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Abstract
We study the large fluctuations of the work injected by the random force into
a Brownian particle under the action of a confining harmonic potential. In
particular, we compute analytically the rate function for generic uncorrelated
initial conditions, showing that, depending on the initial spread, it can exhibit
no, one, or two singularities associated to the onset of linear tails. A depend-
ence on the potential strength is observed for large initial spreads (entailing
two singularities), which is lost for stationary initial conditions (giving one
singularity) and concentrated initial values (no singularity). We discuss the
mechanism responsible for the singularities of the rate function, identifying
it as a big jump in the initial values. Analytical results are corroborated by
numerical simulations.

Keywords: nonequilibrium systems, Brownian particle, additive functionals,
large deviation principles, dynamical phase transitions, big-jump phenomena

(Some figures may appear in colour only in the online journal)

1. Introduction

Rare events represent an active research field in physics, mathematics and natural sciences
[1, 2]. One way to describe them is suggested by large deviation theory [3, 4], which provides
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a quantitative evaluation of probabilities of events beyond the regime of normal fluctu-
ations. This theory also offers the possibility to extend the usual equilibrium free-energy
approach of statistical physics to non-equilibrium and dynamical contexts [5]. In fact, given an
extensive physical observable Wτ computed by cumulating a large number τ of microscopic
events, if a large deviation principle holds, then the asymptotics of the probability distribution
P(Wτ/τ = w) can be characterised by the rate function I(w) =− limτ↑∞

1
τ logP(Wτ/τ = w),

playing indeed a role similar to a free-energy.
A singularity in the rate function can separate the regime of typical fluctuations around

the mean from the regime of far rare events. In dynamical contexts, singularities of this kind
are associated with dynamical phase transitions [6–18]. In particular, if Wτ is an observable
measured along the trajectories of a given system, a singularity in the graph of the rate function
I(w) can mark a phase separation in trajectory space. A relevant question is which are the
trajectories contributing to the different regimes of I(w). A possible answer could come from
the so-called single big-jump principle [19–22], which explains rare events not in terms of an
accumulation of many small microscopic events but solely as an effect of the biggest one. It
would be interesting to analyse this principle in the context of dynamical phase transitions.

The dynamics of Brownian particles offers the possibility to deepen our understanding of
the above subjects. Farago [23] studied the work done by the thermal bath force on a single
underdamped Brownian particle. In particular, the rate function of the work for a free particle
was computed and, in the stationary regime, a singularity and an associated linear tail were
found at negative values of the work. The consequences on the non validity of the Fluctuation
Relation were discussed. Then, the effects of a confining potential were considered. A con-
fining potential at the level of a single particle, in addition to having an intrinsic interest as
experimentally realisable by means of an optical trap, can mimic the trapping created by other
particles at finite densities, and has been studied with also this purpose [24–26]. Arguments
were given in [23] to conclude that the presence of a harmonic potential would not modify the
rate function for the thermal bath work with respect to the free case. Singular rate functions
for trajectory dependent quantities have also been found for Brownian particles in a moving
potential [27, 28] or in contact with several baths [29], for Brownian particles under the action
of an additional Gaussian force [30, 31], for single harmonically confined active particles [32]
and for active Brownian particles at finite densities [33–37].

In this paper, we consider again a harmonically confined Brownian particle and compute
analytically the rate function of the work done by the random force of the thermal bath. We
extend the analysis to the case of generic uncorrelated initial conditions. Our results prove the
claims made in [23], as they show that the rate function does not depend on the strength of
the potential in the stationary regime and for concentrated initial values. For generic initial
conditions, we demonstrate that the rate function always possesses a singularity at a value of
the work smaller than the mean work, except for the limiting case of concentrated initial values
where such singularity moves to the boundary. This singularity corresponds to the singularity
observed in [23] for the stationary, free particle. In addition, we demonstrate that a second
singularity emerges above the mean work when the spread of the initial conditions is large
enough. Each singularity is the beginning point of an associated linear tail in the graph of the
rate function. We provide an interpretation of the singularities in terms of the single big-jump
principle, showing that trajectories in the linear tail regimes are characterised by a big jump in
the initial values.

The paper is organised as follows. In section 2 we present the model and introduce the
work injected by the random force. In this section, we also report a brief summary of the
analytical approach developed in [38], which we use to compute the rate function. Section 3
is devoted to the computation of the scaled cumulant generating function (SCGF) and the rate
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function, the latter being the Legendre transform of the former. In section 4 we investigate on
the trajectories phenomenology in order to explain the mechanism that causes the singularities
of the rate function. Finally, section 5 summarises our findings and future perspectives.

2. Model and methods

2.1. Definition of the model

We consider a single unit-mass Brownian particle in one dimension under the action of a har-
monic potential described by the following Langevin equation

ẍ(t) =−γẋ(t)− kx(t)+
√
2D η (t) , (1)

where x(t) is the particle position, γ is the viscous friction coefficient, k (the potential strength)
is the elastic constant, η(t) (the random force) is a Gaussian white noise with ⟨η(t)⟩= 0 and
⟨η(t)η(s)⟩= δ(t− s) and D is the diffusion coefficient. Following [23], we interpret −γẋ(t)
and

√
2D η(t) as generic energy dissipation and injection channels, respectively, so that

throughout calculations we keep D unspecified. The usual case of an equilibrium thermal bath
at temperature T is recovered by fixing D= γkBT with kB the Boltzmann constant, as pre-
scribed by the Einstein relation. Introducing the velocity v(t), equation (1) is recast into the
following system of first-order differential equations{

ẋ(t) = v(t)

v̇(t) =−γv(t)− kx(t)+
√
2D η (t)

, (2)

with initial conditions x(0) and v(0), to which we will refer as the equations of motion. We
consider uncorrelated Gaussian initial conditions with zero mean and standard deviations σx
for the position and σv for the velocity. The case of a stationary process is obtained with σ2

x =
D/kγ and σ2

v = D/γ [39].
We will study the probability distribution of the work injected by the random force into the

Brownian particle up to time τ , defined as

Wτ ≡
√
2D
ˆ τ

0
η (t) ẋ(t) dt

=
1
2

[
v2 (τ)− v2 (0)

]
+
k
2

[
x2 (τ)− x2 (0)

]
+ γ

ˆ τ

0
v(t) ẋ(t) dt, (3)

where in the second row we have used the η(t) expression extracted from equation (2). Our
goal is in fact to compute analytically the rate function I(w) of the work injected per unit time:

I(w)≡− lim
τ↑∞

1
τ
logP

(
Wτ

τ
= w

)
,

where P(Wτ/τ = w) is the probability distribution expressed by the path integral

P

(
Wτ

τ
= w

)
=

ˆ
Pτ δ (Wτ −wτ) DxDv

with path probability

Pτ ∝ e−
1
2 [

x(0)
σx ]

2
− 1

2 [
v(0)
σv ]

2

e−
1
4D

´ τ
0 [v̇(t)+γv(t)+kx(t)]2dtδ (v(t)− ẋ(t)) ,

which weighs each trajectory realisation combining the distribution of the initial values with
the Onsager–Machlup weight [40]. To compute the rate function I(w), we follow the approach
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developed in [38], which is briefly summarised in the next subsection. Application of this
approach to our problem is made in section 3.

We mention that an alternative approach to deal with the work injected by a Gaussian
external force into an underdamped Brownian particle is suggested in [28, 30, 31]. Although
both methods are ultimately traced back to Gaussian integrals for computational purposes, the
theory developed in [38] provides, with mathematical rigour, a large deviation principle for
a general class of quadratic functionals and a comprehensive recipe for evaluating their rate
functions.

2.2. Overview of the analytical approach

In order to evaluate the rate function I(w), we resort to the approach recently proposed in [38]
for quadratic functionals of stable Gauss–Markov chains, whose applicability to our problem
is feasible upon a convenient time discretization. Results for the original problem are later
obtained by performing a continuum limit. Let {Xn}n⩾0 be a Markov chain taking values in
Rd (in our case d= 2, corresponding to position and velocity), and assume that there exist a
drift matrix S with spectral radius ρ(S)< 1 and an invertible, diagonal diffusion matrix C such
that

Xn+1 = SXn+CGn, (4)

where {Gn}n⩾0 is a sequence of i.i.d. standard Gaussian random vectors valued inRd. Suppose
that the initial state X0 is a Gaussian random vector independent of {Gn}n⩾0 with zero mean
and positive-definite covariance matrixΣ0. The chain (4) is stationary if and only ifΣ0 =Σs ≡∑

m⩾0 S
mC2(S⊤)m,→ p denoting transposition, and the request on the spectral radius ensures

that Σs actually exists. Let also

WN =
1
2
⟨X0,LX0⟩+

1
2

N∑
n=0

⟨Xn,UXn⟩+
1
2
⟨XN,RXN⟩+

N∑
n=1

⟨Xn,VXn−1⟩ (5)

be a quadratic functional of the chain, where ⟨·, ·⟩ is the Euclidean scalar product and L, U, R,
and V are d× d real matrices with L, U, and R symmetric. With full probability, the typical
value of WN is given by the following law of large numbers [38]

lim
N↑∞

WN

N
=

1
2
tr
[(
U+V⊤S+ S⊤V

)
Σs
]
. (6)

The theory developed in [38] describes the large deviations of WN. To expose it, we need
to formulate some mathematical details. For each real numbers µ and θ we introduce the
Hermitian matrix

Fµ (θ) = C−2 + S⊤C−2S−µU−
(
C−2S+µV

)
e−ıθ −

(
C−2S+µV

)⊤
eıθ, (7)

where ı is the imaginary unit, and we term primary domain the set O of µ for which Fµ(θ) is
positive definite for all θ. It turns out thatO is an interval (µ̃−, µ̃+)with µ̃± extended real num-
bers, i.e. µ̃± ∈ R∪{−∞,+∞}. For µ ∈ O= (µ̃−, µ̃+), it is possible to define the integrals

φ(µ)≡− 1
4π

ˆ 2π

0
dθ logdetFµ (θ)− logdetC, (8)

Φµ (n)≡
1
2π

ˆ 2π

0
dθ e−ınθF−1

µ (θ) , n ∈ Z. (9)
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The matrices

Hµ ≡ I+
(
C−2S+µV

)
Φµ (1) ,

Kµ ≡ I+Φµ (1)
(
C−2S+µV

)
,

(10)

with I the identity matrix, can be shown to be invertible [38] and

Lµ ≡ Σ−1
0 + S⊤C−2S−µL−

(
S⊤C−2 +µV⊤)Φµ (0)H

−1
µ

(
C−2S+µV

)
,

Rµ ≡ C−2 −µR−
(
C−2S+µV

)
K−1
µ Φµ (0)

(
S⊤C−2 +µV⊤) (11)

can be proved to be Hermitian [38]. The interval E≡ (µ−,µ+)⊆ O in which Lµ and Rµ are
simultaneously positive definite is termed effective domain. We are now in the position to state
the following large deviation result [38]. The SCGF ofWN/N in the large N limit, in symbols
limN↑∞

1
N ln⟨e

µWN⟩, turns out to be the function (8) with domain E fulfilling

−∞⩽ µ̃− ⩽ µ− < 0< µ+ ⩽ µ̃+ ⩽+∞.

Moreover, the quadratic functionalWN/N satisfies a large deviation principle with rate function
J(w) given by the Legendre transform of the function (8) in E, i.e.

J(w) = sup
µ∈E

{wµ−φ(µ)} . (12)

Within the effective domain E, the SCGF is differentiable, and the limits limµ↓µ− φ ′(µ)≡
w− and limµ↑µ+

φ ′(µ)≡ w+ exist by convexity. When µ̃− < µ− and/or µ+ < µ̃+, the SCGF
is non-steep at the boundaries, i.e. w± are finite, and the general expression for the corres-
ponding rate function is

J(w) =


wµ− −φ(µ−) if w⩽ w−

j(w) w− < w< w+

wµ+ −φ(µ+) if w⩾ w+

,

where j(w) is a convex function connecting continuously at w± along with its first derivative.
The rate function is characterised by second-order singularities at w± and linear tails outside
the interval (w−,w+). Thus, whenever the effective domain is smaller than the primary one,
at least one linear stretch in the rate function occurs. We stress that the matrices Σ0, L, and
R neither affect the typical value of WN nor the SCGF function expression and the primary
domain. Instead, they play a crucial role in determining the effective domain extension, and
hence in determining the occurrence of singularities and linear tails in the graph of the rate
function.

3. SCGF and rate function

In this section we apply the above method to our problem. Section 3.1 introduces a convenient
time discretization. Section 3.2 gives the SCGF, whereas the effective domain is discussed in
section 3.3. Finally, the rate function is investigated in section 3.4. The reader interested only
in the latter can directly go over to the last subsection.

3.1. Discretization

By time discretization, we recast the equations of motion (2) and the work (3) as a Gauss–
Markov chain and a quadratic functional, respectively. To make a contact with the framework
of [38], time discretization must provide an invertible, diagonal diffusion matrix C. To this aim
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we introduce a fictitious noise in the upper equation of equation (2) with vanishing diffusion
coefficient in the continuum limit. Specifically, we divide the time interval of duration τ in
equation (3) into the sum ofN time steps of size ϵ, so that τ = Nϵ, and approximate the position
and velocity derivatives as dx(t)

dt ≃ xn+1−xn
ϵ and dv(t)

dt ≃ vn+1−vn
ϵ , with discrete-time position xn ≡

x(nϵ) and discrete-time velocity vn ≡ v(nϵ). In this way, we turn the equations of motion (2)
into the following Markov chain{

xn+1 = xn+ vnϵ+
√
2ϵDF ξn

vn+1 =−kϵxn+(1− γϵ)vn+
√
2ϵD ηn

, (13)

where {ξn}n⩾0 and {ηn}n⩾0 are two independent sequences of i.i.d. standard Gaussian random
variables and DF is a fictitious diffusion coefficient that goes to zero when ϵ ↓ 0. The precise
dependence of DF on ϵ is irrelevant, but we suppose that DF ∝ ϵ for simplicity. Results for the
original continuum system will be obtained by performing the continuum limit ϵ ↓ 0. The drift
and diffusion matrix extracted from equation (13) are

S≡
(

1 ϵ
−kϵ 1− γϵ

)
and C≡

(√
2ϵDF 0
0

√
2ϵD

)
. (14)

The eigenvalues of S are 1− ϵ
2 (γ±

√
γ2 − 4k), so that ρ(S)< 1 for all sufficiently small ϵ.

Thus, the stationary covariance matrix exists for all sufficiently small ϵ and reads

Σs ≡
∑
m⩾0

SmC2
(
S⊤
)m

=

 2D(2−γϵ+kϵ2)+2DF(2γ2+2k−γ3ϵ−2γkϵ+kγ2ϵ2)
k(γ−kϵ)(4−2γϵ+kϵ2) − 2Dϵ+2DF(2γ−γ2ϵ−kϵ+γkϵ2)

(γ−kϵ)(4−2γϵ+kϵ2)

− 2Dϵ+2DF(2γ−γ2ϵ−kϵ+γkϵ2)
(γ−kϵ)(4−2γϵ+kϵ2)

4D+2DF(2k−γkϵ+k2ϵ2)
(γ−kϵ)(4−2γϵ+kϵ2)


=

(
D
kγ 0
0 D

γ

)
+O (ϵ) .

The leading order corresponds to the stationary covariance matrix for the continuum system
[39], as expected.

Concerning the work injected by the random force into the Brownian particle, the integral
contribution in equation (3) is discretized according to the trapezoidal rule for convenience as´ τ
0 v(t)ẋ(t)dt≃

1
2

∑N−1
n=0 (vn+1 + vn)(xn+1 − xn), so that Wτ ≃WN with the discrete-time work

WN =
1
2

(
v2N+ kx2N+ γxNvN

)
− 1

2

(
v20 + kx20 + γx0v0

)
+

γ

2

N∑
n=1

(vn−1xn− vnxn−1) . (15)

Once WN is recast as in equation (5), we find

−L= R≡
(
k γ

2
γ
2 1

)
, U≡

(
0 0
0 0

)
, V≡

(
0 γ

2
−γ

2 0

)
. (16)

From equation (6), with full probability the typical value of the discrete-time work turns out
to be

lim
N↑∞

WN

N
=

γϵ(D+DFk)
γ− kϵ

= Dϵ+O
(
ϵ2
)
.

This formula and τ = Nϵ give the typical value of the work for the continuum system: ⟨w⟩ ≡
limτ↑∞Wτ/τ = D. To conclude, we observe that if J(w)≡− limN↑∞

1
N logP(WN/N= w)

denotes the rate function of WN/N in equation (12), then the rate function I(w) of Wτ/τ is

6
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I(w) = lim
ϵ↓0

J(ϵw)
ϵ

= lim
ϵ↓0

sup
µ∈E

{
wµ− φ(µ)

ϵ

}
. (17)

3.2. SCGF

Here we aim to evaluate the SCGF φ(µ) in equation (17). The first step is the know-
ledge of the Hermitian matrix Fµ(θ) defined by equation (7). From equations (14) and (16),
we find

Fµ (θ) =

(
l11 +m11 cosθ l12 +m12 cosθ− ıp12 sinθ

l12 +m12 cosθ+ ıp12 sinθ l22 +m22 cosθ

)
,

where the explicit expressions of the coefficients are

l11 ≡
1
DFϵ

+
k2

2D
ϵ, m11 ≡− 1

DFϵ
,

l12 ≡− k
2D

+
1

2DF
+

γk
2D

ϵ, m12 ≡
k
2D

− 1
2DF

, p12 ≡ γµ+
k
2D

+
1

2DF
,

l22 ≡
1
Dϵ

− γ

D
+

(
γ2

2D
+

1
2DF

)
ϵ, m22 ≡

γ

D
.

We note that only the coefficient p12 depends on the variable µ. The determinant of Fµ(θ) is
given by

detFµ (θ) =
1

DDF

(
a0 + a1 cosθ+ a2 cos

2 θ
)
,

where

a0 ≡
1
ϵ2

− γ

ϵ
−DDFγ

2µ2 −DFγkµ−Dγµ+
γ2

2
− γk

2
ϵ+

k2

4
ϵ2,

a1 ≡− 2
ϵ2

+
2γ
ϵ

− k− γ2

2
+

γk
2
ϵ,

a2 ≡
1
ϵ2

− γ

ϵ
+DDFγ

2µ2 + k+ γkµDF+ γµD.

According to Sylvester’s criterion, the Hermitian matrix Fµ(θ) is positive definite if and
only if its upper left entry and its determinant are positive. The former is positive for all θ, µ,
and ϵ> 0. For ϵ> 0 small enough, the latter is positive for all θ provided that µ ∈ (µ̃−, µ̃+)
with

µ̃± ≡
−(D+DFk)±

√
DDFγ2 +(D+DFk)

2
+DFDk(kϵ− 2γ)ϵ

2DDFγ
.

Therefore, recalling the discussion in section 2.2, the primary domain of the SCGF φ(µ) is
O= (µ̃−, µ̃+). Bearing in mind that DF ∝ ϵ, we note that

µ̃+ =
γ

4D
+O (ϵ) ,

µ̃− =− 1
DFγ

+O
(
ϵ0
)
.

(18)

7
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We can now compute the function φ(µ). For µ ∈ O, we have the identity

1
2π

ˆ 2π

0
dθ log

(
a0 + a1 cosθ+ a2 cos

2 θ
)
= 2log

(
g1 + g2 +

√
2(a0 − a2 + g1g2)

4

)
(19)

with

g1 ≡
√
a0 − a1 + a2 =

2
ϵ
− γ+

kϵ
2
,

g2 ≡
√
a0 + a1 + a2 =

kϵ
2
.

(20)

Thus, combining equation (8) with equation (19), we get the explicit expression

φ(µ) =− log

(
g1 + g2 +

√
2(a0 − a2 + g1g2)

4

)
− log(2ϵ)

=
1
2

[
γ−

√
γ (γ− 4Dµ)

]
ϵ+O

(
ϵ2
)
.

We define

ϕ(µ)≡ lim
ϵ↓0

φ(µ)

ϵ
=

γ

2

(
1−

√
1− 4Dµ

γ

)
, (21)

to which we refer as the SCGF for the continuum system. This function is defined on the
primary domain (−∞,γ/4D), which, manifestly, is the continuum limit of equation (18).

3.3. Effective domain

Here we establish the effective domain E in equation (17). To this aim, the explicit expressions
of the matrices Lµ and Rµ in equation (11) are needed. This requires at first to compute the
matrices Φµ(0) and Φµ(1) in equation (9) for µ ∈ O. All the involved integrals in Φµ(0) and
Φµ(1) fall within the following general case:

1
2π

ˆ 2π

0
dθ

ζ0 + ζ1 cosθ+ ζ2 cos2 θ
a0 + a1 cosθ+ a2 cos2 θ

=
(a2ζ0 − ζ2a0)(g1 + g2)+ (a2ζ1 − ζ2a1)(g1 − g2)

a2g1g2
√
2(a0 − a2 + g1g2)

+
ζ2
a2

,

where g1 and g2 are as in equation (20), whereas ζ0, ζ1, and ζ2 are generic numbers. Thus, for
µ ∈ O, we find

Φµ(0) =
DDF(g1 + g2)

g1g2
√
2(a0 − a2 + g1g2)

(
l22 −l12
−l12 l11

)
+

DDF(g1 − g2)

g1g2
√
2(a0 − a2 + g1g2)

(
m22 −m12

−m12 m11

)
,

8
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Φµ(1) =
DDF(g1 − g2)

g1g2
√
2(a0 − a2 + g1g2)

(
l22 −l12
−l12 l11

)

+
DDF

a2

{
1− a0(g1 + g2)+ a1(g1 − g2)

g1g2
√
2(a0 − a2 + g1g2)

}(
m22 −m12

−m12 m11

)

+
DDF

a2

{
1− (a0 + a2)(g1 + g2)+ a1(g1 − g2)

g1g2
√
2(a0 − a2 + g1g2)

}(
0 −p12
p12 0

)
.

Combining these expressions with equations (10) and (11), expanding around ϵ= 0 withDF ∝
ϵ, a lengthy calculation that we omit gives the following simple result for the leading order of
the matrices Lµ and Rµ:

Lµ =

k−γ+
√

γ(γ−4Dµ)+2Dµ
2D + 1

σ2
x

0

0
−γ+

√
γ(γ−4Dµ)+2Dµ

2D + 1
σ2
v

+O(ϵ),

Rµ =
γ+

√
γ(γ− 4Dµ)− 2Dµ

2D

(
k 0
0 1

)
+O(ϵ).

The interval E≡ (µ−,µ+) accounts for those µ ∈ O that make Lµ andRµ positive-definite
at the same time. It is straightforward to check that, at small ϵ, the matrixRµ is positive definite
for all µ in the primary domain O. Instead, at small ϵ, the matrix Lµ is positive definite only if
both the diagonal entries of the leading order are positive, that is only if√

γ(γ− 4Dµ)+ 2Dµ > γ− 2D
max{kσ2

x ,σ
2
v}

. (22)

In this way, the effective domain of the SCGF in the continuum limit, which is ϕ(µ) given by
equation (21), is the set of numbers µ < γ/4D satisfying equation (22). Solving equation (22),
for the continuum system we finally find E= (µ−,µ+) with

µ− =− 1
M

−
√

γ

DM
, M≡max{kσ2

x ,σ
2
v},

µ+ =

{
γ
4D if M⩽ 4D/γ

− 1
M +

√
γ
DM if M> 4D/γ

.

(23)

We note that µ− > µ̃− =−∞ for every choice of the parameters, so that ϕ(µ) is non-steep
at µ− in any situation, except for the limiting case of concentrated initial values defined by
the limits σx,σv ↓ 0. With ϕ(µ) given by equation (21) and µ± given by equation (23), from
equation (17) we get

I(w) = sup
µ∈(µ−,µ+)

{wµ−ϕ(µ)} . (24)

3.4. Rate function

Here we investigate I(w) given by equation (24), which constitutes the rate function for the
continuum system and is one of the main objectives of the paper. Using equation (21) for ϕ(µ)
and equation (23) for µ±, when M≡max{kσ2

x ,σ
2
v}⩽ 4D/γ we find

I(w) =

{
wµ− +ϕ(µ−) =

√
Dγ
M −w

(
1
M +

√
γ
DM

)
if w⩽ w−

γ
4Dw (w−D)2 if w> w−

9
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with

w− ≡ lim
µ↓µ−

ϕ ′ (µ) =
D√

1− 4D
γ µ−

=
D

1+
√

4D
γM

> 0.

If instead M≡max{kσ2
x ,σ

2
v}> 4D/γ, then we get

I(w) =


wµ− −ϕ(µ−) =

√
Dγ
M −w

(
1
M +

√
γ
DM

)
if w⩽ w−

γ
4Dw (w−D)2 if w− < w< w+

wµ+ −ϕ(µ+) = w
(√

γ
DM − 1

M

)
−
√

Dγ
M if w⩾ w+

,

where w− is as before and

w+ ≡ lim
µ↑µ+

ϕ ′ (µ) =
D√

1− 4D
γ µ+

=
D

1−
√

4D
γM

> w−.

We realise that the rate function always has a singularity at w− below the mean D with an
associated left linear tail. Moreover, whenM> 4D/γ the model exhibits a second singularity
at w+ above D and a corresponding right linear tail. We stress that the parameterM is the only
place where the elastic constant k appears.

In the special case of concentrated initial values defined by the limits σx,σv ↓ 0, i.e. when
the Brownian particle starts fluctuating from x(0) = v(0) = 0, we haveM= 0⩽ 4D/γ, so that
the rate function I(w) reads

I(w) =

{
+∞ if w⩽ 0
γ

4Dw (w−D)2 if w> 0
. (25)

In this limiting case the rate function does not display linear tails since the assumption x(0) =
v(0) = 0 rules out the possibility of negative fluctuations for the work, as it becomes a sum of
positive contributions according to equation (3). We note that the rate function is independent
of the elastic constant k in this limiting case. The rate function is independent of k also in the
case of stationary system, corresponding to σ2

x = D/kγ and σ2
v = D/γ. In fact, for a stationary

system we find M= D/γ ⩽ 4D/γ, giving

I(w) =

{
γ
D (D− 2w) if w⩽ D

3
γ

4Dw (w−D)2 if w> D
3

. (26)

The left linear tail, and that alone, is now present. Equations (25) and (26) demonstrate
the claim made in [23] that the injected power is completely insensitive to the presence
of a harmonic confinement under concentrated initial values or stationary initial conditions.
Consistently, they reproduce the analytic results of [23] for the free system corresponding to
k= 0. As observed in [23], the rate function satisfies no Fluctuation Relation [41–44].

Figure 1 reports the SCGF ϕ(µ) (top) and the rate function I(w) (bottom) for the concen-
trated initial values x(0) = v(0) = 0, for stationary initial conditions and for generic initial con-
ditions entailing both left and right linear tails. The figure summarises the ability of the model
to exhibit no linear tail, one linear tail, or two linear tails. In order to confirm analytical results,
figure 1(bottom) also compares the analytical rate function with rate functions estimated by
means of numerical simulations of the original model. In fact, we simulated the trajectories of
the discrete-time model (13) with time step ϵ= 10−2 and fictitious diffusion coefficientDF set

10
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Figure 1. SCGF ϕ(µ) (top row) and rate function I(w) (bottom row) with system para-
meters γ= 1.0, D= 1.0, and k= 1.0 (in arbitrary units) for several initial conditions.
(a) and (d): concentrated initial values x(0) = v(0) = 0 given by the limits σx,σv ↓ 0.
(b) and (e): stationary system corresponding to σ2

x = D/kγ and σ2
v = D/γ. (c) and (f ):

generic initial conditions defined by σx = 10 and σv = 10 (in arbitrary units). In the top
panels, the blue line shows the SCGF in the effective domain, whereas the purple dashed
curve in (b) and (c) depicts its trend in the primary domain (see sections 3.2 and 3.3 for
details). In the bottom panels, the red solid line is the analytical rate function, whereas
the coloured dotted lines are the numerical rate functions at different values of τ . In (e)
and (f ), the red dashed lines mark the beginning of the left linear tail at w− and of the
right linear tail at w+.

equal to 0. Then, we sampled the injected work Wτ for different times τ = Nϵ as prescribed
by equation (15). In the regions of w aroundD that we are able to explore numerically, we find
a good agreement between analytic results and simulations. Recall that D is the typical value
of Wτ , with D= 1.0 (in arbitrary units) in figure 1.

Figure 2 provides some phase diagrams of the system as deduced by the ratios r− ≡ w−/D
and r+ ≡ D/w+ between the rate function singularities w±, where linear tails begin, and the
mean work D. We have set r+ ≡ 0 when the right linear tail does not occur, that is when
M≡max{kσ2

x ,σ
2
v}⩽ 4D/γ. In this way, we have r− ∈ (0,1) and r+ ∈ [0,1), with r− ↑ 1when

w− approaches D from below, r+ ↑ 1 when w+ approaches D from above, and r+ ↓ 0 when
the region M⩽ 4D/γ is approached from outside. Panels (a) and (b) of figure 2 report the
phase diagrams for r− and r+, respectively, in the T − k plane at fixed γ, σx and σv with
D= γkBT. We see that w− and w+ approach D at low temperature T and/or large elastic
constant k. At higher T and finite k, w− decreases to zero, whereas w+ increases to infin-
ity up to a critical value of T where the right linear tail ceases to exist. This critical value
is identified by the condition 4kBT=max{kσ2

x ,σ
2
v}. Panels (c) and (d) of figure 2 report

the phase diagrams for r− and r+ in the σx−σv plane at fixed system parameters. We note

11
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Figure 2. Phase diagrams as deduced by the ratios r− ≡ w−/D< 1 and r+ ≡ D/w+ <
1 between the rate function singularities w± and the mean value of the work D.
Regarding r+, white regions delimited by black dashed lines are the regions of paramet-
ers where the right linear tail does not occur, that is whereM≡max{kσ2

x ,σ
2
v}⩽ 4D/γ.

(a) and (b): r− and r+ for D= γkBT in the T − k plane with γ= 1.0, kB = 1.0, σx = 10
and σv = 10 (in arbitrary units). (c) and (d): r− and r+ in the σx−σv plane with γ= 1.0,
D= 1.0 and k= 1.0 (in arbitrary units).

that both w− and w+ approach D at large σx and/or large σv. On the contrary, when σx
and σv become small, the point w− decreases to zero, whereas w+ ceases to exist as soon
as max{kσ2

x ,σ
2
v}= 4D/γ.

4. Phenomenology of the trajectories

In this section we shed light on the physical mechanisms that originate singular trajectories,
i.e. trajectories giving values w of the work in a linear tail of the RF I(w). We pursue the goal
by analysing the trajectories of the model with system parameters as in figure 1(f), so that the
rate function has both left and right linear tails. The simulation time τ we consider is much
larger than the inertial time tI ≡ γ−1. We fixed γ= 1.0,D= 1.0, k= 1.0, σx = 10, σv = 10, and
τ = 50≫ tI = 1.0 (in arbitrary units).

Inspection of singular trajectories reveals the presence of some big jump phenomena.
Figure 3 reports three trajectories of the system, in terms of the position x(t) in figure 3(a) and
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Figure 3. Trajectory characterisations. (a) and (b): typical position and velocity tra-
jectories under non-stationary initial conditions corresponding to the works w=
3.70, 3.15≫ w+ = 1.25 (blue) and w∼ ⟨w⟩= D= 1.0 (green). (c): initial position
and velocity for a pool of 107 trajectories conditional on Wτ = wτ with w⩽−0.6≪
w− = 0.83 (red),w⩾ 3.2≫ w+ = 1.25 (blue) andw− ⩽ w⩽ w+ (green). (d): compar-
ison between the values w of the work per unit time generated by singular trajectories
(w≪ w− red, w≫ w+ blue) and the values of the work per unit time associated with
same initial conditions but opposite random force path (corresponding darker colours).
The dashed vertical lines highlight the locations of w±. In all cases we fixed γ= 1.0,
D= 1.0, k= 1.0, σx = 10, σv = 10 and τ = 50≫ tI = 1.0 (in arbitrary units).

the velocity v(t) in figure 3(b), conditional on Wτ = wτ with one value w∼ ⟨w⟩= D (green
lines) and two valuesw≫ w+ (blue lines) in the far right linear tail.We see that the singular tra-
jectories are characterised by a short initial relaxation transient due to a big jump in one of the
initial values: x(0)∼−30 in figure 3(a) for w= 3.70 and v(0)∼−25 figure 3(b) for w= 3.15.
An analogous behaviour characterises also the trajectories corresponding to w≪ w− in the far
left linear tail. Such big jumps are confirmed and characterised by figure 3(c), where the ini-
tial position and velocity are reported for a large pool of trajectories conditional on Wτ = wτ
with w≪ w− (red), w≫ w+ (blue) and w− ⩽ w⩽ w+ (green). This panel clearly shows two
different patterns for singular and non-singular trajectories, the former roughly localising on
an annulus, so that at least one among x(0) and v(0) makes a big jump, the latter concentrating
around the origin. At larger times τ , green points tend to accumulate more and more densely
around the origin, whereas red and blue points remain essentially unaltered. This implies that
big jumps in the initial conditions are of order

√
τ . Therefore, we conclude that big jumps of

order
√
τ in the initial values of position and velocity are an essential ingredient for singular

trajectories to occur. Coherently with what we find here, we note that in [23] the physical ori-
gin of the singularity in the rate function of the stationary, free particle was ascribed to a very
energetic initial condition. Similarly, a big jump mechanism causing a particle to roll uphill in
the potential was suggested in [32] to explain a singular rate function.

It is interesting to observe that the patterns for w≪ w− and those for w≫ w+ in figure 3(c)
overlap, meaning that same initial big jumps can produce trajectories associated to values of
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the work in both the left and the right linear tail of the rate function. In order to distinguish
such trajectories in terms of the injected work, we discuss the action of the random force
η(t). In fact, once a singular initial configuration is given, the linear tail where the value of
the work falls is determined by the sign of the random force realisation, as demonstrated by
figure 3(d). Specifically, consider a trajectory withw≫ w+. This trajectory involves big jumps
in the initial conditions and is characterised by a certain random force path. Figure 3(d) shows
that if we now construct a trajectory with same initial conditions and opposite random force,
then the corresponding value of the work falls in the left linear tail. Similarly, if we consider a
trajectory with w≪ w− and change the sign of the random force, then we end up with a value
of the work in the right linear tail of the rate function. In conclusion, changing the sign of the
random force systematically turns a trajectory with w≫ w+ into a trajectory with w≪ w−,
and vice versa.

5. Conclusions

In this paper we have studied the large deviations of the power injected by the random force
of the thermal bath on a Brownian particle under the action of an external harmonic potential
with generic uncorrelated Gaussian initial conditions.

In particular, we have computed analytically the SCGF and the rate function using the
approach recently proposed in [38] for quadratic functionals of stable Gauss–Markov chains.
The SCGF is found to be non-steep at the left boundary, except from the limiting case of con-
centrated initial values, i.e. x(0) = v(0) = 0. It is also non-steep at the right boundary when the
variance of the initial position or initial velocity is large enough. The corresponding rate func-
tion therefore can exhibit no singularity and no linear tail, or one second-order singularity and
one linear tail on the left, or two second-order singularities and two linear tails. Interestingly,
the dependence of the rate function on the elastic constant k is found for large enough initial
variances and lost for concentrated initial values and stationary initial condition, thus confirm-
ing the claim made in [23] for a confined Brownian particle.

In order to understand the physical mechanism originating the singularities, we have ana-
lysed the singular trajectories, i.e. the trajectories that give values of the work either in the left
or in the right tail of the rate function. By resorting to numerical simulations, we have shown
that singular trajectories are characterised by big jumps of order ∼

√
τ in the initial position

and/or the initial velocity. Once the big jumps occur, the random force path determines if the
value of the work falls within the left linear tail or the right linear tail.

A natural extension of this research will be to consider correlations in the initial condition
or coloured thermal noise, such as the Ornstein–Uhlenbeck process [31, 45] or the fractional
Brownian motion [46]. Leaving the field of Gaussian processes, another possible extension
will be to consider an anharmonic potential, which could disrupt the singularities of the rate
function, and continuous-time randomwalks, for which large deviation principles are known in
great generality [47, 48]. On a more practical note, in analogy with experiments on Fluctuation
Relations [49, 50], we argue that our findings could be tested by means of optical trap experi-
ments with µm diameter beads.
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