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Abstract: Excessive and uncontrolled oxidative stress can damage biomacromolecules, such as lip-
ids, proteins, carbohydrates, and DNA, by free radical and oxidant overproduction. In this review, we 
critically discuss the main properties of free radicals, their implications in oxidative stress, and spe-
cific pathological conditions. In clinical medicine, oxidative stress can play a role in several chronic 
noncommunicable diseases, such as diabetes mellitus, cardiovascular, inflammatory, neurodegenera-
tive diseases, and tumours. Antioxidant supplements can theoretically prevent or stop the progression 
of diseases, but a careful literature analysis finds that more evidence is needed to dissect the ultimate 
beneficial effect of antioxidants versus reactive oxygen species in several diseases. 
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1. INTRODUCTION 

 Maintaining human health and increasing the health span 
as well as the quality of life are a matter of concern in mod-
ern societies. Major factors to consider in this respect are the 
accelerated growth of the population, which is estimated to 
top over 9 billion by 2050, the increasing mean age of the 
population that has risen at a rate of about 3 months/year in 
the last two centuries [1], and the increased incidence of 
chronic noncommunicable diseases worldwide. Prevention 
of diseases has, therefore, become a key aspect of health care 
systems worldwide.  

The role of free radicals in health and disease is part of 
this scenario, and research is trying to dissect pathogenic 
mechanisms as well as potentially beneficial strategies. Free 
radicals were discovered more than a century ago, with the 
idea that all oxidation reactions involving organic molecules 
are mediated by free radicals. Free radicals were detected in 
biological systems in the 1950s [2] and thought to play a role 
in human diseases [3]. The mechanisms regulating the pro-
duction of free radicals and their involvement in homeostatic 
processes have also been used to propose the free radical 
theory of aging [4]. The discovery of the superoxide dismu-
tase enzyme (SOD) [5] and other antioxidant enzymes  
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showed that living organisms have protective systems and 
that the deleterious effects of free radicals can be controlled 
by specific antioxidant systems. Free radicals also have a 
beneficial biological action; reactive oxygen species (ROS) 
and reactive nitrogen species (RNS) can operate in concert 
with reactive halogen species to fight against infection pro-
duced by invading microorganisms as part of the cellular 
immune response [6-8]. The signaling functions of ROS and 
RNS are the most recent important biological discovery re-
garding free radicals [8-11]. 

In the 1980s, research has confirmed that the generation 
and elimination of free radicals in living organisms are nor-
mally well balanced, but the imbalance between these two 
processes can occur during several diseases. Sies et al. [12] 
proposed the first definition of oxidative stress as “imbalance 
between oxidants and antioxidants in favour of the oxidants, 
which can potentially cause damage”. The implications of 
the processes linked to free radicals involve all biological 
and medical disciplines and involve replicative inactivation 
of DNA, mutation, atherosclerosis, arthritis, carcinogenesis, 
neurodegenerative diseases, and aging [13, 14]. More re-
cently, antioxidant supplements have been considered a 
panacea for oxidative damage and have been transformed 
into attractive compounds, and natural foods rich in antioxi-
dants have become super functional or nutraceutical foods.  

This review focuses on the main principles related to the 
properties of free radicals, their implications in oxidative 
stress and related pathological conditions. The system of 
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antioxidant defence and the benefits of food supplementation 
with antioxidants in maintaining health will be discussed. 

2. FREE RADICALS 

The ability to use oxygen implies that humans can me-
tabolise fats, proteins, and carbohydrates to produce energy. 
Paradoxically, however, oxygen can contribute to aging and 
illness. Cells using oxygen generate free radicals, generally 
ROS and RNS, which result from the cellular redox process 
[14]. 

Free radicals can be defined as reactive molecular entities 
or fragments containing one or more unpaired electrons in an 
outer atomic or molecular orbital [15]. Free radicals attempt 
to mate with other molecules, atoms, or individual electrons 
to create a stable compound, either donating an electron and 
acting as reducing agents or accepting an electron and acting 
as oxidizing agents from other molecules [15, 16]. Both ROS 
and RNS can be classified into two groups of compounds, 
namely radicals and non-radicals. In particular, radicals in-
clude compounds, such as superoxide (O2

• −), oxygen radical 
(O2

••), hydroxyl (OH•), alkoxy radical (RO•), peroxyl radical 
(ROO•), nitric oxide (nitrogen monoxide) (NO•), and nitro-
gen dioxide (NO2

•) [17]. By contrast, non-radical species 
include hydrogen peroxide (H2O2), hypochlorous acid 
(HOCl), hypobromous acid (HOBr), hypoiodous acid (HOI), 

ozone (O3), singlet oxygen (1O2), nitrous acid (HNO2), nitro-
syl cation (NO+), nitroxyl anion (NO−), dinitrogen trioxide 
(N2O3), dinitrogen tetraoxide (N2O4), nitronium (nitryl) 
cation (NO2

+), organic peroxides (ROOH), aldehydes 
(HCOR), and peroxynitrite (ONOOH) [17, 18]. Reactive 
sulfur species (RSS) and thiol radical (RS) are formed by the 
reaction between ROS and thiols. RSS include radical spe-
cies, such as glutathionyl radical, and non-radicals, such as 
sulfane species. RSS can trigger both oxidation and reduc-
tion reactions [19]. The reactive electrophile species (RES) 
have remarkable biological activity by stimulating gene ex-
pression and acting as molecular signal [15, 20]. Hypohalous 
acids are powerful oxidizing agents, determined by the halo-
gen atom and not by the oxygen atom, with the decreasing 
oxidizing capacity in order HOCl > HOBr > HOI, called 
reactive halogen species (RHS) [21]. RHS react with pro-
teins, lipids, and carbohydrates; high levels of RHS cause 
damage to cells and biomolecules. Non-radical species can 
easily lead to free-radical reactions in living organisms [22]. 

The imbalance between free radical production in the tis-
sues and organs, e.g., ROS, RNS, RES, RSS, RHS, and anti-
oxidant defenses, leads to oxidative stress, cellular damage, 
and dysfunctions (Fig. 1). This process paves the way for  
several pathological conditions [23]. 

Fig. (1). Schematic representation of the role of free radicals/oxidants in determining oxidative stress. The main endogenous sources of free 
radicals/oxidants are mitochondria and peroxisomes and different cytosolic enzyme systems. Additionally, external agents can activate the 
production of free radicals/oxidants. The antioxidant defense system, enzymatic (CAT, SOD, GPx) and non-enzymatic (glutathione, Vita-
mins A, C, E,), counteracts and regulates the levels of free radicals/oxidants to maintain physiological homeostasis. The imbalance between 
oxidant and antioxidative defense in favor of the former in tissue and organs leads to oxidative stress, cellular damage to proteins, lipids, and 
DNA dysfunction. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
Abbreviations: CAT: catalase; SOD: superoxide dismutase; GPx: glutathione peroxidase; Vitamins: A, β-carotene, C, ascorbic acid, E, α-
tocopherol.  
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3. OXIDATIVE STRESS  

This is a condition occurring when oxidative damage re-
sults from an imbalance between the action of ROS/RNS and 
the antioxidative protection systems [24-26]. The concept 
implies the recognition of the homeostatic balance between 
the physiological production of oxidants (oxidizing free-
radicals and related species) and the existence of operative 
antioxidant defenses. The concept of imbalance recognizes 
the homeostatic rupture of the physiological effectiveness of 
the antioxidant defenses in maintaining both oxidative stress 
and cellular damage at the minimum level under physiologi-
cal conditions [27, 28]. In addition, the disruption of the pro-
oxidant/antioxidant balance in favor of oxidants leads to an 
interruption in redox signaling and in control and/or molecu-
lar damage [29]. The oxidant/antioxidant balance is main-
tained dynamically through the regulation of the levels of 
antioxidants in response to oxidative stress. However, the 
concept of oxidative stress is not limited to the detrimental 
effect of free radicals on biomolecules, but is based on the 
identification of the perturbation of the cellular redox state 
[30] as a rupture in redox signaling and control. The action 
of antioxidant systems is, therefore, more complex than sim-
ply blocking the reactive free radicals [31, 32]. Indeed, oxi-
dative stress combines the basic chemical notion of oxida-
tion-reduction, which includes electron transfer, free radi-
cals, and oxygen metabolites, with the biological concept of 
stress (Fig. 2). 

Many years ago, Selye et al. [33] formulated the concept 
of eustress vs. distress. In normal adaptive processes (stress 
responses), the physiological oxidative stress called “oxida-
tive eustress” and the excessive load defined as “oxidative 
distress” may lead to oxidative damage [32, 34]. The altera-

tion in the basal redox tone is considered as initiating the 
stress response, with physiological alterations, defined as 
"oxidative eustress" and supra-physiological alterations, 
leading to oxidative distress [32]. Oxidative eustress repre-
sents the preponderant part of redox control and physiologi-
cal redox signaling [32, 35], and corresponds to redox ho-
meostasis [36]. Therefore, the concept of oxidative stress has 
been modified, incorporating the new knowledge on the role 
of signaling and redox control, considering that reactive spe-
cies are coupled to each other and to cellular signaling net-
works [35, 37] (Fig. 2). However, there may be an imbalance 
of redox homeostasis, usually in favor of oxidants; in this 
case, levels of ROS exceed the physiological levels (up to 
100 nM) and become potentially dangerous [8]. This leads to 
functional disturbances caused by oxidative distress, which 
determines alterations in biomolecules and signalling path-
ways. Then oxidative stress was reconsidered as an imbal-
ance between prooxidants and antioxidants in support of the 
former, which results in the disruption of redox signaling and 
molecular damage [32, 38], resulting in a wide range of dis-
eases (Fig. 3). 

During acute oxidative stress, the adaptation mechanism 
relies on cells that respond to and cope with the increased 
basal level of ROS within a few minutes/hours of the stress 
[34, 39, 40]. Conversely, chronic oxidative stress is a sus-
tained increase in ROS levels with corruption of antioxidant 
systems and ROS regulatory patterns, and potential progres-
sion to pathological conditions [11, 41]. Oxidative stress is 
characterized by the generation of high levels of free radi-
cals/oxidants, disruption of redox signaling, the inability of 
antioxidants to scavenge free radicals, and ineffective repair 
systems.  

 

Fig. (2). Redox signaling in oxidative stress. A rise in ROS levels may constitute a stress signal that activates specific redox-sensitive signal-
ing pathways linked to stress. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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3.1. Biochemistry of Oxidative Stress  

Oxidative stress is associated with several damaged mo-
lecular species, including lipids, proteins, sugars, and nucleic 
acids (Fig. 1) [25, 42, 43]. Free radicals are generated during 
normal metabolic processes or following the effect of differ-
ent environmental factors. Various processes within cells 
lead to the production of free radicals by enzymatic and/or 
non-enzymatic reactions. They can be generated by electron 
leakage during the electron transport chain (ETC), by the 
activity of xanthine oxidase and aldehyde oxidase, in in-
flammatory cells as a result of NADPH oxidase activity, in 
macrophages in the form of nitric oxide (NO•), in platelets 
and leucocytes due to lipoxygenase activity, and in perox-
isomes by the cytochrome P450 system during the metabo-
lism of xenobiotics [23, 44, 45]. They are also generated dur-
ing various stress conditions, inflammation, ischemia, reper-
fusion, and during exercise [46]. 

The intracellular sources of chemical reactive species are 
mainly mitochondria, endoplasmic reticulum, lysosomes, 
peroxisomes, cytosol, and plasma membrane [23, 47]. The 
major endogenous enzymatic sources of O2

•¯ and H2O2 are 
transmembrane NADPH oxidases (NOXs) [48] and the mi-
tochondrial ETC [49]. In the mitochondria, ETC complex I 
and II release O2

•¯/H2O2 towards the mitochondrial matrix. 
The release from complex III takes place towards the lumen 
of the cristae and the intermembrane space; other oxidases 

produce H2O2 in the endoplasmic reticulum and perox-
isomes. The mitochondrial ETC and the reactions catalysed 
by nitric oxide synthase are the main endogenous sources of 
oxidizing species [48, 50]. During energy transduction, a 
small number of electrons leak from the inner membrane to 
form the superoxide radical anions (O2

•−) that can lead to 
other ROS, such as H2O2, hydroxyl radicals (OH•) and hy-
droxyl ions (OH−). RNS are produced when O2•− reacts with 
nitric oxide (NO•) to generate peroxynitrite (ONOO−). Thus, 
other types of nitrogenated species are formed, such as nitro-
gen dioxide (NO2•) and nitrosoperoxycarbonate (ONOO-
COO−). Reactive sulfur species, generated by the reaction 
between ROS and thiols, play an important role in redox 
signaling for peptides and protein reactions [19]. The reac-
tive electrophile species can be produced through O2-
mediated peroxidation and subsequent fragmentation of 
poly-unsaturated fatty acids (PUFAs). RES can be produced 
enzymatically through lipoxygenase-mediated oxygenation; 
non-enzymatically produced RES include 2-propenal (ac-
rolein), malondialdehyde (MDA) and 4-hydroxynonenal (4-
HNE) [20, 51]. Both xenobiotic and endogenous electro-
philes act as signalling molecules [52]. RES stimulate the 
expression of genes by reacting with nucleic acids, proteins 
and small molecules, and indirectly lowering pools of cellu-
lar reductants [20]. 

Hypohalous acids are strong oxidizing agents that react 
with proteins, lipids, and carbohydrates. The accumulation of 

Fig. (3). Representation of free radicals/oxidant and redox signaling in determining oxidative stress. Endogenous and exogenous sources 
produce oxidants. A low level of oxidative stress is used in redox signaling and redox control (eustress), while a high load, called oxidative 
distress, leads to the disruption of redox signaling and oxidative damage to biomolecules, which is involved in multiple pathological proc-
esses. Adaptive responses regulate and contrast. (A higher resolution / colour version of this figure is available in the electronic copy of the 
article). 
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reactive halogen species causes damage to cells and bio-
molecules and has negative implications in the antioxidant 
defense [53, 54]. Halogenating stress is closely associated 
with oxidative, nitrosative, and carbonyl stress, since RHS 
reactions with various compounds and functional groups 
lead to the formation of reactive oxygen and nitrogen species 
and carbonyl compounds [55]. Sources of exogenous oxi-
dants include cigarette smoke, environmental pollution, ion-
izing/solar radiation (UV, visible, infrared-A), and certain 
unhealthy diets [56, 57].  

3.1.1. Biomolecule Damage 

3.1.1.1. Lipid Oxidation 

Polyunsaturated fatty acids (PUFAs) and the double lay-
ers of phospholipids in the cell membranes are the main sites 
of lipid oxidation [58, 59]. PUFAs, in particular, arachidonic 
acid and docosahexaenoic acid (DHA), are likely prone to 
oxidation with the consequent production of MDA and 4-
HNE that are recognized as markers of lipid oxidative decay 
[60, 61]. Products may stick to the proteins and undermine 
their function [62]. Peroxidation of PUFAs determines the 
production of isoprostanes that are products pointing to oxi-
dative stress [63]. The increase in lipid peroxidation affects 
the integrity of the cell membrane, damages the membrane 
proteins and receptors, thereby inactivating the enzymes and 
ion channels [61, 64]. Lipid peroxidation has been implicated 
in the pathogenesis of several diseases. Aldehyde and other 
by-products of lipid peroxidation are involved in physiologi-
cal and pathological conditions of liver, kidney, and brain 
toxicity. Increased levels of products of lipid oxidation occur 
in diabetes, atherosclerosis, and liver disease. Oxidative 
modification of low-density lipoproteins (LDLs) is involved 
in the development of atherosclerosis and cardiovascular 
disease [65]. Oxidized cholesterol or fatty acids in plasma 
LDL can contribute to atherosclerosis [59, 66], Alzheimer’s 
and Parkinson’s diseases [67]. 

3.1.1.2. Protein Oxidation 

Proteins are among the major components of cells and 
are the main targets for free radicals [68], which can cause 
the unfolding or alteration of the protein structure [69]. Re-
versible oxidative changes regulate protein activity, whereas 
irreversible changes in proteins can cause their inactivation 
with consequent lasting harmful effects. ROS oxidize both 
the backbone and the lateral chain of proteins and generate 
carbonyl functions and modification of amino acids. Protein 
modification is initiated by hydroxyl radicals, leading to the 
oxidation of amino acid side chains, protein cross-binding, 
and eventually, protein fragmentation. All amino acids are 
sensitive to oxidation. Cysteines and methionines are readily 
oxidizable; oxidation of lysine, proline, arginine, and 
threonine also yields carbonyl derivative markers [70]. Oxi-
dation of plasma thiol causes oxidation protein damage, 
leading to the final products of advanced glycation [71]. Me-
thionine sulfoxide, 2-oxohistidine and protein peroxides are 
considered biomarkers of oxidative stress of protein. Protein 
oxidation leads to backbone fragmentation, unfolding and 
misfolding, with consequent loss of activity [72]. Increased 
protein carbonylation levels have been observed in various 

pathological conditions, such as neurodegenerative and age-
related diseases [69, 73]. 

3.1.1.3. DNA Oxidation  

Oxidative damage to DNA is the result of DNA interac-
tion with ROS or RNS. Mitochondrial DNA (mtDNA) is 
susceptible to oxidative damage due to the lack of protective 
proteins, such as histones, and limited repair systems [74, 
75]. In addition, mtDNA is more vulnerable than nuclear 
DNA to the effect of ROS because it is close to the ROS 
generation site, and its mutation rate is about ten times 
higher than the nuclear one. The main results of RNA oxida-
tion are the breaking of the nucleotide strand and impairment 
in ribosome function [76]. 

Free radicals react with DNA by adding bases or extract-
ing hydrogen atoms from the sugar fraction. Free radicals 
damage nucleic acids, causing DNA protein crosslinks, fila-
ment breakage and structural alteration in purine and pyri-
dine bases, resulting in DNA mutations [75]. The hydroxyl 
radical oxidizes the guanosine or thymine in 8-hydroxy-2-
deoxyguanosine and thymine glycol, respectively. Among 
the bases of DNA, guanine is the most susceptible to oxida-
tive damage. The main mutagenic lesion is 8-oxoguanine or 
8-hydroxyquinine, which mates with adenine rather than 
cytosine, and thus generates transverse mutations after repli-
cation [77]. Accumulation of 8-oxoguanine is oncogenic and 
can cause mitochondrial dysfunction. 

3.1.1.4. Carbohydrate Oxidation 

Free radicals, such as •OH, react with carbohydrates ab-
stracting a hydrogen atom from one of the carbon atoms, 
producing a carbon-centered radical. Oxidative damage to 
the sugars of the nucleic acids results in the breaking of the 
filament. Free carbohydrates produce oxidants, such as reac-
tive carbonyls [78]. Non-enzymatic glycosylation generates 
glycoxidation products that accumulate in the tissues [79]; 
the end products of advanced glycoxidation (AGE) and re-
ceptor interaction (RAGE) cause glyco-oxidative stress. The 
first mechanism of damage induced by AGE is a conse-
quence of intracellular accumulation induced by hypergly-
cemia and the consequent alteration of cytoplasmic and nu-
clear structures, including proteins involved in the regulation 
of gene transcription [80]. The binding of AGEs to a specific 
receptor (RAGE) on the cell surface promotes ROS produc-
tion and induces transcription factors (NF-kB, MAP kinase), 
which, in turn, stimulate the production of proinflammatory 
cytokines and growth factors [81]. This is one mechanism 
leading to vascular damage [82]. In addition, oxidative and 
glycol-oxidative stress (carbonyl) plays an important role in 
the pathogenesis of diabetic nephropathies, as well as in 
other diabetic complications [83, 84]. 

3.2. Adaptive Stress Responses 

Cells respond to oxidative stress with increased prolifera-
tion, cell division prevention, senescence, or cell death 
mechanisms, such as necrosis and apoptosis. The effects 
vary with the cell type and are influenced by factors, such as 
the presence of some receptors on the cell surface, by the 
mechanisms of signal transduction, and by levels of antioxi-
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dant defense. Intracellular free Ca2+ and levels of iron cata-
lytic increase in response to free radical reactions [51]. Sev-
eral cell types respond to mild oxidative stress by prolifera-
tion, although this step can  lead to tissue fibrosis [85]. 

Free radicals can play either a physiological or patho-
logical role. For example, NOS is formed during vasodilata-
tion (eNOS) or nerve impulses (nNOS). This step, in turn, 
produces low levels of NO, which has physiological action. 
On the contrary, high concentrations of NO (nmol) can dam-
age proteins, lipids, and DNA either directly or after reaction 
with superoxide, which leads to the formation of the highly 
reactive nitroperoxide [51, 86]. Superoxide and/or hydrogen 
peroxide at low concentrations exert a physiological effect 
on cell proliferation and survival by regulating signal trans-
duction [23]. In contrast, at high concentrations, the com-
pounds stimulate signal transduction pathways of apoptosis 
or cellular necrosis. The real challenge is the definition of the 
limit between the negative and positive effects of free radi-
cals, and how it is possible to influence and/or control free 
radicals.  

Stress responses are adaptive mechanisms to overcome 
stress stimuli. Different stress factors or different stress in-
tensities induce different responses. Mild oxidative stress 
increases cell proliferation; moderate oxidative stress modi-
fies cell physiology to increase the level of protective sys-
tems that make the cell more resistant to subsequent attacks 
(hormesis), while hard stress triggers severe cellular injury, 
cellular senescence and/or cell death [87, 88]. Responses to 
mild and/or moderate stress can be obtained by different 
systems, including regulation of apoptosis induction [89], 
repair of damage, and synthesis of protective molecules [87, 
90]. Apoptosis can be overcome by activating the anti-
apoptotic genes and proteins, such as FLICE inhibiting pro-
teins (FLIP), members of the B-cell lymphoma-2 family 
(BCL2), inhibitors of apoptosis proteins (IAP), and ROS 
scavenging molecules [87, 88]. 

Cells may adapt to stress by up-regulating defense and/or 
repair systems. When the body's defense protection fails, 
repair systems recognize damaged molecules and disrupt 
them by means of proteinases, lipases, or DNA repair sys-
tems at the level of modified DNA bases [91, 92]. The re-
moval of damaged macromolecules can be achieved by the 
ubiquitin-proteasome (UPP) pathway and autophagy. UPP 
plays an important role in the degradation of soluble pro-
teins, mainly in the cytosol [93]. High oxidative stress condi-
tion inactivates the proteasome and inhibits ubiquitination, 
resulting in the accumulation of oxidatively damaged pro-
teins [93]. Autophagy degrades large cell loads that are first 
enclosed in double-membrane vesicles delivered to the 
lysosomes for degradation [94]. Chaperone-mediated auto-
phagy targets and carries some proteins directly through 
lysosomal membranes through a specific receptor [95]. 

Cellular repair is mediated through several pathways, in-
cluding gene expression models [96], DNA repair systems 
[92], and induction of molecular chaperones [97]. During 
stress, alterations in transcription are frequently mediated by 
microribonucleic acids (miRNAs); heat shock factors are 
considered transcriptional regulators of genes coding for 
stress proteins, such as molecular chaperones, heat shock 
proteins, and other stress proteins [98, 99]. 

The essential detoxification system for breaking down 
ROS and maintaining the cellular redox state and homeosta-
sis relies on endogenous antioxidants. These include the 
catalase family of enzymes, the glutathione group, thiore-
doxin and superoxide dismutase, together with exogenous 
antioxidants, such as carotenoids, micronutrients and vita-
mins [100-102].  

3.3. Redox Regulation 

Redox regulation contributes to the regulation of cellular 
processes. In multicellular organisms, protection against 
ROS, nitric oxide, heavy metals, RSS, RES and RHS is pri-
marily mediated by the redox-sensitive signaling pathway. 
Recent data on ROS [35], RNS [103], RSS [104], RES [105] 
and RHS [106] indicate the evolution and complexity of 
multiple free radical interactions in redox control and bal-
ance processes [107]. ROS and RNS act as signalling mole-
cules by reversible redox alterations in enzymes that control 
cellular processes, such as S-nitrosation of caspase-3, which 
controls apoptosis or kappa β nuclear factor activation (NF-
kB) [108, 109]. Other pathways include mitogen-activated 
protein kinases and tyrosine kinases, and transcription fac-
tors [110, 111]. Particularly, transcription factors, such as 
activator protein-1 (AP-1), NF-KB, and/or NF-E2-related 
factor (NRF2), participate in redox-modulated cell signaling 
[112].  

The Keap1-Nrf2 [Kelch-like ECH-associated protein 1-
nuclear factor (erythroid-derived 2)-like 2] molecular regula-
tory mechanism plays a central role in protecting cells 
against oxidative and xenobiotic stresses [113, 114]. Nrf2 
operates as the main transcription factor that controls the 
basal and inducible expression of an array of antioxidant and 
detoxification enzymes [115]. It regulates the transcription of 
more than 200 eukaryotic genes involved in cellular protec-
tion against oxidative stress, detoxification of electrophiles, 
and proteasomal activity [116]. When oxidative stress oc-
curs, cellular activity leads to the activation or silencing of 
genes that encode defensive enzymes, transcription factors 
and structural proteins [117]. The analysis of microarray 
gene expression on a genomic scale [118] enables the 
evaluation of ROS-responsive genes expressed during oxida-
tive stress. 

Both O2
- and H2O2 are important signaling molecules. 

H2O2 peroxide has emerged as the main metabolite operative 
in sensing, signaling and redox regulation and as a key me-
tabolite in oxidative stress [8, 119, 120]. H2O2 is recognized 
as the major ROS in the redox regulation of biological activi-
ties [9, 121]. H2O2 modulates the activity of transcription 
factors in mammalian cells (AP-1, NRF2, CREB, HSF1, 
HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) [119]. 
Physiological concentrations of H2O2 (1–100 nM) are con-
sidered as the conditions corresponding to physiological oxi-
dative stress (eustress) [32]. As a messenger molecule, H2O2 
diffuses through cells and tissues to initiate immediate cellu-
lar effects, such as cell shape changes, initiation of prolifera-
tion and differentiation and recruitment of immune cells; its 
action may occur by direct oxidation of the target or indi-
rectly by involving peroxiredoxins, a class of peroxidases 
that reduce hydrogen peroxide and lipid hydroperoxides 
[122]. Higher concentrations of H2O2 in blood plasma lead to 
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adaptive stress responses through master switches, such as 
nuclear factor erythroid 2-related factor-2/Kelch-like ECH-
associated protein1 (Nrf2/ Keap1) or NF-κB. Supraphysi-
ological concentrations of H2O2 (>100 nM) correspond to 
pathophysiological conditions (distress), leading to bio-
molecular damage and cellular dysfunctions [32]. 

3.4. Biomarkers of Oxidative Stress 

Identification of oxidative stress biomarkers plays a piv-
otal role in clinical diagnostics. Biomarker can be defined as 
“any substance, structure or process that may suffer or pre-
dict the incidence of outcomes or diseases and be measured 
in the body or its products” [123]. Blood and urine are usu-
ally used to detect oxidative stress and, in particular condi-
tions, also cerebrospinal fluid and other tissues [124, 125]. 
Potential markers for clinical and diagnostic purposes exist 
[124], and classification of oxidative stress biomarkers has 
been recently proposed [126]. Redox biomarkers can point to 
lipid peroxidation [127] and oxidation of DNA [128], and 
are detectable in obesity [129], diabetes [130], cardiovascu-
lar diseases [131] or inflammation [132].  

The state of oxidative stress can be assessed in different 
ways: by analyzing free radicals, damaged/oxidized bio-
molecules, or antioxidants. Direct measurements of reactive 
species/free radicals, such as O2

• −, H2O2, and NO•, are hard 
to quantify because they are highly reactive and have a short 
half-life. Samples must be prepared and analyzed quickly, 
and this is not always possible in clinical practice.  

The different measurement methods include electronic 
spin resonance (ESR) or electron paramagnetic resonance 
(EPR) [133], fluorescence magnetic resonance and mass 
spectrometry techniques [134], magnetic resonance imaging 
(MRI) [135], or positron emission tomography [136] and 
immunospin trapping [137]. Flow cytometry is the widely 
used method, and many fluorescent probes have been devel-
oped for the detection of reactive species with different 
specificity and sensitivity [138]. EPR is a suitable method 
for measuring ROS, RNS, and their secondary products 
[139, 140]. EPR spectroscopy permits the direct detection of 
free radicals at concentrations of up to 1 μM and can detect 
ROS directly in vivo [139]. The concurrent employment of 
different techniques, e.g., EPR, high-performance liquid 
chromatography (HPLC), fluorescence, and liquid chroma-
tography tandem mass spectrometry (LC-MS/MS), may be 
the best way to quantify ROS and RNS in biological sys-
tems, because these techniques provide useful information to 
identify the species formed by detecting the specific adducts 
and final products [141-143]. 

In addition, the thiobarbituric acid (TBARs) method is 
widely used to measure lipid peroxides by measurement of 
MDA concentration [144]. For the measurement of MDA 
and 4-HNE, immunohistochemical and ELISA methods 
could also be used [145]. Isoprostanes are regarded as the 
most reliable markers of oxidative stress in humans [63]. 
These compounds are specific and relatively stable products 
of lipid oxidation and provide information regarding the oxi-
dative status of an individual; they are found in body fluids, 
such as blood and urine at detectable levels, and so can be 
measured without the need for invasive procedures [63]. For 
the measurement of F2-isoprostanes, gas/liquid chromatog-

raphy combined with mass spectroscopy techniques (HPLC/ 
GC-MS) is recommended [63], while commercial immuno-
assays are less suitable [146]. Oxidation of thiol groups takes 
into consideration the oxidative damage of proteins, together 
with the carbonylation that leads to advanced glycation end 
products. The measurement of additional carbonyl groups in 
proteins formed because of their oxidation induced by ROS 
was measured quantitatively with 2,4-dinitrophenyl-
hydrazine [147]. Given the wide range of pathways involv-
ing ROS, some authors measure the redox state of thiols in 
ROS targets [148]. ROS oxidise specific protein residues of 
cysteine into sulfenic acid in a reversible manner; this mole-
cule acts as an oxidative stress/nitrosative stress sensor 
within enzymes and transcriptional regulatory factors and 
may enable priming of the paths of the versatile ROS action 
[149]. Markers of damage to nucleic acids are represented by 
derivatives of modified guanidine, of which 8-
hydroxyguanine is the most commonly used [150]. Kits for 
measuring enzymatic antioxidant activity, such as that of 
superoxide dismutase, catalase, or glutathione peroxidase, 
are available on the market. One method simultaneously 
evaluates glutathione levels, hydrogen peroxide and superox-
ide in a single cell, together with alterations in cell viability, 
thus allowing both the oxidant-antioxidant balance and cell 
death to be defined, following the administration of a spe-
cific stimulus [151]. In some cases, levels of low-molecular-
weight antioxidant substances, such as ascorbic acid [152], 
tocopherol [153], uric acid [154], carotenoids and anthocyan-
ins, are measured and used as markers of oxidative stress 
[155]. The measurement of antioxidant capacity comprises 
different assays known as total antioxidant capacity, total 
antioxidant state, biological antioxidant potential, oxygen 
radical absorbance capacity, or ferric reducing antioxidant 
potential. Many studies have applied these capacity tests but 
none of them are universal and they have been the subject of 
some controversy in the literature [156]. They only consider 
the quenching potential of the sample itself with respect to 
an artificial radical source used for the specific assay. Most 
of the antioxidant activity in plasma originates from uric 
acid; thus, a high concentration of uric acid may lead to an 
incorrect interpretation of test results [157]. 

The redox state can be measured through the variations in 
the response of the defense systems to oxidative stress by 
evaluating the protein residues of the cysteine, the pool of 
antioxidants, the enzymes that generate ROS and the tran-
scription factors that regulate them [158-160]. However, the 
techniques and methods used have shown limitations; there-
fore, a redox state index has been proposed, i.e., a global 
index of oxidative stress, based on a coordinated evaluation 
of pro-oxidant and antioxidant biomarkers [161-163]. 

4. IMPLICATIONS OF OXIDATIVE STRESS IN DIS-
EASES 

The imbalance between free radicals/oxidants and anti-
oxidant defenses leads to oxidative stress, cellular damage, 
and tissue injury (Fig. 4). Excessive oxidative stress, acting 
either as a cause or consequence, is likely correlated with 
over 200 clinical disorders. The mechanisms involve an im-
balance between antioxidant and pro-oxidant factors. In the 
following paragraphs, we describe the potential implications 
of oxidative stress in a series of chronic diseases, such as 
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diabetes, cardiovascular diseases, neurodegenerative dis-
eases, and other inflammatory and immune disorders. 

4.1. Diabetes Mellitus 

The term diabetes mellitus encompasses three main etio-
logical entities. Type 2 diabetes (T2DM) accounts for over 
90% of cases in Europe, the United States, and Canada 
(ranging from insulin resistance with relative insulin defi-
ciency to a predominantly secretory defect with insulin resis-
tance), while type 1 diabetes (T1DM) accounts for 5-10% of 
cases (consisting of pancreatic beta-cell destruction, a condi-
tion leading to absolute insulin deficiency). The third form of 
diabetes is due to other causes [164]. The global prevalence 
of T1DM is 5.9 per 10,000 people, while the incidence has 
increased over the last 50 years, currently estimated to be 15 
per 100,000 people per year [165]. 

Genetic defects can play a role, but monogenic causes of 
T2DM are only a small number of cases. Indeed, most cases 
due to genetic risk originate from the interaction of complex 
polygenic risk factors. The gut microbiota appears to play a 
pathogenic role in contributing to the development of T1DM 
mainly through modulation of the immune system [166] and 
to T2DM because of the critical role played in the mainte-
nance of metabolic homeostasis [167-170]. 

According to the current diagnostic criteria [171], it is 
necessary to differentiate between diabetes mellitus and pre-
diabetes mellitus, which consists of impaired fasting gly-
caemia (IFG) and impaired glucose tolerance (IGT) [172]. In 
particular, the diagnosis of diabetes mellitus requires the 
assessment of fasting plasma glucose (FPG) with levels ≥126 
mg/dL or haemoglobin A1c (HbA1c) ≥6.5% and, if still in 
doubt, oral glucose tolerance test (OGTT) needs to be con-
ducted with a 2 h plasma glucose ≥200 mg/dL or the pres-
ence of symptoms plus a random plasma glucose (RPG) 

≥200 mg/dL. The diagnosis of pre-diabetes mellitus by IGT 
requires an FPG <126 mg/dL and a 2 h plasma glucose ≥140 
to 199 mg/dL. The diagnosis by IFG is based on FPG of 
100-125 mg/dL and a 2 h plasma glucose <140 mg/dL. 

Diabetes mellitus is associated with oxidative stress [173, 

174]. The increased production of free radicals caused by 
hyperglycaemia occurs through increased glycolysis, activa-
tion of the sorbitol pathway, autoxidation of glucose, and 
protein glycation [175]. Insulin preserves glucose homeosta-
sis by regulating the metabolism of sugars, proteins, and 
lipids. Insulin resistance has a significant influence on liver, 
skeletal muscle, and adipose tissue activity [176]. Oxidative 
stress is associated with reduced glucose uptake in muscle 
and fat cells and reduces insulin secretion in pancreatic beta 
cells [177, 178]. Hyperglycemia increases the production of 
ROS in cells, confirmed by high levels of MDA. Oxidative 
stress induced by hyperglycemia inhibits insulin secretion in 
pancreatic beta cells through the activation of a protein de-
coupling-2 (UCP-2), which reduces the ATP/ADP ratio by 
the release of protons into the cell [84]. Mitochondrial oxida-
tive stress is associated with insulin resistance, T2DM and its 
complications [179, 180]. A positive association exists be-
tween the urinary concentration of an oxidative stress 
marker, the 8-epi-prostaglandin F2α (8-epi-PGF2α), insulin 
resistance [181] and reduced tolerance to glucose [182].  

With oxidative stress, the overproduction of free radicals 
induces several signaling cascades leading to the transcrip-
tion of stress-related genes. This latter step promotes the 
onset of diabetic complications [183]. Epigenetic factors 
regulate the translation of genes that generate ROS or proin-
flammatory genes in the context of hyperglycemia [184], 
also related to the concept of hyperglycemic memory, ac-
cording to which the complications caused by hyperglycemic 
stress persist even after the normalization of glucose levels 
[185]. The micro-RNA (miRNA) involved in the post-

 

Fig. (4). Schematic representation of oxidative stress damage promoting diseases. (A higher resolution / colour version of this figure is avail-
able in the electronic copy of the article). 
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transcriptional regulation of gene expression can serve as 
potential biomarker of T2DM [186].  

Diabetes is considered the major risk factor for cardio-
vascular diseases (CVD), and involves both macro- and mi-
crovascular diseases. The ongoing endothelial dysfunction in 
T2DM is also associated with blood hypertension [187, 188 ] 
(Fig. 5). Hyperglycaemia and insulin resistance play a cru-
cial role in initiating vascular complications through oxida-
tive stress, activation of the AGE-RAGE axis and inflamma-
tion [189]. Macrovascular disease or CVD is an inflamma-
tory process that leads to myocardial infarction, stroke, and 
lesions of the peripheral vessel.  

Diabetic complications involve different mechanisms 
[84, 190], such as an increase in the flow of glucose and 
other sugars via the polyol pathway, an increase in the for-
mation of end products of AGE via the hexosamine pathway, 
the expression of their receptor RAGE [191], and activation 
of the protein kinase C (PKC) pathway through diacylglyc-
erol (DAG). These mechanisms increase the production of 
glycative, glycoxidative and carbonyl free radicals [84, 192, 
193]. Hyperglycemia can lead to the reaction of peroxidation 
in lipids and proteins and an increase in genotoxicity and 
apoptosis, thus having a significant impact on the mecha-
nisms of DNA repair [194]. Oxidative damage to mitochon-
drial DNA leads to the death of axon cells, provoking neu-
ropathies [195]. AGEs inhibit axonal regeneration [196]. 
Increased DNA damage and stimulation of the PKC path-
way, and NF-κB and TGF-β increase extracellular matrix 
deposition [197] involved in neuropathy. High AGEs may 
result in diabetic retinopathy [198]; vision is impaired by the 
progressive accumulation of AGE in the crystalline and ret-
ina, which causes the death of retinal cells [198]. 

Diabetes mellitus (type 1 and 2) leads to macro- and mi-
cro-vascular complications [199], while in T2DM, oxidant 
stress promotes prothrombotic reactions, leading to cardio-
vascular complications [200]. In addition to hypertension 
[201], diabetes can cause distinct pathological alterations in 
the myocardium, referred to as diabetic cardiomyopathy, 
regardless of its effect on blood pressure and coronary athe-
rosclerosis [202]. 

4.2. Cardiovascular Disease 

According to the World Health Organisation (WHO), 
CVD is the leading cause of death worldwide. CVD is a 
complex of heterogenous pathophysiologic conditions di-
rectly or indirectly associated with increased oxidative stress 
[203]. Atherosclerosis is the leading cause of CVD, with 
high rates of mortality and morbidity worldwide due to 
coronary, carotid artery disease, renal artery stenosis, and 
peripheral artery disease [204]. The biomarker of oxidative 
degeneration in obesity and related metabolic syndrome is a 
low-density protein (ox-LDL) that, within the vascular endo-
thelium, leads to the expression of the chemotactic protein-1 
of monocytes, which promotes vascular endothelial dysfunc-
tion and increases thrombogenicity and thus represents the 
central step in the development of atherosclerosis. Ox-LDL 
is atherogenic and causes the formation of atherosclerosis 
plaques. In addition, ox-LDL is cytotoxic and may cause 
direct damage and apoptosis to endothelial cells [205].  

The dysmetabolism that occurs in obesity and related 
disorders, such as prediabetic, diabetes, and metabolic (dys-
functional)-associated fatty liver diseases (MAFLD), in-
cludes increased concentrations of circulating free fatty ac-
ids, which activate the PKC directly and indirectly by induc-

 

Fig. (5). The role of oxidative stress in diabetes, hypertension, and cardiovascular diseases. (A higher resolution / colour version of this fig-
ure is available in the electronic copy of the article). 
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ing de novo synthesis of DAG in endothelial cells [206]. 
PKC contributes to the onset of cardiac fibrosis through the 
upregulation of TGF-β expression and connective tissue 
growth factor [207]. Moreover, PKC increases vascular per-
meability by increasing the expression of vascular endothe-
lial growth factor (VEGF) [208].  

In the vascular endothelium, different enzymes are in-
volved in the production of free radicals and reactive species, 
including NADPH oxidase, mitochondrial enzymes, xan-
thine oxidase, myeloperoxidases, lipoxygenases, and endo-
thelial nitric oxide synthase (eNOS) [209]. Those enzymes 
are stimulated by different risk factors, such as hyperglyce-
mia, diabetes, hypertension, and smoking, resulting in the 
overproduction of ROS. 

Diabetes also affects the heart muscle, causing heart fail-
ure, both systolic and diastolic. The mechanisms underlying 
heart disease are complex and may include impaired calcium 
homeostasis, lipid accumulation, increased fatty acid oxida-
tion, abnormal autophagy, increased fibrosis and rigidity, 
increased NADPH oxidase activity, mitochondrial dysfunc-
tion and DNA repair malfunction [210, 211].  

4.3. Carcinogenesis  

Free radicals play an essential role in carcinogenesis. 
Oxidative stress may cause unregulated cell growth and car-
cinogenesis [212]. Oxidative stress is involved in three dif-
ferent stages of cancer development, namely beginning, pro-
gression and promotion [213]. In the initial phase, ROS 
cause a mutation that continues to accumulate if the DNA is 
not repaired [214]. Cancer cells are more prone than normal 
cells to mitochondrial dysfunction due to their higher meta-
bolic rate [215]. Tumour cells exhibit high levels of oxida-
tive stress due to the activation of oncogenes and loss of tu-
mour suppressors [216]. By altering growth signals and gene 
expression, free radicals cause the continuous proliferation 
of cancerous cells [56]. Cancer cells alter metabolic proc-
esses and stimulate increased ROS production [217]. ROS 
can also alter the expression of oncogenes or tumour sup-
pressor genes by epigenetic modifications, such as methyla-
tion or acetylation [218]. The tumours show several charac-
teristics, including sustained proliferation, resistance to 
apoptosis, angiogenesis, invasion and metastasis, and in-
flammation that promotes the tumour [219]. Oxidative stress 
activates cell signalling pathways and increases blood supply 
to cancer cells and promotes their metastasis [220]. The high 
level of ROS plays a significant role in the expansion of can-
cer cells by altering the genes associated with apoptosis, cell 
proliferation, and transcription factors [43]. ROS sub-
regulate pro-apoptotic proteins by interfering with the signal-
ling pathway of phosphoinositide 3-kinase PI3K/Akt and 
ERK cells and over-regulate anti-apoptotic genes [221, 222]. 
During the progression of cancer, ROS disturb cellular proc-
esses and upregulate the production of metalloproteinases, 
preventing the process of angiogenesis by means of anti-
proteases and provoking the metastasis of tumor cells [214, 

217, 223]. High levels of oxidative stress markers and a sig-
nificant decrease in total antioxidant capacity have been ob-
served in patients with breast, lung, prostate and colorectal 
cancer [224-226]. 

 

4.4. Inflammatory Diseases 

Oxidative stress and inflammation are closely interrelated 
since oxidative stress can cause inflammation which, in turn, 
can induce oxidative stress [227, 228]. Both oxidative stress 
and inflammation cause injury to cells. Inflammation is usu-
ally considered as a protective complex reaction in response 
to exogenous and endogenous stimuli. Generation of O2•−, 
HOCl, and H2O2 by phagocytes is important for defense 
against various bacterial and fungal strains [229]. There are 
two stages of inflammation, acute and chronic inflammation. 
Acute inflammation is an early stage of inflammation (innate 
immunity), mediated by the activation of the immune sys-
tem; it persists only for a short time and is usually beneficial 
to the host. If the inflammation lasts for a longer period, 
chronic inflammation occurs, which may predispose the host 
to various chronic diseases [230]. 

At the site of the stimulus, there is the infiltration of in-
flammatory cells, such as neutrophils, monocytes, and lym-
phocytes, which release numerous enzymes (neutral prote-
ase, elastase, collagenase, acid hydrolase, phosphatase, and 
lipase), reactive species (O2•−, OH•, H2O2, HOCl, ONOO, 
and NO), and chemical mediators (eicosanoids, complement 
components, cytokines, chemokines, and nitric oxide), which 
induce tissue damage and oxidative stress [230]. ROS/RNS 
trigger intracellular signalling cascade that stimulates proin-
flammatory gene expression [231]. The expression of nu-
merous genes involved in inflammation is controlled by NF-
κB, such as cycloxygenase-2 (COX-2), vascular endothelial 
growth factor (VEGF), pro-inflammatory cytokines (IL-1, 
IL-2, IL-6 and TNFα), chemokines (IL-8, MIP-1α and MCP-
1), adhesion molecules, growth factors, immunoreceptors, 
and other factors involved in the proliferation and invasion 
process [232]. A prolonged and/or uncontrolled inflamma-
tory process can lead to tissue damage and cause many dis-
eases [230]. 

4.4.1. Rheumatoid Arthritis 

Rheumatoid arthritis is a chronic multisystemic disease 
characterised by synovial inflammation, swollen joints, 
morning stiffness, destruction of articular tissue, joint de-
formity, loss of appetite and weakness [233-235]. Oxidative 
stress must play a role in the pathogenesis of rheumatoid 
arthritis since both ROS and RNS can damage the cartilage. 
Oxygen metabolism and increased ROS production have an 
important role in the pathogenesis of rheumatoid arthritis 
[236, 237]. Macrophages and T cells trigger synovitis [238], 
activating ROS production by tumor necrosis factor-α (TNF-
α) and interleukin (IL-1) [239]. ROS can provoke the death 
of chondrocytes and promote joint damage [240]. Synovial 
fluid exhibits a high level of lipid peroxidation, and serum 
MDA is positively associated with proinflammatory cytoki-
nes [241]. Tissue damage caused by inflammation triggers 
the production of NO• by the articular chondrocytes and 
synovial fibroblasts [237]. High levels of NO•, MDA, protein 
carbonyls, oxidised hyaluronic acid and oxidised LDL have 
been reported in patients with rheumatoid arthritis [242-244]. 
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4.4.2. Inflammatory Bowel Disease 

Intestinal inflammation associated with oxidative stress 
plays an important role in various gastrointestinal diseases, 
such as inflammatory bowel diseases [245, 246], attributed to 
the excessive formation of ROS [247]. Inflammatory bowel 
diseases, namely Crohn’s disease and ulcerative colitis, are 
characterised by chronic inflammation and swelling associ-
ated with oxidative stress in the gastrointestinal tract [246]. 
Food particles, pathogens, or microbiota imbalance may irri-
tate the gastrointestinal tract causing increased production of 
ROS, the decay of endogenous antioxidant defense [248], 
and oxidative stress, which destroys the intestinal epithelial 
barrier and permeability and exacerbates inflammation [246, 
249]. The release of cytotoxic reactive oxygen metabolites 
by over-stimulating phagocytes has been observed in the 
inflamed intestinal mucosa [250] as well as other sources of 
ROS, including enzymes, such as cyclooxygenase, xanthine 
oxidase, and 5-lipoxygenase [251]. 

4.4.3. Diseases of the Immune System 

Inflammation and activation of the immune system play 
an important role in the pathogenesis of kidney disease. 
Acute renal damage (AKI) is commonly linked to bacterial 
infections, sepsis or ischemia-reperfusion damage (I/R) that 
can lead to chronic renal disease [252]. Chronic kidney dis-
ease (CKD) is often associated with diabetes, hypertension, 
obesity, and autoimmunity. AKI can lead to CKD, and the 
two conditions are inextricably interconnected [253]; if not 
controlled, both can lead to end-stage renal disease. Several 
factors are involved in kidney disease, including the com-
plement system, toll-like receptors (TLRs), dendritic cells, 
macrophages, natural killer cells (Nks), and inflammatory 
cytokines. The mechanisms involved in the progression of 
CKD involve a complex interaction between hemodynamic, 
immunological, metabolic and inflammatory events [254]. 
Changed complement regulation is implicated in the devel-
opment of chronic kidney disease [255]. Activation of TLRs 
triggers a number of intracellular pathways, such as the N-
terminal c-Jun kinases (JNK), the mitogen-activated protein 
kinase (MAPK) and NF-kB, which culminate with the secre-
tion of proinflammatory cytokines and chemokines [256]. 
TLRs are directly related to the severity of kidney disease 
and inflammatory markers [257, 258], and thus to CKD. 
Both AKI and CKD, including autoimmune glomeru-
lonephritis, are linked to an increase in the number of 
macrophages in the kidney [259]. Macrophages act as impor-
tant mediators of inflammation and immune modulation, and 
are prevalent in the kidneys of patients with chronic renal 
disease [260]. Activated macrophages release inflammatory 
cytokines, promote oxidative stress, and lead to the devel-
opment of renal fibrosis [261]. Once this process is acti-
vated, it becomes progressive, leading to end-stage renal 
disease. Injury and inflammation are mediated by the release 
of inflammatory cytokines derived from macrophages, such 
as interleukin (IL-1, IL-6, IL-23), and the generation of 
ROS/RNS implicated in impaired renal function [262]. Many 
cytokines increase the activation of NF-κB, the transcription 
factor that further promotes the proinflammatory phenotype 
[263]. In fact, the expression and/or activation of NF-kB 
increase in the kidneys of patients with glomerulonephritis 

[264], diabetic nephropathy [265], and acute kidney injury 
[266].  

4.5. Disorders in the Respiratory System 

The correlation between chronic inflammation and oxida-
tive stress is implicated in disorders of the respiratory sys-
tem, such as asthma and allergic rhinitis [267-269]. The in-
creased presence of superoxide radical anions, hydroxyl 
radicals, and peroxides may promote several alterations in 
nasal and airway mucosa [269]. The involvement of oxida-
tive stress in allergic rhinitis is believed to be identical to 
that expressed in asthma [270]. Asthma is the most common 
disorder of the respiratory system [271]. High levels of oxi-
dative stress markers, such as hydrogen peroxide, 8-
isoprostane, nitric oxide, and carbon monoxide, have been 
reported in the exhaled air of asthmatic patients [272]. In 
allergic rhinitis, many inflammatory cells, such as mast cells, 
CD4-positive T cells, B cells, macrophages, and eosinophils, 
penetrate the nasal mucosa exposed to the allergen [269]. 
Respiratory diseases, such as asthma and chronic obstructive 
pulmonary disease (COPD), are common conditions respon-
sible for many deaths throughout the world [271, 273]. Oxi-
dants, such as atmospheric pollutants and cigarette smoke, 
contribute to increasing oxidative stress, directly damaging 
the alveoli and connective tissues of the lungs, thus exacer-
bating the development of COPD [274]. Overproduction of 
ROS can activate inflammatory cells, which in turn generate 
more ROS in the lungs, triggering a vicious cycle of chronic 
inflammation and oxidative stress, as observed in COPD 
[274]. 

4.6. Neurodegenerative Diseases 

In neurodegenerative disorders, various pathological 
mechanisms are due to oxidative stress, including alterations 
in antioxidant systems, cytotoxicity, mitochondrial dysfunc-
tion, deregulation of redox balance and alterations in redox 
trace metals, neuroinflammation, dysfunction in protein me-
tabolism and proteasome, and formation of advanced glyca-
tion end products [275]. The central nervous system is a very 
active organ; it requires about 20% of the total energy con-
sumption of the body [276], thus containing a high amount 
of mitochondria, particularly active, resulting in a high 
amount of ROS [277]. The demand for energy is remarkably 
high in neurons to maintain axonal transport and neuronal 
conduction, as well as in oligodendrocytes to maintain mye-
lination; therefore, mitochondrial dysfunction has been asso-
ciated with axonal degeneration and impairment of viability 
of oligodendrocytes [277, 278]. The central nervous system 
is particularly susceptible to oxidative damage due to the 
presence of high lipid content, high consumption of oxygen, 
and low levels of antioxidant enzymes, such as SOD, mainly 
localized in neurons, and glutathione (GSH) in astrocytes 
[279]. Brain regions, such as the hippocampus, substantia 
nigra, and striatum are particularly susceptible to attack by 
free radicals [280, 281]. Lipid peroxidation by ROS leads to 
the progressive loss of membrane fluidity, decreases mem-
brane potential, and increases permeability to ions, such as 
Ca2+. The exhaustion of membrane phospholipids, deriving 
from lipid peroxidation, has been considered the main cause 
of neurodegenerative diseases [282, 283]. The interaction 
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between oxidative stress and neuroinflammation leads to 
amyloid-β (Aβ) generation [284]. The β-amyloids reinforce 
the ability to start lipid peroxidation. Lipid peroxidation can 
induce neuronal death through multiple mechanisms, such as 
impairment of ion pump functioning (both Na+/K+- ATPase 
and Ca+2-ATPase) and glucose and glutamate transporters 
[285]. Inflammation and immune system alterations have 
been linked to neurodegenerative disorders [286]. The proin-
flammatory cytokines and other inflammatory mediators, 
such as prostaglandins and complement factors, favour the 
recruitment of peripheral immune cells, promoting neuroin-
flammation. Alzheimer’s and Parkinson’s diseases are con-
sidered the most common neurodegenerative disorders. 

4.6.1. Alzheimer’s Disease 

Alzheimer’s disease is the most frequent cause of demen-
tia in the elderly [26, 287] and is caused by the interaction 
between genetic profile and environmental factors. Oxidative 
stress is one of the most important factors in the pathogene-
sis of Alzheimer’s disease. Mild cognitive impairment, 
which has been proposed as an intermediate state between 
normal aging and dementia, indicates that oxidative stress 
damage in Alzheimer’s disease may occur before the onset 
of the disease and contribute to the development of Alz-
heimer’s disease [288]. Microglia can hyperactivate and pro-
duce high amounts of ROS/RNS, leading to neuroinflamma-
tion and cell death [289].  

Neurobiological mechanisms involved in the pathogene-
sis of Alzheimer’s disease are complex (Fig. 6). According 
to the common hypothesis, amyloid-β aggregation is the 

main factor underlying Alzheimer’s disease, and is associ-
ated with oxidative stress [290]. Alzheimer’s disease is char-
acterized by selective neuronal death and two pathological 
signs, that is, senile plaques formed by extracellular deposits 
of amyloid-β peptides (Aβ) and neurofibrillar tangles (NFTs) 
composed of intracellular aggregations of hyperphosphory-
lated tau protein [291]. The Aβ peptides are generated after 
the enzymatic cleavage of the amyloid precursor protein by 
three enzymes, ɣ-secretase, β-secretase and α-secretase 
[292]. β-amyloid plaques cause cytotoxicity and are the cen-
tral actors involved in the pathogenesis of Alzheimer’s dis-
ease [293]. The oligomers Aβ induce oxidative stress 
through the peroxidation of proteins and lipids, making them 
unstable and dysfunctional, thereby leading to the progres-
sion of Alzheimer’s disease [294].  

NFTs consist of arrays of coupled helical filament struc-
tures, which mainly contain auto-aggregated hyperphos-
phorylated tau, a multifunctional protein involved in the as-
sembly and stabilization of microtubules [295]. Hyperphos-
phorylation of tau proteins causes the helical and straight 
filaments to form neurofibrillary tangles. Oxidative stress 
plays a role in the hyperphosphorylation and polymerization 
of tau by the oxidation of fatty acids [296]. The role played 
by Aβ-oligomers in inducing hyper-phosphorylation of the 
tau protein through activation of glycogen synthase kinase-3 
beta (GSK-3β) has been identified as a link between Aβ-
plaques and tau pathologies in the progression of Alz-
heimer’s disease [297]. Abnormal hyperphosphorylation of 
tau destabilizes microtubules by breaking the axonal trans-
port process and depriving neurons of trophic factors neces-
sary for their survival, thus causing neurodegeneration and 

Fig. (6). Neurobiological mechanisms involved in the onset and development of Alzheimer’s disease. (A higher resolution / colour version of 
this figure is available in the electronic copy of the article). 
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neuronal death [298]. The hyperphosphorylation of the tau 
protein causes its dissociation from microtubules, promoting 
the union of the hyperphosphorylated tau wires. Many tau 
phosphorylated wires join together to generate NFTs that can 
block synaptic junctions, thus causing the interruption of 
axonal transport and the death of neuronal cells. 

Vascular dysfunctions and mitochondrial and metabolic 
dysfunctions contribute to Alzheimer’s disease [284, 288]. 
Mitochondrial dysfunction plays a crucial role in the patho-
genesis of Alzheimer’s disease. Aggregation of amyloid β 
proteins and increased influx of calcium ions cause a rapid 
increase in ROS/RNS that trigger oxidation processes of 
DNA, proteins and lipids, and the loss of membrane integrity 
and cell death, which are distinctive features of neuronal 
degradation and Alzheimer’s disease development [299]. 
The convergence of Aβ and tau pathologies in mitochondria 
dysfunction has been demonstrated in the brain of animals 
[300]; it leads to synaptic loss and neuronal death [301]. 

Many studies indicate the relationship between the oxida-
tive imbalance induced by Aβ and the high levels of lipid 
peroxidation by-products (4-hydroxylamine, malondialde-
hyde), protein oxidation (carbonyl) and DNA/RNA oxida-
tion (8-hydroxydeoxyguanosine, 8-hydroxyguanosine) [288, 
299, 302]. Lipid oxidation products, such as 4-hydroxyenal 
(HHE), already increase in the first phase of the disease 
[303], and may increase ɣ-secretase activity and thus β-
amyloid accumulation [304, 305]. High levels of β-amyloid 
were observed in the cortex and hippocampus of Alz-
heimer’s disease patients, and associated with high levels of 
oxidative markers resulting from lipid, protein, and DNA 
oxidation [290, 306]. 

Much evidence has shown that the presence of extensive 
oxidative stress is a characteristic of Alzheimer’s disease in 
addition to the established pathology of senile plaques and 
NFT [302]. High levels of reactivity and hippocampal cyto-
toxicity have been detected for HNE, which is able to accu-
mulate in significant amounts in Alzheimer's disease [307, 
308]. Protein carbonylation, also because of the degradation 
induced by oxidative stress, has been observed in the frontal 
cortex and in the parietal and hippocampus regions of the 
brain in Alzheimer’s disease [309, 310]. Recognized markers 
of oxidative stress, including acrolein, MDA, F2- iso-
prostanes and HNE, protein carbonyls and 3-nitrotyrosine, 
have been observed in the brain and in cerebrospinal fluid of 
patients with Alzheimer’s disease or mild cognitive impair-
ment  [285, 311]. Among the products of lipid peroxidation, 
4-HNE and acrolein are highly reactive, and both induce 
apoptosis and disrupt the ionic homeostasis of neuronal cells 
[312]. In addition to free radical damage, changes in the ac-
tivities or expression of antioxidant enzymes, such as SOD 
and catalase, have been observed in both the central nervous 
system and peripheral tissues of patients with Alzheimer’s 
disease [313]. 

Neuroinflammation is a fundamental hallmark of Alz-
heimer’s disease that involves both cellular and molecular 
players in the loss of synapses and cellular death, brain atro-
phy, and cognitive decline [286, 314]. Cytokines, chemoki-
nes, ROS, and complement proteins are proinflammatory 
intermediates that are released by both microglia and astro-
cytes [315]. Amyloid Aβ attracts and activates both micro-

glia and astrocytes, leading to neuronal death [316]. The 
accumulation of Aβ plaques induces the activation of the 
complement system that can cause neuronal damage and 
death. The complement C3a peptide stimulates the recruit-
ment of peripheral immune cells in the brain [317]. Aβ de-
posits can activate NLRP3 inflammasome and induce the 
production of interleukin (IL)-1β and IL-18, which contrib-
ute to the pathogenesis of Alzheimer’s disease and cause 
cognitive deterioration [318, 319]. Cellular components of 
the immune system, such as granulocytes, monocytes, natu-
ral killer cells and T cells, may participate in the pathogene-
sis of neuroinflammation and the development of Alz-
heimer’s disease [320].  

4.6.2. Parkinson's Disease 

Oxidative stress and inflammation play a fundamental 
role in the pathogenesis of Parkinson's disease [321, 322]. 
The underlying mechanisms are not well defined. Parkin-
son’s disease, which affects learning, memory and motor 
control, is characterized by a gradual loss of dopaminergic 
neurons, especially in the midbrain area called the substantia 
nigra, and agglutination as well as α-synuclein build-up [75]. 
The redox imbalance causes oxidative damage to these neu-
rons, alteration of the synthesis and metabolic activities of 
dopamine, and the formation of quinine that leads to a fur-
ther increase in oxidative stress [281]. Dopaminergic neu-
rons are exposed to ROS and RNS throughout their life 
through the actual metabolism of dopamine. Dopamine is a 
relatively unstable molecule in nature and undergoes an 
auto-oxidation process in the strial tract, thereby producing 
ROS [323]; auto-oxidation itself may increase with age 
[324]. Markers of lipid peroxidation, such as MDA and 4-
HNE, have been found in the substantia nigra of Parkinson’s 
disease patients [325]; also, high levels of 8-hydroxy-
sideguanosine associated with mitochondrial DNA altera-
tions in unaffected dopaminergic neurons [326], protein car-
bonyls resulting from protein oxidative damage [327 ], and 
nitration and nitrosylation of proteins resulting from the ac-
tion of RNS [328], have also been found to be present in the 
brains of patients with Parkinson’s disease. The pathological 
sign of the disease is the accumulation of fibrous protein 
deposits in neuronal cytoplasm (Lewy bodies) and nerve 
fibres (Lewy neurites) in the brain [329]. 

Inflammation is an important factor in the initiation and 
development of Parkinson's disease [321]. Microglial reac-
tivity is an early and characteristic feature of Parkinson's 
disease [330]. Glial cells can cause neurotoxicity and trigger 
a series of inflammatory reactions [331]. Patients with Park-
inson's disease often exhibit innate immune system activa-
tion and increased inflammatory markers, mainly IL-1β, IL-
6, and TNF-α [230]. 

5. ANTIOXIDANTS AND THEIR SUPPLEMENTA-
TION  

5.1. Characteristics of Antioxidants 

In biological systems, organisms develop a series of 
mechanisms against oxidative stress induced by free radicals. 
Such mechanisms include preventive defenses, repair 
mechanisms, and antioxidant defenses [332, 333]. Antioxi-
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dants act as radical scavenger, hydrogen donor, electron do-
nor, peroxide decomposer, singlet oxygen quencher, enzyme 
inhibitor, synergist and metal-chelating agents [334]. Anti-
oxidants prevent tissue damage induced by free radicals by 
preventing the formation of radicals, scavenging them, or by 
promoting their decomposition. Antioxidant systems include 
enzymes, such as SOD, which convert superoxide to hydro-
gen peroxide, catalase that converts hydrogen peroxide to 
water, glutathione peroxidase, and peroxiredoxins that neu-
tralize hydrogen peroxide through the disulfide bond forma-
tion, as well as various nonenzymatic compounds, such as 
selenium, ascorbic acid (vitamin C), α-tocopherol (vitamin 
E), GSH, carotenoids, and flavonoids [335, 336]. Repairing 
antioxidants (de novo) of biomolecules are enzymes present 
in mitochondria and cytosol, which repair DNA damage, 
such as polymerase, nuclease, and glycosidase, as well as 
decompose and remove oxidized proteins (peptidases and 
proteases) [92]. It is also interesting to consider the question 
of homeostasis in the redox states of tissues, considering the 
action of antioxidants in exploiting the mechanisms of adap-
tation, where the signal generated by a free radical deter-
mines the synthesis and transport of a suitable antioxidant to 
the specific site [337]. To counteract the stress and oxidative 
damage, endogenous antioxidant defense mechanisms act 
together with exogenous antioxidants, such as dietary poly-
phenols and vitamins [338] (Fig. 7). In particular, exogenous 
antioxidants include vitamin C, which scavenges hydroxyl 
and superoxide radical anion, vitamin E, which is involved 
in lipid peroxidation of cell membranes, and polyphenols 
(phenolic acids, flavonoids and stilbene), selenium, zinc, and 
drugs, such as acetylcysteine [29]. 

 

 
Fig. (7). Schematic representation of antioxidant defenses to oxida-
tive stress. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 

 
Antioxidants act synergistically or by trapping single 

electrons as free radicals or by reducing ROS enzymatically. 
Food-derived antioxidants (vitamins A, C, E, minerals, and 

phenolic compounds) are defined as secondary defense sys-
tem in the human body [17, 339]. Carotenoids are the neu-
traliser of singlet oxygen in biological systems and have 
been reported to be beneficial in the prevention of free radi-
cal-associated diseases, including atherosclerosis, cataracts, 
age-related muscular degeneration, and cancer [340, 341]. 
Carotenoids, in the condition of lipid oxidation, act as scav-
enger radicals and singlet quenchers of oxygen. Their anti-
oxidant activity involves scavenging singlet oxygen, perox-
ylic radicals, sulfonyl and NO2 radicals, and protection from 
hydroxyl attack and superoxide radicals [272]. Tocopherols 
represent the most important family of antioxidants that pro-
tect membrane lipids. α-tocopherol involves antioxidant 
properties, inhibiting lipid peroxidation induced by per-
oxynitrite and inflammatory reactions [342]. ɣ-tocopherol, δ-
tocopherol, and ɣ-tocotrienol show both antioxidant and anti-
inflammatory activities. They can scavenge RNS, retard the 
formation of eicosanoids catalyzed by COX-2 and 5-
lipoxygenase, and extinguish proinflammatory signaling of 
NF-kB and JAK/STAT [343]. Flavonoids, such as flavones, 
flavonols, flavanols, flavanones, isoflavones, anthocyanins, 
and non-flavonoids, such as phenolic acids, stilbenic deriva-
tives, and lignans, have a remarkable ability to reduce the 
effects of free radicals. They are present mainly in fruits and 
vegetables, medicinal plants, and plant-based food. The anti-
oxidant activity of polyphenols is linked to the number and 
position of -OH groups on the aromatic ring, and therefore, 
to the replacement of hydroxyl groups in the aromatic ring 
[344]. 

5.2. Nutritional Prevention 

Extensive observational studies suggest that a higher in-
take of different nutrients and functional foods significantly 
reduces the risk of cardiometabolic risk [204, 345, 346], and 
several studies have reported various health benefits arising 
from antioxidant supplementation in processes, such as 
stress, aging, diabetes, CVD, and metabolic disorders [347, 

348]. Much progress has been made in preventive medicine 
in recent decades. Different preclinical studies have revealed 
the effects of polyphenol-rich nutrients for mitigating oxida-
tive stress and inflammatory diseases [349-351].  

Nutrition plays a crucial role in the prevention of chronic 
diseases, as most of this can be related to diet; there is an 
inverse relationship between the dietary intake of antioxi-
dant-rich food and medicinal plants and the incidence of 
human diseases. The functional properties of food involve 
the preservation of a state of well-being or health and/or the 
prevention and reduction of the risk of a pathologic process 
or disease [352], while a nutraceutical is a food supplement 
that has scientifically proven health benefits both for the 
treatment and prevention of disease. Many epidemiological 
studies indicate that a diet or a specific component of the diet 
is associated with a lower risk of a given disease. Synthetic 
and natural antioxidants are used routinely in foods and 
medicine. However, in view of increasing risk factors asso-
ciated with various deadly diseases in human beings, there 
has been a global trend towards the use of natural antioxi-
dants rather than synthetic ones [353, 354] and toward the 
use of natural substances present in medicinal herbs and die-
tary plants as therapeutic antioxidants. Dietary antioxidant 
supplements and functional foods containing antioxidants, 
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such as α-tocopherol, vitamin C, or plant-derived phyto-
chemicals, such as lycopene, lutein, isoflavones, green tea 
extract, and grape seed extracts, are now more widely avail-
able on the market [355]. Antioxidant nutrients play a spe-
cific therapeutic and preventive role in many diseases, such 
as rheumatoid arthritis, cardiovascular disorders, ulcerogene-
sis, and acquired immunodeficiency diseases [356, 357]. 
Other studies have suggested that nutritional antioxidants 
from diets or supplements can improve asthma control and 
lung function in asthmatic patients [358]. Antioxidant appli-
cations have also been shown to restore redox balance, 
thereby mitigating intestinal damage and maintaining the 
health of the gastro-intestinal tract [245]. It is important to 
emphasize that even though antioxidants might help to miti-
gate the progression of respiratory diseases, antioxidant sup-
plements can act as pro-oxidants or inducers of oxidative 
stress if consumed in amounts significantly exceeding the 
recommended dietary intake [14]. 

5.3. Antioxidant Supplements 

Plant foods contain many secondary metabolites; poly-
phenols are the most abundant and nutritionally important 
phytochemicals. They are natural substances useful for the 
prevention of many diseases (Fig. 7). Antioxidant supple-
ments are derived directly from plant materials,  fresh fruit 
and vegetables, cereals, legumes, and nuts [354]. In addition, 
most spices and herbs are rich sources of antioxidants, such 
as flavones, isoflavones, flavonoids, anthocyanin, coumarin 
lignans, catechins, and isocatechins [359-361]; while these 
make up a very small percentage of the food eaten during a 
meal, they can make an important contribution to the intake 
of antioxidants. A wide variety of vegetables, such as pota-
toes, spinach, tomatoes, and legumes, show high antioxidant 
potential [362]. Strong antioxidant activity has been ob-
served in berries, cherries, citrus fruits, plums, and olives; 
phenolic compounds constitute up to 30% of the dry weight 
of green and black tea [363]. Flavonoids, the main active 
nutraceutical ingredients of plants present in fruits and vege-
tables, are regularly consumed by humans [364, 365]. The 
main sources of these are apples, onions, mulberries, bilber-
ries, and beverages, such as tea, beer, and wine. Consump-
tion of bilberries is associated with a decrease in inflamma-
tion and serum levels of IL-6, IL-12, and reactive high sensi-
tivity protein [366]. Clinical studies have shown the ability 
of extra virgin olive oil rich in polyphenols to reduce IL-6 
and C-reactive protein expression in patients with stable 
coronary artery disease [367]. Hydroxytyrosol and resvera-
trol inhibit the activation of NF-kB and the expression of 
VCAM-1 in the endothelial cells of the vein stimulated by 
LPS [368]. Flavanols and flavonols exert CVD protection by 
suppressing LDL oxidation or by improving the LDL/HDL 
ratio that determines the protective activity of the endothe-
lium [369].  

Flavonoids have been shown to inhibit enzymes, such as 
cyclooxygenase and xanthine oxidase, involved in the pro-
duction of free radicals, and to have free-radical scavenging 
and iron chelator properties [370]; flavonoids can produce 
complexes with metals [371] and inhibit the initiation of 
lipid oxidation by metals. Overall, as a consequence of their 
antioxidant capacity, flavonoids have been found to have a 
wide spectrum of pharmacological properties, including anti-

allergic, anti-inflammatory, antidiabetic, hepato- and gastro-
protective, antiviral, neuroprotective effect, and antineoplas-
tic activities [372-374]. Flavonoids reduce insulin resistance 
and protect from diabetes, improving insulin secretion by 
reducing apoptosis of pancreatic β-cells [375]. The high con-
sumption of flavonoids may reduce the incidence of Parkin-
son’s disease and delay the onset of Alzheimer’s disease 
[376, 377]. The epigallocatechin gallate exerts neuro-
protective activity thanks to its antioxidant activities (SOD, 
GSHPX) and the cellular content. Anthocyanins improve 
oxidative stress and reduce the deposition of Aβ [378]; they 
can modulate neuronal and glial signal pathways [379]. 
Polyphenols can regulate NF-kB-induced iNOS expression 
in glial cells [380]. Polyphenolic compounds have shown the 
ability to inhibit the proliferation of different types of cancer, 
such as prostate, bladder, lung, gastrointestinal tract, breast, 
and ovary cancer [381, 382]. Polyphenols can stop cancer 
metastasis by inhibiting the activity of NF-kB [381, 383]. 
Several compounds, such as quercetin, resveratrol, carvacrol, 
green tea polyphenols [384], epigallocatechin-3-gallate 
[385], and curcumin [386], have shown efficacy as antican-
cer compounds.  

Several controlled clinical trials have indicated that anti-
oxidants do not have a beneficial effect on controlling dis-
eases [387-389]. Many dietary polyphenols have been 
proven valid in experiments on cells but found ineffective 
when administered to animals or humans. Thus, many stud-
ies have reported the anti-cancer effect of polyphenols on 
several tumour cell lines in controlled conditions [390]. 
However, few polyphenols can be considered as antitumour 
agents in clinical settings [391]. Furthermore, the optimal 
intake of antioxidant nutrients is still an open question, and 
there is little information on antioxidant bioavailability in 
vivo in humans [392, 393]. In fact, it is difficult to quantify 
the benefits offered by dietary polyphenols due to their ab-
sorption and metabolic fate, i.e., their bioavailability, by 
measuring their concentration in plasma and urine [394, 
395]. Systemic bioavailability depends on the concentration 
of the compound that can be transmitted to specific organ 
sites and whether the antioxidant can perform the expected 
function. Additionally, the lack of specificity of antioxidants 
and their possible interactions could explain their ineffi-
ciency in the treatment of diseases related to oxidative stress. 
Most of the antioxidants exogenously administered are not 
selective and are not distributed uniformly across various 
parts of the cells or tissues [396, 397]. Further research on 
targeted antioxidants is needed before this supplementation 
can be recommended as adjuvant therapy in the prevention 
and treatment of diseases. 

The clinical aspects of the effectiveness of antioxidants 
and individual nutrient supplements on the prevention and 
treatment of oxidative stress-related diseases have been ex-
tensively explored and gained considerable interest over the 
last decade.  

Observational and epidemiological studies suggest that a 
diet rich in fruits, vegetables, fiber, and antioxidants (such as 
the Mediterranean diet) is associated with a lower risk of 
cardio-metabolic diseases. However, despite the biological 
and pharmacological properties of these nutrients, polyphe-
nols, vitamins, and supplements could account for a plausi-
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ble beneficial effect as shown by multiple preclinical studies 
(cellular and animal studies); their efficacy and exact mode 
of action in humans remain unclear [398].  

In this regard, recent dietary interventions, antioxidant 
supplements and natural polyphenol compounds have shown 
effective antioxidant and anti-inflammatory effects and re-
duction of cardio-metabolic risk [399-403]. However, it is 
not totally clear whether these results are related to the type 
and/or dose of antioxidant agents present in diet/supple-
ments. 

CONCLUSION 

Free radicals generated in the body cause damage to the 
main cellular biomacromolecules (lipids, proteins, carbohy-
drates, and DNA). Oxidative stress results from the imbal-
ance between free radical production and antioxidant defense 
mechanisms. Oxidative stress plays a role in modern epi-
demics, such as diabetes, cardiovascular diseases, inflamma-
tory, carcinogenesis and neurodegenerative diseases. In this 
context, antioxidant supplements are commonly recom-
mended to prevent or stop the progression of such diseases. 
However, data are lacking in this field since studies do not 
ultimately suggest that antioxidants have a beneficial effect 
on controlling such diseases. Indeed, many issues related to 
antioxidant supplementation remain unresolved, suggesting 
the need for further research on targeted antioxidants before 
such supplementation can be recommended as adjuvant ther-
apy in the prevention and treatment of diseases.  
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