the 
previous work and this one concerns the theoretical aspect. While in Grilli and San-
toro (2021) the phase space and the possible link between statistical mechanics and 
Agent-Based Models have been defined (the theoretical background); in this paper, 
we consider Boltzmann’s entropy as a financial indicator (calculated based on what 
was previously described), whose importance will be studied as a feature to improve 
price prediction. In particular, we forecast through neural networks and explore the 
significance of features through factor analysis. Furthermore, this paper considers 
the case of stocks and cryptocurrencies (Bitcoin), verifying how the Boltzmann 
entropy indicator can also be applied to the stock market.

1.1 � Paper structure

Paper structure is the following: in the following subsection, the most relevant lit-
erature is presented; in Sect.  2, we introduce neural networks and the particular 
structure of the LSTM unit; Sect. 3 introduces ABMs and their applications to the 
economic/financial world, describing the model from which the Boltzmann entropy 
was extracted and how this synthetic value can be used as a feature in price pre-
diction; Sect. 4 presents the numerical application of Entropy to some stocks and 
crypto, determining its importance also through factor analysis. Finally, in Sect. 5 
some conclusions are drawn.

1.2 � Literature review

The literature on time series bases its assumptions on the random walk hypoth-
esis, a concept introduced by Bachelier (1900) in 1900, and its evolution of Coot-
ner (1964) that indicated how the stock price movement could be approximated 
based on the Brownian motion. Traditionally, a most common practice was to 
focus on logarithmic returns, bringing the advantage of linking statistical analysis 
with financial theory. Fama (1970) introduced in his Efficient Market Hypothesis 
(EMH) theory the idea that historical prices are factored into the current prices 
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of a given market, then deploying these historical data in any analysis would 
be less valuable (if not completely useless) in making predictions about future 
prices. However,  LeRoy (1989) showed that more concentration on yields was 
unjustified, defining the stock markets as inefficient. From an econometric per-
spective,  Box and Jenkins (1976) introduced power transformations to statisti-
cal models and applied them to a time series. Specifically, they suggested using 
power transformation to obtain an adequate Autoregressive Moving Average 
(ARMA) model. Several evolutions have followed this pattern, e.g., Autoregres-
sive Integrated Moving Average (ARIMA) and seasonal autoregressive integrated 
moving average (SARIMA). In combination with these models, the volatility of 
time series can be modeled using AutoRegressive Conditional Heteroskedasticity 
(ARCH) and Generalized ARCH (GARCH) model, as in the case of Wu (2021), 
who studied the in-sample coefficient estimation on the crypto market, or Borland 
(2016), who studied anomalous statistical features of time-series and review mod-
els of the price dynamics.

Thanks to the development of artificial neural networks (ANNs) and their 
applicability to non-linear modeling (Zhang 2003), there has been a strong inter-
est in applying these methods to time series prediction in the last few years. For 
example, Refenes et al. (1992) proposed using a neural network system for fore-
casting exchange rates via a feedforward network. Sharda and Patil (1992) ccom-
pared the prediction made via neural networks and the Box–Jenkins model, which 
verified that neural networks perform better than the forecast for time series with 
a long memory. In contrast, the networks outperform the prevision for time series 
with a short memory. Finally,  Dixon (2018) assesses the impact of supervised 
learning on high-frequency trading strategies. The evolution of Machine Learn-
ing (ML) and Deep Learning (DL) techniques has introduced many advantages.
As for ML techniques, a great innovation was introduced with the development 
of  Vapnik (1998)’s Support Vector Machine (SVM) model, which solved the 
problem of pattern classification. Its use was immediately extended to regression, 
with the consequent application to time series forecasting (Adhikari and Agrawal 
, 2013). Mittelmayer and Knolmayer (2006) compared different text mining tech-
niques for extracting market response to improve prediction or Kara et al. (2011), 
which directly uses the SVM for stock price prediction. As for the DL tech-
niques, increasingly complex architectures are being used. For example, Liu et al. 
(2017) use a CNN-LSTM for strategic analysis in financial markets. Zhang et al. 
(2017) use an SFM to predict stock prices by extracting different types of pat-
terns. Chen and Ge (2019) use an LSTM-based architecture to predict stock price 
movement.  Mäkinen et  al. (2019) propose an LSTM architecture for predict-
ing return jump arrivals one minute in equity markets. Alternatively,  Sirignano 
(2019) builds a “spatial neural network" to use more effective information from 
the limit order book. However, many other types of more complex networks can 
be readjusted to time series to make predictions, such as GAN networks [based 
on the idea of Goodfellow et al. (2014)] used for speech synthesis (Kaneko et al. 
2017) or the denoising of images (Sun et al.  2018) and readjusted as in the case 
of Wiese et al. (2020), who build a Quant GANs highlighting the characteristics 
of the generated data.
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2 � Neural networks and LSTM units

An artificial neural network (ANN) represents a computational model that takes 
inspiration from the human brain. Like the human organ, the ANN is composed of 
neurons [artificial neurons, (McCullock and Pitts 1943)] that perform computations 
within them. This fundamental unit performs a combination of functions which, in 
matrix form, can be defined as:

where ŷ represents the output, g the activation function, �0 the bias term, and X and 
W the input vectors and weights, respectively. The most significant advantage of 
neural networks is the ability to learn: to solve a specific learning problem, which 
generally represents a problem of adapting the network parameters to data, a set of 
rules called a learning algorithm is used. There are three learning algorithms: super-
vised learning, in which a domain expert labels the data; unsupervised learning, in 
which the network extracts patterns autonomously from the data and semisupervised 
learning, a combination of the above with a small amount of labeled data.

The first neural network developed is the Feedforward Neural Network (FNN). 
The connections between the nodes occur in sequence from the previous to the next 
according to a single direction [for example, this type of network includes the per-
ceptron, also called universal approximator (Rosenblatt 1958)]. Against this, a class 
of neural networks typically used to process data sequences (mainly performing 
thanks to their memory effect) are the Recurrent Neural Networks (RNNs). These 
are essentially neural networks with feedback connections in which, given the con-
siderable flow of information generated, training requires considering different time 
instants (the so-called unfolding in time). In contrast to the FNN, in this type of net-
work, the new state ht is determined as:

where fW is the function parameterized by the weights and xt is the input vector at 
time step t. Generally, to train a neural network through which the gradient of the 
overall loss function J(W) is computed, the Backpropagation algorithm by Rumel-
hart et al. (1986) is used. In RNN, this algorithm uses a particular version: Back-
propagation Through Time (BPTT). The fundamental difference is that gradients are 
computed for each time step in this algorithm version. The main problem is that the 
network is exposed to the problem of exploding or (in an opposite way) vanishing 
the gradient. The latter, in particular better known, occurs because the update of 
the weights in the neural network is proportional to the partial derivatives of the 
loss function with respect to the current weight. In this way, the gradient could be 
so extremely small as to prevent the updating of the weights and block the training 
of the network (it affects both the FNN and the RNN). To prevent this problem, we 
can use specific units to control information transmission, such as the Long-Short 
Term Memory (LSTM). These units—introduced by  Hochreiter and Schmidhuber 
(1997)—are most used since they have a long-memory effect, thanks to the ability 
to receive inputs and outputs from the previous level. Each LSTM unit comprises 

(1)ŷ = g(𝜔0 + X
T
W)

(2)ht = fW (ht−1, xt)
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an input gate, an output gate, and a forget gate that allows to check the information 
(forgetting the irrelevant ones) and transmit it to the next unit. The hidden state St 
can be described as:

based on the input Xt and the previous hidden state St−1 , where ⊙ represents the 
Hadamard product, � is the sigmoid activation function, f the forget gate, i the iden-
tify gate, o the output gate, C the cell state, U the input weight matrix, W the recur-
rent weight matrix, and b the bias. The LSTM is among the most suitable to combat 
the problem of vanishing gradients (Bao et al. 2017): in fact, the gradient contains 
the forget gate’s vector of activation, which, combined with the additive property of 
the unit state gradients, allows the network to better determine the best parameters 
for updating at each time step.

This unit represents one of the most used architectures for time series forecast-
ing. For example, there are several advantages to using LSTM networks compared 
to ARIMA models. For example, ARIMA models focus on linear relationships in 
the time series, while LSTM networks capture non-linearity, or using neural net-
works reduces error rates. Furthermore, as shown by Siami-Namini et al. (2019), 
the performance of an LSTM network is much more accurate; moreover, this 
architecture allows to overcome the non-stationarity of prices (Preeti et al. 2019).

3 � Methodology

The Boltzmann entropy feature arises from considering the stock market as an 
Agent-Based Model (ABM). The theory of agent-based simulation has been 
developed since the 1960s, allowing us to study how the application of specific 
conditions affects a small number of agents  (Hamill and Gilbert 2015) (typi-
cally heterogeneous). Thanks to the development of processing systems, ABM 
has evolved into a program that generates an artificial world made up of agents. 
As a result, studying their interactions through the generated patterns is possi-
ble  (Squazzoni 2010; Epstein and Axtell 1996). Agents can be any entity, from 
people to companies to animals: for this reason, ABMs are a fundamental tool 
in the social sciences for evaluating policy, performance, and perception. When 
these studies represent economic agents, we refer to Agent-Based Computational 
Economics [ACE,  Tesfatsion and Judd (2006)], with which decentralized mar-
kets are analyzed under experimental conditions. The main research topics con-
cern (Tesfatsion 2001; Tesfatsion 2002):

(3)

ft = 𝜎(XtU
f + St−1W

f + bf ),

it = 𝜎(XtU
i + St−1W

i + bi),

C̃t = tanh(XtU
c + St−1W

c + bc),

Ct = Ct−1 ⊙ ft + it ⊙ C̃t,

ot = 𝜎(XtU
o + St−1W

o + bo),

St = ot ⊙ tanh(Ct).
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•	 Evolution of behavioral norms, defined as the measure of different behavior than 
usual seen by other agents (Axelrod 1997). These rules highlight the cooperation 
between different agents;

•	 Modeling market processes, to define the self-organization rules typical of differ-
ent markets;

•	 Forming networks between agents, through the analysis of strategic interactions 
between agents to identify their neighbors and the type of relationship between 
them (from which it is possible to generate graphs completely connected, locally 
connected, locally disconnected, and so on);

•	 Design of agents, not only about their heterogeneity but also about the exchanges 
they can have with other agents, the number of relationships they can have with 
them, their permanence in a market, and any other condition that can most likely 
reproduce the system to be analyzed;

•	 Parallel experimentation, related to the possibility of simulating the behavior of 
different agents simultaneously, unlike in many current computational systems.

A classic example of ACE is the microeconomic one of supply and demand for a 
single homogeneous good in the market, in which, through the computation, it is 
possible to modify some conditions such as non-heterogeneous costs, presence of 
transaction costs, asymmetric information, and explore the changes to the curves 
and at their point of intersection (Cliff and Bruten 1998).

ACE theory is used not only for economic models but also to simulate financial 
markets and analyze patterns within them, despite the difficulties in simulating the 
complex reality of markets (absence of rational choices and market efficiency). For 
instance, LeBaron (2000) studied the Santa Fe artificial market, which combines the 
traditional structure of a financial market with learning using a classifier-based sys-
tem. Izumi and Ueda (2001) studied the foreign market by proposing an agent-based 
approach based on behavioral rules. Howitt and Clower (2000) investigated the role 
of particular agents (trade specialist) in a decentralized market model in supporting 
currency emergencies. Finally,  Chen and Yeh (2001) built an ACE framework to 
analyze the interactions of an artificial stock market, measuring success based on the 
predictive ability of agents.

3.1 � Boltzmann entropy model

In Grilli and Santoro (2021), we defined an ABM in which the particles are replaced 
by N economic subjects (agents) who intend to trade in cryptocurrencies. In this 
model, it is possible to determine the movement of economic subjects in a particular 
“phase space" and whose entropy provides a proxy for this movement. Moreover, 
we can also fully describe an economic agent in our phase space by two variables, 
which we can identify as {xi, yi} where xi and yi indicate the ability to buy and sell 
a certain quantity of cryptocurrencies (both expressed in monetary terms). Finally, 
let us consider that these two variables are summarized in the cryptocurrency’s last 
prices (closing price); in this sense, the latest prices allow us to understand whether 
the ability to buy or sell prevailed compared to the previous session. In particular, 
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we have not identified a function such that a change of xi and yi leads to a change in 
price; however, the economic subjects move concerning the quantity they have pur-
chased/sold. In this case, we have a system made up of financial instruments to make 
some similar assumptions. In particular, we can assume that the reference system 
includes N agents who intend to trade in stocks. We take a specific time window (5 
days, corresponding to a trading week) and group the closing price series based on 
this window every 5 days. Since each group has a maximum and a minimum price 
(a gap), we calculate the difference in terms of necessary steps to pass from one to 
the other, obtaining a particular value of gap G. This assumption is based on the 
idea that the distance between maximum and minimum is a measure of the disper-
sion of agents in our phase space. Using combinatorial analysis, we can compute the 
value used for grouping to determine the “volume” occupied by the disposition of 
the agents; therefore: Γ = G5 . The main difference, in this case, is that in calculat-
ing the gaps and consequently the entropy value, we still consider 5-days groups. 
However, these are calculated “dynamically": starting from the last recorded price 
(indicated with t), we calculated the dynamic gap using the prices of the previous 4 
days, creating a range of the type ( t − 4 , ..., t). With this method, we obtain several 
gaps equal to the number of observations in the dataset. Having such a large number 
of gaps, we can calculate as many “volumes" Γ occupied by the disposition of the 
agents and consequently as many Boltzmann entropies through the classic formula:

where �B ∼ 1.3806 × 10−23 is the Boltzmann constant, and finally, “rationalizing" 
multiplying by 1023 to make the value more readable from a graphic point of view 
(e.g., to get 46.6 instead of 0.0496).

Furthermore, we extend the reference market by considering the stocks in this 
case. The cryptocurrency market is a market open 24 h a day. Therefore, it is pos-
sible to carry out transactions at any time. This makes it more idealizable through 
a physical system, as the particles (agents) do not have the constraint of respecting 
schedules to move. Instead, the stock market is a market subject to closing times 
(e.g., the Italian stock market MTA or the Nasdaq), where the previous day’s clos-
ing and the next day’s opening prices often do not match due to events that occurred 
in the night. However, despite this apparent constraint that "limits" the movement 
of agents at certain times (corresponding to some volumes of the phase space), we 
test the Boltzmann entropy indicator on both markets to verify its ability to improve 
price prediction.

The ABMs allow, especially in recent times thanks to the high computational 
capacity of the machines, to carry out simulative and forecasting analyses ever 
higher, helping in the definition of strategies/policies. However, there are several 
problems affecting these models. First, as introduced by Axtell and Farmer (2022), 
there is the issue of parallel execution: generally, simulations using ABM occur in a 
single thread, whereby each agent acts once per machine cycle. However, in reality, 
the agents carry out actions asynchronously and, above all, simultaneously. ABM 
algorithms are being developed to solve this problem, especially in recent times, 

(4)S = �B ln Γ
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allowing multi-threaded execution1. Another problem concerns the level of repre-
sentation of the economic system through the ABM. In fact, due to the high com-
plexity, it is impossible to fully represent the variables that influence an agent nor all 
the relationships that could be generated. For this reason, an ABM represents only 
a restricted portion of the economic system (so-called nanoeconomics). Again, the 
curse of dimensionality  (Bellman  1957) is another problem linked to the impos-
sibility of fully representing the economic system in which agents can move. This 
occurs when the size of the system parameter space increases, and the data represen-
tation creates sparsity, resulting in worse analyses. Finally, the problem of the burn-
in phase is the need for an agent-based model to carry out a series (often elevated) 
of simulations before entering total capacity and representing existing relationships. 
This phase adds to the computational capacity and increases the time required to 
obtain results.

The main advantage of using the Boltzmann entropy model is the possibility of 
summarizing agents’ behavior in a single variable, similar to a financial indicator. 
We are not interested in understanding how agents can move within the phase space 
but only in observing, after having performed a movement (a transaction), how their 
position has changed, summarized by a single indicator. Thanks to the formalization 
in the phase space, we avoid some of the previous problems typical of ABMs, such 
as the curse of dimensionality or the burn-in phase. Similar approaches are present 
in Fraunholz et al. (2021), where the authors use an ANN to identify the endogenous 
relationships between some variables of their ABM model for price prediction in 
the energy market. Furthermore,  Ghosh and Raju  Chinthalapati (2014) developed 
an ABM model by linking the functioning of the economic system to a physical 
system through a minority game, considering the stock market and the Foreign 
Exchange Market (FOREX). In this way, based on whether or not the agents have 
completed a transaction and based on the construction of these, they can make price 
predictions in the various markets using Genetic Algorithms (GA).  Zhang (2013) 
uses an ABM to study the interactions between agents in the markets, particularly 
highlighting some mechanisms of the stock market and exploiting them to predict 
aggregate behaviors (specifically return signs underlying the prediction of strate-
gies). Arthur et al. (1997) propose a theory of asset pricing based on heterogeneous 
agents, considering the ABM market of Santa Fe (LeBaron 2000), highlighting how 
these agents modify their expectations according to the transactions carried out. Shi 
et al. (2019) an ABM representative of a market with two types of agents (investors 
and speculators). The price is predicted based on the expectations of these agents 
considering external information (the so-called jump process). Finally, Rekik et al. 
(2014) model the financial market as a complex system characterized by the interac-
tion of agents, developing an artificial market to verify the dynamics that lead to the 
price prediction based on the exchanges of 3 types of agents.

1  For example, in the case of the Zero Intelligence agents, the multi-threaded version of the Bristol Stock 
Exchange [TBSE, (Rollins and Cliff 2020)]
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To show the behavior of the Boltzmann entropy-based indicator in the pre-
diction phase, we can compare its performance with that of some of the leading 
financial indicators used by analysts, which are:

•	 MACD (Moving Average Convergence/Divergence) is based on two moving 
averages’ convergence and divergence. The first at 12 periods and the second 
at 26. In particular, EMA12 represents the 12-days Exponential Moving Aver-
age of closing prices while EMA26 represents the 26-days Exponential Moving 
Average. So the MACD indicator is determined as follows: 

•	 SI (Stochastics Index) studies price fluctuations and provides market entry and 
exit signals. For example, considering X as the last closing price, H14 as the 
highest price of the 14 previous days, and L14 as the lowest price of the 14 pre-
vious days, the oscillator SI is calculated as: 

•	 RSI (Relative Strength Index) is used to identify the oversold and overbought 
areas, highlighting the ideal timing to enter and exit the market. Considering 
U as the average of the upward closing differences over a certain period (e.g., 
14 days) and D is the average of the absolute value of the downward closing 
differences over a certain period, the RSI is calculated as: 

3.2 � Setting up the machine

Through this type of architecture, we want to demonstrate that the entropy indi-
cator calculated in this way has a predictive capacity at least equal to the indica-
tors most used in technical analysis and, in addition to these, how the predictive 
ability of the features varies overall. With Google Colab and given the simplicity 
of the data, we have set the structure of the network with only 1 input layer with 
several neurons from 7 to 9 (according to the general theory that the number of 
neurons in the input layer is equal to the number of features plus a bias), 1 out-
put layer with 1 neuron only and no hidden layer, based on the work of Ketsetsis 
et al. (2021). The remaining hyperparameters, which control the learning process, 
have been tuned using the state-of-the-art values in the literature and are shown 
in Table 1. We will consider the Root-Mean Square Error (RMSE) to highlight 
the results obtained. The dataset was divided into a training set (80%) and a test 
set (20%).

(5)MACD = EMA12 − EMA26

(6)SI =
X − L14

H14 − L14
× 100

(7)RSI = 100 −
100

1 +
EMA14(U)

EMA14(D)
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3.3 � Dataset

The empirical analysis was carried out on the closing prices of three widespread 
stocks2 (therefore having a very high number of stocks in circulation, which allows 
falling within the assumptions of the entropy model) and the last price of a classical 
cryptocurrency, the Bitcoin price (referred to USD):

•	 Apple Inc. (AAPL listed on NASDAQ) with a tick size of 0.01;
•	 Tesla Inc. (TSLA listed on NASDAQ) with a tick size of 0.01;
•	 Amazon Inc. (AMZN listed on NASDAQ) with a tick size of 0.01;
•	 Bitcoin (BTC-USD CoinMarketCap Exchange) with a tick size of 0.001.

Stocks’ prices are considered with a daily time frame from 02/01/20113 to 
12/31/2019. In contrast, Bitcoin’s price is considered from 09/01/2015 to 12/31/2019 
(the difference is that for cryptocurrencies, 365 days are recorded while for stocks, 
250, to balance the number of observations in the dataset). The dataset consists of 
several columns (features), each of which will be indicated with the first letter of 
the column; these features are: Open (O), High (H), Low (L), Adj Close/Last (C), 
Volume (V), MACD (M), Stochastic (SI), RSI (R), Entropy (E). In Table 2 there is a 
representation of the dataset used in the analysis with all features.

The most important feature to predict is the closing price. Furthermore, it is to be 
specified that the different instruments record different price levels. So, to highlight 
the closing price differences between the different datasets, the central statistics are 
shown in Table 3, such as number (“No." column), mean, standard deviation, skew-
ness, kurtosis, minimum and maximum.

In particular, Bitcoin recorded the most substantial price variation after the 
extreme speculative bubbles created in 2015 and 2017. These differences, often very 
pronounced, are essential because they can lead to different levels of RMSE.

Table 1   Values of 
hyperparameters for LSTM 
network

Parameters Values

Layers 2
N. of neurons {7, 8, 9}
Activ. func. sigmoid
Learning rate ( �) 0.0005
Optimizer Adam(� , 0.9, 0.999)
Loss Mean square error
Batch size 32
Epochs 300
Time step 3

3  All dates are in US format.

2  Source: finance.yahoo.com.
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4 � Numerical results

To test the effectiveness of the different indicators, we will analyze the different 
features first individually and then combine the different features in other datasets 
to see how the values of the RMSE change (the features being forecast will always 
remain “Adj Close"). We try to show that entropy, in some cases, can be an indicator 
that, due to its construction, significantly improves the forecast.

As shown in Table 4, obtained by training the previously defined network archi-
tecture with the different combinations of datasets, the RMSE values differ according 

Table 2   Sample of the Apple dataset (values from beginning and ending dates)

Date Open High Low Adj close Volume MACD SI RSI E

2011-
02-
01

12.18929 12.34464 12.17786 10.5803 426633200 0.006359 84.14532 52.71597 6.953876

2011-
02-
02

12.30179 12.33036 12.26964 10.55853 258955200 0.011935 80.88183 49.91702 6.953876

2011-
02-
03

12.27857 12.29429 12.09107 10.53154 393797600 0.0136 76.83798 48.13209 6.953876

2011-
02-
04

12.27286 12.38214 12.26821 10.62538 321840400 0.019879 100 48.35597 5.448233

2011-
02-
07

12.42464 12.61607 12.41571 10.79035 485021600 0.03361 100 59.71958 6.564281

2011-
02-
08

12.63143 12.69714 12.57679 10.89216 381040800 0.048188 100 63.79891 8.854192

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

2019-
12-
26

71.205 72.495 71.175 71.5209 93121200 0.25615 100 85.35301 22.44524

2019-
12-
27

72.78 73.4925 72.03 71.49376 146266000 0.29672 99.52138 82.4768 22.44524

2019-
12-
30

72.365 73.1725 71.305 71.91808 144114400 0.330453 100 95.02158 20.16067

Table 3   Main statistics of the time series used

Title No. Mean St. Dev Skewness Kurtosis Min. Max.

AAPL 2243 27.66 13.49 0.79 −0.15 9.62 71.61
TSLA 2243 38.74 22.04 −0.34 −1.10 4.36 86.18
AMZN 2243 37.02 29.02 0.89 −0.68 8.04 101.97
BTC 1583 4530.80 3983.18 0.74 −0.08 227.08 19497.40
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to the type of instruments since the prices inside move on different levels (as shown 
by the different � and � values of the RMSE). Therefore, this indicator measures the 
goodness of the forecast made on a test set of over 300 values (20% of the initial 
dataset) for each dataset type. The results show that in the first combination of fea-
tures (the classic OHLC without Volume) with the addition of entropy, this is a good 
indicator for prediction, especially for Bitcoins that demonstrate their high predic-
tive capacity and Apple. Figure 1 shows the predictions on the part of the test set of 
the different datasets.

By adding more features, the predictive accuracy of the model increases. Neural 
Networks can perceive the relationships between the features, particularly from the 
forecast improvement with the combined use of the Volume and RSI, or Volume 
and MACD. The combination with entropy gives an excellent result (OHLVRE and 
OHLVME case), while these features combined worsen the RMSE. This effect can 
be due to the redundancy of information created by combining features. For exam-
ple, in the case of RSI - shown in Fig. 2-, the entropy determined respects the main 
property according to which when it reaches a local maximum and is followed by a 
drastic descent, then at the time point following the descent, it will necessarily have 
to rise to “re-balance" the amount of information.

We can assume that this characteristic, which we hypothesized as a tool for mak-
ing a prediction, makes the neural network able to improve the forecast. We can also 
assume that the reduction of RMSE with the use of all the features is linked to the 
fact that entropy not only moves on different ranges from the other indicators but 
that, in some cases (especially with the RSI), it has peaks that could somehow con-
dition the network itself.

The reason for this result is traceable in the construction of the entropy 
indicator, which being constructed “dynamically" takes into account a certain 

Table 4   RMSE (lower the 
better) for the different datasets

AAPL TSLA AMZN BTC

OHLV 11.554 6.901 203.127 1299.767
OHLM 6.971 4.744 169.931 1082.248
OHLSI 11.032 4.731 1096.145 1664.770
OHLR 5.678 2.689 184.241 1195.360
OHLE 3.057 4.162 348.731 532.271
OHLVM 4.831 3.176 234.345 644.492
OHLVSI 3.346 13.266 103.814 1256.008
OHLVR 3.758 2.884 104.190 1049.686
OHLVE 13.462 3.241 218.341 993.780
OHLVMR 2.659 3.190 111.695 846.491
OHLVRE 2.801 2.893 137.989 796.520
OHLVME 3.291 3.306 183.588 565.063
OHLVSIE 6.215 2.826 128.667 1772.583
OHLVMRE 3.400 4.376 47.113 1117.730
�
RMSE

5.86 4.45 233.70 1058.34
�
RMSE

3.619 2.781 258.81 372.84
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Fig. 1   Real price (blue) and predicted price (red) on part of the OHLE test set (colour figure online)

Fig. 2   Real price (blue) and predicted price (red) on part of the OHLVRE test set (colour figure online)
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amount of information (which represents the position of economic agents con-
cerning buying or selling), based on which it is possible to understand when 
there will be a movement of agents. However, when entropy is used together 
with the other indicators, this significant presence of captured information gen-
erates information redundancy. In this sense, multiple points could be where all 
three/four indicators have captured the same type of information. However, the 
neural network does not capture this (in particular since the indicators, despite 
the same type of information, could have opposite movements), producing a 
higher RMSE than the single indicator.

4.1 � Factor analysis

Through the LSTM architecture, we could highlight how using the Boltz-
mann entropy feature can improve price prediction. However, to quantify the 
importance of this feature compared to the others used, we use factor analysis. 
Through Google Colab and the Factor package, we perform a 4-factor analysis. 
This dimensionality reduction technique used to reduce the number of features 
has the advantage of reporting the variability explained by each variable. In par-
ticular, reporting the communalities, we determine the portion of each variable’s 
variance explained by the factors. In this way, the variables with a higher value 
are the most represented by the factors and, therefore, the most useful. Using an 
orthogonal varimax rotation, the communalities are shown in Table 5.

After removing the “Adj Close" feature for each dataset, we consider all the 
remaining ones so that we can compare them with the importance of the entropy 
feature. The first three features (Open, High and Low) are closely linked since 
the prices recorded in these variables are very similar (which is why they are so 
important). On the other hand, as often highlighted by analysts, Volume is not 
a fundamental feature, so much so that, in this case, it has lower communalities 
than the indicators. Finally, among the constructed indicators (MACD, SI, RSI, 
and Entropy), globally, the most important are SI and RSI. In some cases, our 
Entropy indicator obtained a higher value (e.g., in the case of AMZN, Entropy 
> SI). While in comparison with MACD, also Entropy got higher values for all 
the instruments considered, highlighting the importance that this feature derived 
from an ABM can have in the predictive process.

Table 5   Communalities of features from factor analysis (all values are %)

Title Open High Low Volume MACD SI RSI Entropy

AAPL 99.8 99.8 99.8 60.9 55.1 72.4 94.8 63.6
TSLA 99.7 99.8 99.8 86.6 73.6 99.5 80.6 77.3
AMZN 99.8 99.8 99.8 68.7 50.6 71.6 84.8 73.1
BTC 99.6 99.7 99.7 54.9 32.1 95.1 91.3 70.2
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5 � Conclusions

This paper shows how the dynamically determined Boltzmann entropy for stocks 
and cryptocurrency can be an indicator on a par with those most commonly used 
in financial data analysis. We tested this indicator alone and in combination with 
other features, both in the case of stocks and cryptocurrency, using a neural network 
architecture with LSTM units to make the price prediction and evaluate the impor-
tance of this feature through factor analysis. The results show that entropy is a good 
indicator already at the level of relatively simple datasets (think of the possibility 
of using a dataset with the classic OHL features). In this sense, we can believe that 
the representation through an Agent-Based Model is functional in determining the 
entropy indicator and effective for improving the predictive accuracy. Future works’ 
objective will be to exploit the Entropy indicator as a tool to verify the possible pres-
ence of cyclicity in the movement of economic agents.
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