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Campi Flegrei (CF) is an active and densely populated caldera in Southern Italy, which has 
manifested signs of significant unrest in the last 50 years. Due to the high volcanic risk, monitoring 
networks of the most sensitive unrest indicators have been implemented and improved over time. 
Precious database constituted by geophysical and geochemical data allowed the study of the 
caldera unrest phases. In this paper we retrace the caldera history in the time span 2000–2020 by 
analyzing displacement, seismicity and geochemical time series in a unified framework. To this 
end, Principal Component Analysis (PCA) was firstly applied only on geochemical data because of 
their compositional nature. The retrieved first three components were successively analyzed via 
PCA together with the geophysical and thermodynamical variables. Our results suggest that three 
independent processes relay on geochemical observations: a heating/pressurizing of the hydrothermal 
system, a process related to magmatic fluids injection at the hydrothermal system roots, and third 
process probably connected with a deeper magmatic dynamic. The actual volcano alert state seems 
mainly linked to the variation of the hydrothermal system activity. Our approach made it possible to 
explore the interrelation among observations of different nature highlighting the importance of the 
relative driving processes over time.

In the last decades great attempts have been made to understand the complexity of the volcanic systems 
 structures1–3 and to define the chemical and physical processes characterizing the associated hydrothermal 
 systems4,5, united with their evolution through time. These attempts have been mainly addressed to the mitigation 
of the volcanic hazard in densely populated areas, where explosive catastrophic eruptions are expected. Campi 
Flegrei caldera (CFc, Fig. 1) in Southern Italy, represents a suitable example being a particularly dangerous active 
volcanic site, inhabited by more than 1.5 million people.

During its history, the caldera has experienced two very large explosive events that led to the formation of 
its primary structure: the Campanian Ignimbrite and the Neapolitan Yellow Tuff  eruptions6–8 then modified by 
the more recent Agnano Monte Spina and Astroni explosive eruptions, as well as by the numerous successive 
eruptions, which generated pyroclastic deposits spread over an extremely large  area8,9. The last eruption in CF 
occurred in 1538  AD10. Currently the caldera magmatic system is still active, as testified by bradyseismic episodes 
and by a widespread fumarolic and thermal  springs11, leading this area to a very high volcanic risk.

Over the years the scientific community dealing with CF has mainly focused their attempt on improving 
the monitoring systems  devices12–20 and developed numerous models to simulate volcanic and hydrothermal 
 processes4,21–29. These efforts have been made in order to obtain reliable data and sophisticated simulators able 
to improve models confidence and predictive capabilities addressed to mitigate the volcanic risk and to prevent 
and estimate possible catastrophic scenarios.
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Objectively, there is a certain difficulty to treat and interpret large sets of multiple variables data resulting 
from long-term monitoring. The basic strategy generally used is the univariate statistical analysis, which can 
cause, however, uncertainty and error when dealing with huge and inhomogeneous  dataset30. In order to avoid 
this problem, multivariate statistical techniques can be used, as they are unbiased methods which can help 
indicate natural associations between samples and/or  variables31, thus highlighting information not available 
at first glance.

In this study, we treat a large dataset of geophysical and geochemical data resulting from long-term 
(2000–2020) monitoring of the Campi Flegrei caldera. In particular, we examine, vertical displacements, earth-
quakes occurrences, geochemical composition of fumaroles and the estimated temperature and pressure time 
series using the Principal Component Analysis (PCA).

PCA is a multivariate statistical procedure widely applied for data processing and dimension reduction, when 
large multivariate datasets are analyzed. The PCA simplifies the data structure and helps data  interpretation32. 
The great  advantage31 lies in giving the ability to detect broader patterns of interrelationships among data than 
given by individual univariate  analyses30. The main goal of this study is to identify and distinguish the different 
processes which in the last twenty years have been the protagonists of the ongoing crisis in the CF caldera and 
how these processes statistically interact. The geochemical fumaroles fluids samples, being compositional data, 
require a prior appropriate transformation according to theory of compositional  data33–38. Via this transforma-
tion, it is possible to perform an analysis in Principal components to extract components which contain the 
synthesis of the geochemical processes acting in the CF caldera. Successively, the integration of the geochemi-
cal data with the geophysical data is carried out through a joint principal component analysis from which it is 
possible to identify the relationships between the physical processes and the geochemical variables synthesis 
involved in the analysis. The relationships found between geophysical and geochemical processes, allowed us to 
highlight the main process responsible for the last crisis.

Materials and methods
Compositional data analysis
All the statistical measures (e.g. mean, standard deviation, correlation, etc.) are defined in Euclidean space and, 
therefore, the usual univariate and multivariate analysis can lead to erroneous results when applied to composi-
tional data. The constant sum for each observation limits the Euclidean sampling space to a Simplex, subspace of 
R

p . According to the current literature, only the transformation of compositional data by CoDA  methodology33–38 
allows a correct approach to the statistical data analysis. The three main approaches for modeling compositional 
data analysis are an additive log-ratio (alr), a centered log-ratio (clr)34,39 and the isometric log-ratio (ilr)40,41. The 

Figure 1.  Campi Flegrei caldera map (UTM) showing the geochemical fluids sampling points (BG: zone 33T, 
Longitude 427649, Latitude 4519918), the ground lifting benchmark (RITE: zone 33T, Longitude 426319, 
Latitude 4519509), and earthquakes epicentres (1866 events with M ≥ − 0.5) in the period 2000–2020. On the 
right a depth-NS earthquakes projection and at the bottom the depth-EW earthquakes projection. Colours scale 
represents the earthquakes time occurrence. The software used to create the figure is Grapher 18.4.420 (https:// 
www. golde nsoft ware. com/ produ cts/ graph er).

https://www.goldensoftware.com/products/grapher
https://www.goldensoftware.com/products/grapher


3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18445  | https://doi.org/10.1038/s41598-023-45108-0

www.nature.com/scientificreports/

clr transformation is  isometric39 and allows an interpretation of the relationships one-to-one among the com-
positional variables being a subspace of p  dimensions42. Therefore, in this work, each compositional time series 
X(t) will be treated according to the clr methodology:

where n is the number of observations, p the number of variables and gt is the geometric mean of each compo-
sitional data at t time (t ∈ T).

Principal component analysis and biplot
PCA linearly transforms the original variables into a smaller new set of uncorrelated  variables43 each new vari-
able is a linear combination of the old. The Principal components (PCs) are ordered so that the first few retain 
most of the information present in all of the original dataset. PCA can be implemented in two modalities: linear 
or via Decomposition into Singular Values (SVD)44,45. The first principal component is a linear combination of 
all variables with the greatest variability, the second principal component represents the greatest variability after 
the effect of the first has been removed, end so on. Since only the first components explain a significant part of 
the total variance, the remaining PCs can also be ignored. SVD is the most used method especially when one is 
interested in representing results with few dimensions. In this work we use SVD, following Aitchison’s suggestion, 
since the compositional data have an adequate representation in the biplot. The Decomposition into Singular 
Values (SVD) of the X data matrix, centered or standardized is X = U�V

′ , where U(n,p) are left eigen-vectors 
of XX’, �(p, p) are the eigen-values, and V’(p, p) are the right eigen-vectors of X’X (U and V are orthogonal). 
Splitting � into �α

�
α−1 , where (0 ≤ α ≤ 1) . The SVD of matrix X becomes:

where G = U�
α and H = �

1−α
V

′.
Biplot34,46 is a graphical tool that provides, in the factorial plane, the results of analysis in Principal Compo-

nents (PCA) of a matrix X (n, p). The bi prefix indicates that the plot contains information on the n observations 
and on the p variables. In a biplot, the n rows of the matrix G (n, 2) are represented as points-units (scores), 
corresponding to the observations, and the p rows of the matrix H (p, 2) are represented as vectors (rays), cor-
responding to the variables (loadings). The length of each vector starting from the origin of the axes, approxi-
mates the variance of the respective variable; the angle between two rays (cosine of the angles between the rays) 
approximates the correlation between the variables they represent; the projection of a generic data on a specific 
vector approximates the value of that data with respect to the variable represented by the vector. The α value 
in (2) can range from 0 to 1. In this work, we are interested to the covariance-biplot (α = 0) that preserves the 
covariance  structure47 and privileges the display of the variables.

In the case of compositional data matrix, SVD can be applied after a clr, alr or ilr  transformation34. After this 
application, the approximation structure of the correlations among data can be deduced. The biplot of compo-
sitional data (relative variance biplot), shows the rays (projection of the original variables onto this orthogonal 
space) and the links between two rays (the ratios among geochemical species). The links, that is the approxi-
mation of the geochemical ratio by the new subspace, are compositionally invariant, this mean they are good 
physical observables. If two links are orthogonal, an independent relationship between the two sub-compositions 
(equivalently the two sub-compositional ratios) is estimated; if the link between two rays is short or their vertices 
almost coincide, the relationship between the two log-ratios is constant and the two log-ratio are  proportional37,48. 
The barycentre of Biplot represent the geometric mean, used in the clr transformation, and can be considered 
as a reference to evaluate the increase or the decrease of a variable respect to the whole composition. The ray 
length of the compositional data (for example the length of CO in Fig. 7) indicates the behaviour of the variable 
with respect to the centre of gravity (barycentre of Biplot) and provides an estimate of the standard deviation of 
a variable (approximately proportional to the own standard deviation, note that we are in a subspace, that is we 
have approximated the processes).

Dataset and preliminary analysis
The raw geochemical dataset consists of time series of nine geochemical variables sampled with a frequency of 
about a sample/month; this dataset is constituted of 243 chemical  analyses49 obtained from samples collected 
at the main fumarolic vent in Solfatara, Bocca Grande (BG, Fig. 1), between August 2000 and October 2020. 
Sampling techniques and analytical procedures are reported in Caliro et al.12. Chemical data of fumarolic fluids 
are expressed as micromole/mole (µmol/mol) for  H2O,  CO2,  H2S, Ar,  N2,  CH4,  H2, He, CO gas species. Fumarolic 
gases do not show any detectable  SO2, HCl, and HF, due to the scrubbing of magmatic gases within the hydro-
thermal  system12,50,51. The gas chemical compositions exhibit significant changes over time due to the periodic 
contributions of hotter and more oxidizing magmatic fluids entering the hydrothermal  system4,17,28,49,52–54.

The examination of the behaviour of a single geochemical time series is distortive because the data are of a 
compositional  nature33. Each statistical analysis is correct considering the ratios between two gas species (ratio is 
compositional invariant) although the number of independent ratios [(p-1)2/2] makes complex a global analysis 
of the geochemical data based on the ratios. We will use the PCA analysis to explore the structure of the compo-
sitional dataset and to obtain a new and reduced number of variables for further analysis.

Before applying the PCA, we used the ilr transformation to cut-out outliers and to resample geochemical 
data at a constant step of a sample/month. Then we back transformed data to the simplex space. In fact, the ilr 
subspace, having orthogonal axes and p-1 dimensions, allows the interpolations of each variable independently 
from the  others33,55,56. After the interpolation, the clr transformation was adopted.

(1)Z(t) = clr[X(t)] =
[

ln(xij(t)/gt)
](

i = 1, . . . , n; j = 1, . . . , p; t = t0, . . . ,T
)

(2)X = (UΛ
α)
(

Λ
1−a

V
′
)

= GH
′
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The geochemical time series resampled and transformed in clr are shown in Fig. 2, while their values are in 
the “Supplemental material”. In particular, it seems that, from a geochemical point of view, the crisis starts around 
the year 2006 with a clear fall of the  CH4 content in the volcanic gasses with consequent increase in the typical 
ratios used to monitor the volcanic deep activity  (CO2/CH4 and He/CH4).

Moreover, geochemical variables derived from gas equilibria have also been considered in the multivariate 
approach. Equilibrium temperatures and pressures, in the CO-CO2 gas system, are computed according to 
 Chiodini49 considering the water fugacity controlled by the steam-liquid  coexistence57 and redox conditions 
fixed by the D’Amore and  Panichi58 empirical buffer.

Temperature is a function of ratio CO/CO2;  H2O pressure is a function of Temperature;  CO2 pressure is a 
function of ratio  H2/CO (all the derived quantities depend on compositional invariant variable); the derivation 
of the geothermometric and geobarometric function was computed according to Chiodini et al.49, considering 
(i) fH2O fixed by the vapour-liquid coexistence and (ii fO2 as a function of the temperature. Redox conditions 
of Solfatara gases were assumed to be controlled by the DP buffer (log fO2 = 8.20—23,643/T). The correspond-
ent geothermometric relations are: T = 3133.5 / (0.933- Log  (XCO /XCO2)). The geobarometric functions are: 
Log  PH2O = 5.510—2048/T, where the water pressure is assumed equal to water fugacity of saturated vapor (i.e. 
vapor–liquid coexistence for pure  water57), Log  PCO2 = 3.025 + 201/T -Log  (XH2 /XCO) and  Ptot ~  PCO2 +  PH2O 
(Fig. 3).

The vertical displacements dataset is composed of monthly averaged measurements recorded at the RITE sta-
tion by the Neapolitan Volcanoes Continuous GPS (NeVoCGPS) network from 2000 to 2020 (Fig. 4A). The daily 
original recordings are available in Tramelli et. al.59. During the analyzed period, a subsidence phase switched 
to a slow uplift around 2005 and rose to a fast uplift phase in 2012 that is still ongoing. The maximum value was 
reached in the last analyzed year (2020) and was of 68.62 cm. Following the hypothesis that the complex displace-
ment pattern is generated by the superposition of deformation processes separated in frequency (first intuited 
by Chiodini et al.5 and then formalized in Petrillo et al.60), the time series has been separated into two distinct 
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time series: the trend obtained by a second order polynomial fitting (Fig. 4B) and the oscillating component 
(Fig. 4C) obtained by subtracting the trend. Hereafter, these two time series will be mentioned respectively as 
z-trend and z-osc. It is noteworthy that in the z-osc series is evident a peak around the year 2006 (as in the  CH4 
geochemical data series) as well as in the original up-lift time series where, around the same year, there is a step 
followed by an increasing trend (Fig. 4 A).

The seismicity dataset is composed by monthly number of earthquakes located in the CFc area (Fig. 1). As 
reported by the catalogue of Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, between 
August 2000 up to October 2020, 2459 seismic events mainly occurred beneath the Solfatara-Pozzuoli area at 
depths from 0 to 4.46 km with the exception of a single (low quality and here not considered for further analysis) 
event at a depth of 7 km. The Gutenberg–Richter  distribution61 closely fit the data with magnitude M ≥ − 0.5. In 
this study we have selected 1866 volcano tectonic earthquakes with M ≥ -0.5 at which 93% of the observed data 
(events) are modelled by a straight  line62. From 2000 to 2020, seismicity increased in time and clustered to shal-
low depth. Analyzing the recent seismic activity, Chiodini et al.54 found that seismicity is distributed into low 
(swarms) and high (background) interarrival time  populations63–65. The skewness of the hypocentral frequency 
distribution (in km) is 1.45, the mean is 1.34 with a standard deviation of 0.63, and the median is 1.27, which 
indicates a crowding of hypocentres towards shallow levels. We assume that there is a spatial discrimination 
between the two groups of earthquakes based on their depth. To test this hypothesis, a clustering algorithm 
(hierarchical linkage and Euclidian distance)66 on the hypocentral depths was applied. The resultant dendrogram 
(cophenetic index = 0.79) is shown in Fig. 5A.

Two distinct depth classes are evidenced (Fig. 5B,C): one between 0 and 2.36 km (first cluster, Fig. 5B) and 
the other below 2.36 km (second cluster, Fig. 5C). In Fig. 6 the two earthquakes time series related to the two 
clusters are shown. The very interesting result is the low value of temporal correlation (0.20) between the shallow 
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and deep earthquakes time series, which, with the spatial clustering, strongly supports our hypothesis that there 
is the presence of two distinct (time/space) physical seismic processes. The structure of the earthquakes occur-
rence again shows, in a coherent manner with the others geophysical and geochemical variables, a significative 
peak of the earthquakes occurrence around the 2006.

In particular, the correlation between the original ground displacement (Fig. 4A) and the earthquakes time 
series related to the first cluster is 0.72, while the correlation between the ground displacement and the earth-
quakes time series related to the first cluster is 0.21.

Hereafter the shallow and deep earthquakes occurrence time series will be mentioned respectively as: s-E 
and d-E.
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Results and discussion
Principal component analysis on geochemical species
To investigate the distribution of the geochemical variable in the reference periods, a PCA was applied on 
monthly sampled data, clr transformed by the Eq. (1) to obtain a relative covariance Biplot (Fig. 7) (Tables 1 
and 2).

We look for hidden variables that control the changes of the fumarolic fluids compositions over time. To do 
this we will find the links which are best represented by the first three PCs (Tables 3, 4, 5).

Looking at the biplot of the first three components (Fig. 7) (95% explained variance), CO and  CH4 have the 
longest rays and, therefore, exhibit a much greater variability, in the time interval examined, respect to all the 
other geochemical species.

On the left side of the biplot (Fig. 7) there are the scores related to the period 2000–2005 (blue points) which 
reveal higher content in  H2O,  N2 and  CH4. If we follow the scores evolution trough time, we can see that the 
system at t = 2000 is richer in  CH4 than at t > 2005, when He and  CO2 enter the hydrothermal system and start to 
play a major role in the score distribution (projection). In the transition period (from 2005 to 2017) He and  CO2 
mark a change in the hydrothermal system state evolution. From the year 2017 to 2020 we notice a decrease in 
the  CO2 and He content and an increase of  CH4 in the hydrothermal system. CO, which is the ray with higher 
variance, dominate the general trend.

In the context of the compositional theory, the analysis of individual species, in the clr space, leads to general 
results, but in particular we will use, even, the principal ratios (links) which are adopted in volcanic environments 

Figure 7.  Relative covariance biplot of Centered Log Ratio (clr) Gas Species (in red) on the first three factorial 
planes (see text for details). Note that the scores distribution (colored dots), representing the system state, is not 
chaotic, it draws an evolutionary path.

Table 1.  Correlations among variables and PCs of the nine geochemical species in Fig. 7.

PC H2O CO2 H2S Ar N2 CH4 H2 He CO

PC1 (GF1) − 0.89     0.31 0.25 − 0.53 − 0.89 − 0.46 0.87    0.15 0.99

PC2 (GF2)    0.02 − 0.58 0.62 − 0.60 − 0.24    0.86 0.27 − 0.74 0.00

PC3 (GF3) − 0.35 − 0.67 0.43    0.59 − 0.35   0.09 0.16 − 0.51 0.01

Table 2.  Squared cosines referring to the PCA of the nine geochemical species in Fig. 7.

PC H2O CO2 H2S Ar N2 CH4 H2 He CO

PC1 (GF1) 0.80 0.10 0.07 0.28 0.79 0.22 0.76 0.02 0.99

PC2 (GF2) 0.00 0.34 0.38 0.37 0.06 0.73 0.08 0.55 0.00

PC3 (GF3) 0.12 0.45 0.18 0.35 0.12 0.00 0.03 0.26 0.00
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that can be geochemically interpreted. Therefore, we consider the correlation between the main ratios and the 
first three PCs (Tables 3, 4, 5).

The links (ratios) with geochemical significance which have high correlation with the first PC are CO/CO2 
(r = 0.96) and CO/H2 (r = 0.95) (Table 3 and Fig. 8). This associations and these ratios are notable because CO 
and  H2 are in general considered as gas species controlled by the Temperature and Pressure conditions of the 
hydrothermal systems at  depth67. It should be emphasized that CO is related to all compositional species and all 
these relationships are strongly correlated with the first component (r ≥ 0.91). Considering that CO is the most 
representative species of the fumarole gas, delineating a warning  trend53 of the hydrothermal system conditions, 
we can hypothesize that the first axis (Figs. 7 and 8) can be interpreted as a latent process of the hydrothermal sys-
tem heating/pressurizing. In the follow, we name this first principal component as GF1 (first geochemical factor).

The second component orthogonal to the previous one, opposes  CH4 and  H2S to He, Ar and  CO2 (Fig. 8 and 
Tables 1, 2). In the period 2000–2006 the second principal component is positively dominated by  CH4 (which 

Table 3.  Correlations between the geochemical ratios and the first PC.

H2O CO2 H2S Ar N2 CH4 H2 He CO

Numerator

H2O − 0.93 − 0.79 − 0.17 − 0.53 − 0.22 − 0.92 − 0.80 − 0.99

CO2 0.93 − 0.02    0.57    0.94    0.45 − 0.50    0.11 − 0.96

H2S 0.79    0.02    0.52    0.68    0.62 − 0.60    0.05 − 0.92

Ar 0.17 − 0.57 − 0.52 − 0.01 − 0.03 − 0.72 − 0.55 − 0.92

N2 0.53 − 0.94 − 0.68    0.01 − 0.03 − 0.91 − 0.86 − 0.99

CH4 0.22 − 0.45 − 0.62   0.03   0.03 − 0.75 − 0.39 − 0.91

H2 0.92    0.50    0.60   0.72   0.91    0.75   0.47 − 0.95

He 0.80 − 0.11 − 0.05   0.55   0.86    0.39 − 0.47 − 0.92

CO 0.99    0.96    0.92   0.92   0.99    0.91    0.95    0.92

Table 4.  Correlations between the geochemical ratios and the second PC.

H2O CO2 H2S Ar N2 CH4 H2 He CO

Numerator

H2O   0.26 − 0.28 0.56   0.41 − 0.83 − 0.10    0.41    0.01

CO2 − 0.26 − 0.68 0.34 − 0.12 − 0.83 − 0.56    0.52 − 0.16

H2S    0.28    0.68 0.74    0.48 − 0.57    0.35    0.74    0.22

Ar − 0.56 − 0.34 − 0.74 − 0.50 − 0.94 − 0.55 − 0.19 − 0.28

N2 − 0.41    0.12 − 0.48 0.50 − 0.94 − 0.27    0.37 − 0.07

CH4    0.83    0.83    0.57 0.94    0.94    0.61    0.88    0.41

H2    0.10    0.56 − 0.35 0.55    0.27 − 0.61    0.69    0.13

He − 0.41 − 0.52 − 0.74 0.19 − 0.37 − 0.88 − 0.69 − 0.26

CO − 0.01    0.16 − 0.22 0.28    0.07 − 0.41 − 0.13    0.26

Table 5.  Correlations between the geochemical ratios and the third PC.

H2O CO2 H2S Ar N2 CH4 H2 He CO

Numerator

H2O − 0.03 − 0.47 − 0.78 − 0.22 − 0.36 − 0.29 − 0.01 − 0.14

CO2 0.03 − 0.60 − 0.74 − 0.08 − 0.26 − 0.52    0.06 − 0.20

H2S 0.47    0.60 − 0.29    0.44    0.13    0.27    0.51    0.14

Ar 0.78    0.74    0.29    0.85    0.31    0.38    0.78    0.26

N2 0.22    0.08 − 0.44 − 0.85 − 0.27 − 0.27    0.11 − 0.11

CH4 0.36    0.26 − 0.13 − 0.31    0.27    0.01    0.25    0.03

H2 0.29    0.52 − 0.27 − 0.38    0.27 − 0.01    0.46    0.06

He 0.01 − 0.06 − 0.51 − 0.78 − 0.11 − 0.25 − 0.46 − 0.20

CO 0.14    0.20 − 0.14 − 0.26    0.11 − 0.03 − 0.06    0.20
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indicate a probably absence of deep magmatic fluids injection in the hydrothermal system) while, in the inter-
mediate period 2007–2017, the contribution of He and  CO2 determines a transition with a relative decrease of 
 CH4. The last period (2017–2020) is again characterized by a relative increase of  CH4. In the factorial plane, Ar 
is present in the transition period, however, its occurrence is not further discussed due to likely significant air 
contamination (see the wide high frequency oscillation in the Ar signal of Fig. 2).

Even for the interpretation of the second axis we resort to the analysis of the correlations between the geo-
chemical ratios and the second component (Table 4). The ratios representative of the hydrothermal dynamics 
He/CH4 ratios (r = − 0.88) and  CO2/CH4 (r = − 0.83), are well projected on the second component.

These last ratios have been suggested by Chiodini et al.5,15,28,53,68 as indicative of the arrivals of magmatic 
fluids in the hydrothermal system from depth. The  CO2/CH4 and He/CH4 ratios have been interpreted as pow-
erfull indicators of magma degassing  episodes65. The magmatic gases entering the hydrothermal system are, in 
fact, relatively rich in  CO2 and He and poor in  CH4, a specie that is formed in the hydrothermal environment. 
Therefore, the second axis could represent a deep rooted hydrotermal process, that around 2006–2007 (see the 
projection of the data on the links  CO2/CH4 and He/CH4 in Fig. 8) generated the pressure and temperature 
increase well represented by the first principal component.

We underline that the first component is very strongly correlated (angles among the rays and the first axis very 
near zero, Fig. 7) with the CO increasing trend (Fig. 2) and  H2O reverse trend (Fig. 2). The second component, 
orthogonal to the first one, represents an independent process dominated by  CH4. Note, orthogonality implies 
that, even if the second component (deep magmatic fluid batches) could be the cause of the first, their direct 
statistical dependence must have been lost over time. In the follow, we call the second principal component GF2 
(second geochemical factor).

The third component (12% explained variance) is dominated during the intermediate period (2007–2012) 
by  CO2 opposed to Ar and  H2S (Fig. 7; Table 1).  CO2 is the best represented among the geochemical species on 
this axis (Table 2). We can hypothesize that the third principal component (hereafter GF3, third geochemical 
factor) can be considered a latent factor linked to the production of  CO2, probably from deeper zone of the 
volcanic system.

Joint PCA on geochemical and geophysical data
We were interested in the relationship over time among the geochemical data (Fig. 2), the geophysical data 
(Fig. 4B and C and Fig. 6B and C, and the derived T–P functions (Fig. 3). The Principal components  analysis69 
was conducted on the multivariate dataset where the geochemical data are represented by GF1, GF2 and GF3 
obtained from the previous analysis. We found that the 85% of the total variance was explained by the first three 
components. The graphical representation of the Biplot in Fig. 9 (together with the inferences obtained from the 
data listed in Tables 6 and 7) shows an impressive development of the scores trajectory, representing the state of 
the system. The dynamic, in the early year (2000–2008), is constrained substantially in a volume (parallelepiped 
in Fig. 9) mainly described by the second and the third PC, here the dynamics is governed by GF2, GF3, deep 
earthquakes and z-oscillation. From the year 2009 up to 2014 the system is losing its stability and tends to invade 
the first PC. Around the year 2015 up to the year 2020, the system has a violent impulse and the scores pattern 
moves away from the parallelepiped along the first PC.

The first PC (Fig. 9) is strongly and positively correlated with the z-trend, CO estimated temperature,  H2O 
estimated pressure and GF1. More moderate, but always very significant, is the association of shallow earthquakes 
and  CO2 estimated pressure with the first component (Tables 6 and 7).

Figure 8.  Relative covariance biplot of Centered Log Ratio (clr) Gas Species on the first factorial plane with the 
representation of main links (ratios) having geochemical significance.
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These correlations, together with the spatial correspondence between shallow earthquakes (located between 
0 and 2.36 km at depth) and the hydrothermal system, support a strong link between the two. According to 
Chiodini et al., 2021 heating/pressurizing of the hydrothermal system plays an active role in triggering low 
magnitude seismicity at shallow  depth49. The group of variables which characterize the first component implies 
a very interesting and generally original interpretation of the deformation trend which could be led by the 
hydrothermal heating/pressurizing in the first 2–3 km of the volcanic apparatus. This part of the hydrothermal 
system should be responsible of the deformation trend (bradyseism) as well as of the shallow earthquake occur-
rence. In fact, the advective/convective fluids transport mechanism increases the stress/strain by fluid pressure 
and so the earthquakes occurence. We interpret this first component, as representing fluids related processes 
occurring in the hydrothermal system.

Figure 9.  Biplot of the ground displacement trend (z-trend), ground displacement without trend (z-osc), 
shallow (s-E) and deep (d-E) Earthquakes occurrences, CO estimated Temperature (es-T),  CO2 estimated 
pressure (es-PCO2),  H2O estimated pressure (es-PH2O), GF1, GF2 and GF3. The explained variance is 80% in 
the first three factorial planes.

Table 6.  Correlations among the first three PCs and the variables shown in Biplot of Fig. 9. Significant values 
are in [bold].

PC z-trend z- oscillation Shallow earthquakes Deep earthquakes Est. Temp. CO Est. Press  CO2 Est. Press  H2O GF1 GF2 GF3

PC1    0.96    0.01    0.84 0.36    0.99    0.88    0.98    0.94 − 0.21 − 0.19

PC2 − 0.03 − 0.40 − 0.38 0.37    0.00    0.36 − 0.08    0.24    0.47    0.75

PC3    0.04 − 0.55    0.17 0.16 − 0.05 − 0.09 − 0.00 − 0.14 − 0.79    0.33

Table 7.  Squared cosines of the variables referred to the Biplot in Fig. 9 (in bold the values that correspond. 
for each variable. to the factor for which the squared cosine is the largest). Significant values are in [bold].

PC z-trend z-oscillation Shallow earthquakes Deep earthquakes Est. Temp. CO Est. Press  CO2 Est. Press  H2O GF1 GF2 GF3

PC1 0.92 0.00 0.70 0.13 0.97 0.78 0.97 0.89 0.04 0.04

PC2 0.00 0.16 0.14 0.14 0.00 0.13 0.00 0.06 0.22 0.56

PC3 0.00 0.30 0.02 0.02 0.00 0.03 0.00 0.02 0.62 0.10
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The second component of PCA (Fig. 9) is strongly related only to GF3 (Tables 6 and 7) whose major variability 
is found around 2010–2012; note that the scores of this period are fully projected on the GF3 vector which, under 
the hypothesis that the GF3 factor is strongly correlated with the  CO2, could be the trigger of the following crises, 
well represented by the first PCA (Fig. 9). This leads to interpret the second component (Fig. 9) as representing 
very deep volcanic processes related to the production of  CO2. The second component has weaker negative cor-
relations with z-osc and shallow earthquakes, while has weak positive correlations with GF2, deep earthquakes 
and  CO2 estimated pressure. Notably this component shows an absolute independence from the z-trend.

The third component of PCA (Fig. 9) is strongly related to GF2 (Tables 6 and 7) and to z-oscillations whose 
major variability is found around 2002–2012, from blue colour up to green in Fig. 10. Since GF2 could represents 
a process connected to the deep injection of magmatic fluids, we can suggest that the z-oscillations (in agreement 
with Chiodini et al.5) are generated by  CH4—poor magmatic injections at the root of the hydrothermal system, 
probably below the region that hosts the most earthquakes (Fig. 1), as suggested by the very low correlations 
showed in Table 6.

Conclusions
Twenty years of geochemical, thermodynamical and geophysical observations at CFc were analyzed by means of 
the PCA method. The goal was to reveal the basic phenomenon responsible for the ongoing state of a volcanic 
crises which started around 2006 and perturbed the physical–chemical CFc magmatic state. The current volcanic 
hazard level (yellow) has been determined by the increase in intensity and frequency of the main unrest indica-
tors: earthquakes occurrence, ground deformation and volcanic gas flux at surface. The multivariate statistical 
analysis, we have applied, suggests processes occurring both in the hydrothermal and in the magmatic system, 
describing how these processes evolve through time.

The heating/pressurizing processes strongly dominate the multivariate space together with the deformation 
trend and the shallow earthquakes occurrences (first geochemical/geophysical PCA) during the whole period; 
however, the primary contribution to this PCA is driven by the recent steeply increase of these processes. We 
interpret this first component, as representing processes occurring in the hydrothermal system and dominating 
the ongoing unrest.

The second and the third components that consider modulation of the processes through the variables oscil-
lation, show substantially a significant projection of GF2, GF3, deep earthquakes and z-oscillation. These com-
ponents, associated to deep volcanic processes, dominate the years 2000–2012. Injection of deep heated fluids, 
at the base of the hydrothermal system, could be responsible for the deformations pulses, as already discussed 
in Chiodini et al.,  20155. The trigger of the CFc volcanic unrest could be driven by the GF3 variability.

In conclusion, we can state that the unified and integrated approach on geochemical and geophysical indi-
cators, applied in this study, has allowed to reveal the hidden and independent processes at the base of the CF 
volcanic crises, not clearly identifiable considering just a subset of them.

The results of this study are the basis for the identification of further and perhaps more effective geochemi-
cal relationships useful to improve the monitoring of the evolutionary volcanic processes which affect calderas 
similar to the Campi Flegrei one.

The adopted strategy, using the compositional theory applied on geochemical data from the CF caldera, 
offers a global interpretative framework with the confirmation that the geochemical processes are a keystone in 

Figure 10.  Biplot of only variables (in red and light blue) which have significant association with the second 
and third principal components (ground displacement without trend (z-osc), shallow (s-E) and deep (d-E) 
Earthquakes occurrences (the relative vector is dashed and in light blue), GF2 and GF3.
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the interpretation of the volcanic phenomena at CF caldera. This methodology is certainly applicable to other 
calderas in the world in a similar state of hydrothermal activity.

Data availability
The datasets analyzed during the current study are available in the section: “Supplementary Information”.
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