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ABSTRACT 19 

The endocannabinoid system, which includes cannabinoid receptor 1 and 2 subtypes (CB1R and 20 

CB2R, respectively), is responsible for the onset of various pathologies including 21 

neurodegeneration, cancer, neuropathic and inflammatory pain, obesity, and inflammatory bowel 22 

disease. Given the high similarity of CB1R and CB2R, generating subtype-selective ligands is still 23 

an open challenge. In this work, the Cannabinoid Iterative Revaluation for Classification and 24 

Explanation (CIRCE) compound prediction platform has been generated based on explainable 25 

machine learning to support the design of selective CB1R and CB2R ligands. Multi-layer classifiers 26 

were combined with Shapley value analysis to facilitate explainable predictions. In test calculations, 27 

CIRCE predictions reached ~80% accuracy and structural features determining ligand predictions 28 

were rationalized. CIRCE was designed as a web-based prediction platform that is made freely 29 

available as a part of our study.  30 

  31 



Introduction 32 

Cannabinoid receptors 1 and 2 (CB1R and CB2R) constitute the endocannabinoid system and 33 

represent the molecular targets of the 9-tetrahydrocannabinol (9-THC), a psychoactive agent 34 

derived from Cannabis sativa. CB1R and CB2R are responsible for many physiological functions 35 

such as appetite, pain perception, memory, and immunomodulation.1,2 36 

CB1R and CB2R are largely expressed in the central nervous system (CNS) as well as in the 37 

immune system and have distinct tissue distributions and functions. CB1R is a major player in the 38 

regulation of higher cognitive functions, neuronal development and synaptic plasticity, reward and 39 

addiction, pain, and food intake. CB1R is also associated with biological and pathological processes 40 

outside the CNS, being its expression reported in different types of hepatic cells, in the 41 

cardiovascular system, in the adipose tissue, muscles, and mitochondria. The CB1R deregulation is 42 

behind the onset of several pathological conditions such as obesity3–5, neurodegenerative diseases, 43 

glaucoma, pain, and cancer. Unlike CB1R, CB2R has so far received less attention, and when it was 44 

first discovered, CB2 activity was only found in lymphoid organs, immune cells, and hematopoietic 45 

cells. In fact, CB2 is primarily expressed in all immune system tissues and circulating cells, with 46 

varying degrees of expression and activity depending on the stimulus, cell type, and cell activation. 47 

In this respect, CB2R plays a pivotal role in a wide spectrum of pathological conditions: it can act as 48 

an antitumor agent by inhibiting cells proliferation or by decreasing angiogenesis or metastasis, or it 49 

can be used for palliative care 6; furthermore, it is also implicated in several central nervous system 50 

conditions.1,7–9 51 

CB1R and CB2R are closely related subtypes and share ~68% sequence homology in the 52 

transmembrane region and ~44% overall. Accordingly, the generation of subtype-selective ligands 53 

is extremely difficult. To the best of our knowledge, the ~100 most popular synthetic cannabinoids 54 

that act as CB1R and CB2R agonists fall into different chemical categories: classical, nonclassical, 55 

amino-alkylindole, eicosanoids, and others. 10–12 The classical family of CB1R and CB2R agonists is 56 

constituted by the dibenzopyran derivatives. Two especially notable examples are (D)-9-57 



tetrahydrocannabinol (D9-THC), the primary psychoactive component of cannabis, and (D)-11-58 

hydroxy-8-THC-dimethylheptyl (HU-210) 13, a synthetic analog of (D)-8-THC. On the other hand, 59 

the nonclassical category includes bicyclic and tricyclic analogs of D9-THC devoid of the pyran 60 

ring, with CP-55,940 being one of its well-known members.14 The compounds belonging to the 61 

amino-alkylindole class (i.e. WIN-55,212-2) considerably differ from the classical and non-classical 62

cannabinoid receptor ligands. 14,15 For completeness, the structures of the mentioned compounds are 63 

reported in Figure 1. 64 

 65 

 66 

Figure 1. Examples of known cannabinoid receptors ligands. 67 

 68 

We have set out to derive multi-layer explainable machine learning (XML) models16–19 for 69 

predicting CB1R and CB2R ligands. Specifically, four cooperating classification models were 70 

generated for predicting and rationalizing molecular determinants driving selective ligand binding 71 

to CB1R and CB2R. Each classification model was independently derived based on different sets of 72 

training data carefully curated from the ChEMBL database (release 31). 20 These compound pools 73 

contain a wealth of chemical information along with high-quality experimental data for binding to 74 



CB1R and CB2R. A new substructure-based core-substituent fingerprint (CSFP)21 was used to 75 

encode the structural information and SHAP values22–24 were computed to explain individual 76 

predictions. Eventually, the four models were assembled to build a multi-layer classifier25 which is 77 

freely accessible through a web platform designated Cannabinoid Iterative Revaluation for 78 

Classification and Explanation (CIRCE) that is provided with a user-friendly graphical 79 

interface.26,27 CIRCE returns predictions on demand and instantly provides a detailed portable 80 

report of prediction outcomes. While a variety of studies have reported compound predictions for 81 

the cannabinoid receptor system28–38, to the best of our knowledge, CIRCE is the first free web 82 

platform enabling users to predict if a query compound might interact with CB1R or CB2R. 83 

Moreover, CIRCE’s XML framework provides model predictions and easy to understand color-84 

coded maps of feature mapping to test compounds.  85 

 86 

Results and Discussion 87 

The multi-layer RF model forming the core component of CIRCE was conceived for the 88 

identification of selective CB1R or CB2R ligands by applying increasingly stringent criteria to 89 

discriminate between potential ligands and other compounds. Therefore, four individual models 90 

were derived to act sequentially by addressing subsequent prediction tasks for query compounds. 91 

The predictions were then explained via SHAP analysis to identify features determining the 92 

prediction and study structural motifs in selective ligands formed by decisive features. Notably, 93 

CIRCE was designed to predict if unknown compounds can act as CB1R or CB2R ligands but does 94 

not distinguish between agonists and antagonists. This is the case because many candidate ligands 95 

with potency measurements had no or not clearly defined mode-of-action annotations, which 96 

prohibited meaningful mechanism-based model derivation. Thus, we preferred instead to employ 97 

this amount of available data as an external set to strengthen the generalization of the multi-layer 98 

classifiers in CIRCE.  99 



As a first step, Analog Series (AS) were identified in the selective (including the DCB1 and DCB2 100 

collections of 1477 CB1R and 1820 CB2R specific ligands, respectively) and non-selective 101 

(including the DMT collection of 1251 non-selective CB1R and CB2R ligands) datasets. The Venn 102 

diagram 39 in Figure 2 reports the number of AS identified in these datasets and their overlap. Each 103 

AS contains a unique core structure.  104 

  105 

 106 

 

 

 107 

Figure 2. Panel (a) The Venn diagram shows the extent of chemical core overlap for selective and 108 

unselective CB1R and CB2R ligands. The yellow and red circles indicate selective ligands while the 109 

cyan circle indicates non-selective ligands. Panels from (b) to (f) show representative AS cores 110 



taken from selective and non-selective datasets. Symbols “*:1” and “*:2” indicate the position 111 

where the substituents occur. 112 

We identified 252, 272 and 200 cores that only occurred in the DCB1, DCB2 and DMT datasets, 113 

respectively. The intersection DCB1 ∩ DCB2 revealed the presence of cores important for binding to 114 

both CB1R and CB2R, indicating non-selectivity. The intersections DCB1 ∩ DMT, and DCB2 ∩ DMT 115 

contained cores with preferentially binding to CB1R or CB2R, respectively.  On the other hand, 116 

cores falling in the intersection DCB1 ∩ DCB2 ∩ DMT should be considered unselective. 117 

Differentiating between cores in selective and non-selective cannabinoid ligands is relevant for drug 118 

design. For instance, core 1 (panel (b) of Figure 2), composed of the 1H-indol-3-yl-(2,2,3,3-119 

tetramethylcyclopropyl) methanone moiety, was found in DCB1, DCB2, and DMT datasets 20, 6 and 1 120 

times, respectively, hence representing an unselective core. Furthermore, cores 2 and 3 (panels (c) 121 

and (d) of Figure 2), shared the 2-methyl-1,2,3,4-tetrahydropyrrolo[3,4-B]indole and the 122 

acetylpiperidine moieties, and differed only for the absence/presence of the ethylsulphone group. 123 

Interestingly, this small modification depicted for cores 2 and 3 was implicated in selectivity, since 124 

their occurrences were retrieved within DCB2 and DMT datasets, respectively, and only within DCB1 125 

dataset, respectively. Moreover, cores 4 and 5, shown in panels (e), and (f) of Figure 2, were found 126 

only in the DCB2, and DMT datasets, respectively.  127 

Model performance 128 

We next evaluated the Random Forest (RF) models on the basis of different performance measures 129 

in independent trials. The performance evaluation of the four independent RF models based on a 130 

10-fold cross validation is summarized in Figure 3.  131 

Based on a sampling in the range 0.1 to 0.9 with a step equal to 0.1 (as shown in Figure S1 of the 132 

Supporting Information), the cut-off values of the classification scores were set to 0.4, 0.4, 0.6 and 133 

0.5, for the first, second, third and fourth layer, respectively, to maximize the Matthews Correlation 134 

Coefficient (MCC) yield. 135 



 136 

Figure 3. The panels (a), (b), (c) and (d) show the performances of the four independent classifiers 137 

after a 10-fold cross validation based on: Ligand collection (DB) vs Random Collection (DR); 138 

Ligand collection (DB) vs GPCR collection (DGPCRs); Non-selective ligand collection (DMT) vs 139 

Selective ligand collection (DST); and CB1R collection (DCB1) vs CB2R collection (DCB2). Accuracy, 140 

F1, recall, precision and MCC values are used as metrics.  141 

Overall, the predictions were accurate and stable with very small differences over the 10 142 

independent trials, as clearly described by the narrow distributions depicted in the box plots of 143 

Figure 3. Prediction accuracy was consistently beyond 85% for the first two models and the fourth 144 

model. Furthermore, selective and non-selective CB1R/CB2R ligands were distinguished with 145 

greater than 80% accuracy by the third model. Notably, the final model differentiated between 146 

selective CB1R from selective CB2R ligands with greater than 90% accuracy. For the sake of 147 

completeness, these data were also provided in the Table S1 of the Supporting Information.  148 

Although our datasets included compounds with only Ki and IC50 experimental data, we challenged 149 

the generalization capability of the multi-layer model by employing as an external set an unrelated 150 



pool of 1860 cannabinoid receptor compounds with available EC50 values only for CB1R or CB2R 151 

(342 and 1518, respectively). As a result, a subset of 444 ligands (144 CB1R and 300 CB2R ligands) 152 

passed through the four predictions and were satisfactorily predicted to be selective CB1R or CB2R 153 

ligands with 78% accuracy and an MCC value of 0.55.  154 

On the other hand, a possible reason for the relatively small number of ligands passing the multi-155 

layer model might be their overall structural diversity with respect to the DB dataset, as assessed by 156 

computing maximum Tanimoto similarity (Figure S2 of the Supporting Information). For the sake 157 

of completeness, we repeated the generalization study on the external set by arbitrarily lowering the 158 

cut-off values for the first two models to less stringent thresholds equal to 0.2 and 0.3. As shown in 159 

Table S1 of the Supporting Information, such adaptations of the cut-off values from 0.4 to 0.2 and 160 

from 0.4 to 0.3 increased the number of passing ligands from 444 of 1860 to 1214 and 726, 161 

respectively. This option was made available with the intention of giving users a broader view of 162 

the predictions although those made for the additional ligands at lower cut-off values should be 163 

considered with caution as further discussed below. 164 

Model explanation and features mapping 165 

Fingerprint features contributing to individual predictions were ranked on the basis of calculated SHAP 166 

values, described in the Materials and Methods section. Since the features used for model derivation 167

were unique structural fragments, they were readily interpretable with respect to CB1R or CB2R ligand 168 

selectivity. Complementing this wealth of information with SHAP analysis, CIRCE was able to 169 

return an intuitive and explainable knowledge basis for interpreting the molecular determinants 170 

behind the selectivity towards CB1R or CB2R thus providing transparent and immediate clues for 171 

designing new promising ligands.  172 

Some representative examples of features driving the prediction of CB1R or CB2R ligands are shown in 173 

Figure 4.  174 



 175 

Figure 4. Representative examples of relevant substructures prioritized by SHAP analysis. 176 

Structural fragments determining the correct prediction of selective CB1R and CB2R ligands are 177 

shown in the boxes on the left and right, respectively. Gray, blue, green, red and yellow circles 178 

indicate carbon, nitrogen, chlorine, oxygen and sulfur atoms, respectively. 179 

 180 

Intriguingly, the occurrence of substituents such as the acetylcyclopropanil and the cyan group as well 181 

as of phenyl rings with chlorine substituents in para, meta, or ortho positions, the latter present in well-182 

known CB1R selective ligands Ibipinabant and Rimonabant (a withdrawn drug previously used as 183 

anorectic antiobesity agent) 40–42, indicated selectivity for CB1R.  On the other hand, rings such as the 184 

cyclooctane and the adamantane, the latter contained in the selective CB2R antagonist AM-10257, 185 

depicted also as cognate ligand within the CB2 receptor crystal structure 43, and a substituent such as the 186 

ter-butyl were relevant for CB2R selectivity. 187 

This analysis was automatically included as a final step of the workflow, enabling an intuitive graphical 188 

explanation of pivotal features extracted through the SHAP analysis. Some representative examples of 189

correctly predicted compound heat maps are shown in Figure 5. Figure 5a and 5b show correctly 190 

predicted CB1R ligands, and substructures driving the prediction were highlighted with a gradient-based 191 

orange color employing the SHAP values as discussed above. Similarly, Figure 5c and 5d showed 192 



correctly predicted CB2R ligands, and the blue gradient-based color highlights the most important 193 

features for the right prediction. It is important to point out that the darker the color, the more important 194

the substructure for the prediction.  195 

 196 

197 

 198 

Figure 5. The panels (a) and (b) report two examples of correctly predicted CB1R ligands. 199 

Conversely, panels (c) and (d) show two properly predicted CB2R ligands. Orange and blue colors 200 

highlight important substructures for the prediction of CB1R or CB2R ligands, respectively. 201 

 202 

CIRCE web platform 203 

The multi-layer ML classifier and SHAP analysis were implemented in a user-friendly free web 204 

platform to provide a transparent and affordable tool for both expert and nonexpert researchers 205 

available at http://prometheus.farmacia.uniba.it/circe/. 206 

On the “Prediction” page, users can interrogate the CIRCE platform by drawing the 2D structure of 207 

a query molecule, or by pasting SMILES code. MOL and SDF formats are also supported. 208 



Computations take a few seconds to return an HTML output with all the required information. All 209 

the steps for CIRCE “Prediction” request are summarized in Figure 6.  210 

 211 

Figure 6. CIRCE “Prediction” page: query molecule can be entered as SMILES string or drawn 212 

within the JMSE sketcher. “Run the prediction!” button is to launch the prediction.  213 

As far as the HTML output is concerned, users can retrieve full details concerning the prediction for 214 

a given query structure. In detail, the output is organized as shown in Figure 7, showing a case 215 

study fully discussed in the next section.  216 



217 

 218 

Figure 7. CIRCE output. Panels (a), (b), and (c) report the output of each machine learning model, 219

the list of similar structures related to the query compound, and the heat-map related to the SHAP 220 

value computed on the query, respectively.  221 

 222 

The first section gives information concerning the prediction output. For models of the first and 223 

second layers, the probability prediction of the “Cannabinoid System” class is expressed with a 224 

value ranging from 0 to 1. This value measures the likeness of a query compound to be predicted as 225 

cannabinoid ligand. More in details, if the prediction for the first layer is calculated between 0.0 and 226 



0.2, the computation immediately stops since the query will not be labeled as a cannabinoid system 227 

ligand. If the prediction for the first two layers lies between 0.2 and 0.4, the query will be forwarded 228 

to the next layer but flagged as poorly reliable. This precautionary threshold range was selected 229 

according to the MCC values shown in panels (a) and (b) of Figure S1 and implemented to smooth 230 

the rejection of still unexplored chemotypes; this adaptation proved useful when screening external 231 

compounds as it allowed the prediction of even suspicious queries leaving the user the option to 232 

make more informed assessments. The model of the third layer reports prediction for selective (ST) 233 

or non-selective (MT) ligands. Finally, the model of the fourth layer returns assignment for 234 

selective CB1R or CB2R ligands.  235 

The second section returns all similar structures belonging to the Cannabinoid System dataset 236 

compared to the query molecules, along with their experimental activity and the Tanimoto 237 

similarity coefficient.  238 

The last section summarized the SHAP analysis for the query molecule and provides the heatmap 239 

visualization. Orange and blue colors indicate important substructures for the prediction of CB1R 240 

and CB2R, respectively. The darker the color, the higher the substructure importance for the 241 

prediction.  242 

Case study 243 

The CIRCE web platform was evaluated with literature examples of ligands not included in model 244 

derivation. For example, a selective CB2R ligand 49¸which showed a Selectivity Index equal to 245 

30.5. 44  As reported in panel (a) of Figure 8, the pentynyl chain along with the benzoyl groups are 246 

fundamental for the correct prediction.  247 



 248 

Figure 8. Panels (a) and (b) reports the structures of ligands 49 and 7f along with the heat-map 249 

indicating the key determinants for the correct prediction.  250 

 251 

In 2022, Iyer et al. tested a series of Ibipinabant based compounds for targeting CB1R.45 Among all 252 

molecules, compound 7c showed a Ki value 14 nM against CB2R and >100 nM against CB2R. 253 

CIRCE correctly predicted these compounds and highlighted pivotal substructures for the254

predictions, as shown in panel (b) of Figure 8. Here, the para-chlorine ring and the 3,4-255 

diarylpyrazoline ring connected to the carboximidamide group contributed the most to the CB1R 256 

correct prediction.  257 

Data and software availability 258 

The CIRCE platform makes automated predictions based as a whole on 24548 small molecules259

provided with experimental bioactivity data concerning the endocannabinoid system. Data were 260 

selected from ChEMBLdb release 31 by employing the set of filtering rules described in the 261 

Materials and Methods section. CIRCE is written in Python and is crafted as a freely available web 262 

platform at http://prometheus.farmacia.uniba.it/circe/. All the data are available as Supporting 263 

Information.264

Conclusions 265 

The endocannabinoid system represents a major pharmaceutical target. However, given the 266 

similarity of cannabinoid receptor isoforms, the rational design of selective CB1R and CB2R ligands 267 

is a particularly challenging task. In this respect, to aid in the discovery of selective CB1R and 268 



CB2R ligands, we have generated a multi-layer ML model to select candidate compounds with 269 

increasing stringency and complemented the predictions with SHAP analysis for model explanation 270 

and the identification of characteristic substructures in isoform-selective ligands. In test 271 

calculations, overall accurate predictions were obtained, and SHAP analysis consistently identified 272 

structural fragments determining the predictions. The XML system is provided as a freely available 273 

wed-based prediction and analysis platform. To the best of our knowledge, although several in 274 

silico approaches have been so far developed for the discovery of potential cannabinoid ligands, 275 

CIRCE is the first freely available digital platform enabling the transparent prediction of the 276 

selectivity against cannabinoid isoforms by employing a recently published fragment-based 277 

fingerprint. The user is given the chance to easily identifying the crucial molecular determinants 278 

involved in the classification process through an intuitive heat color map. All these steps are 279 

automatically included in the platform workflow, thus allowing broader employment for both 280 

experts and non-experts.  281 

 We hope that CIRCE will be useful to support the generation of selective CB1R and CB2R ligands 282 

in the practice of medicinal chemistry. In addition, CIRCE can be easily adapted on demand to run 283 

even massive virtual screening campaigns of large commercial library of chemical and natural 284 

compounds by providing a computer readable output easily transferable to the most common 285 

statistics and molecular tool for further and more informed analysis.   286 

 287 

Experimental section 288 

Datasets for model building 289 

Compounds and activity data were extracted from release 31 of the ChEMBL database using the 290 

following filters 28: (i) target filter ("target type: Single protein | Protein complex"); (ii) ligand filter 291 

("molecule type: Small molecule"; "prodrug: not 1"); and (iii) activity record filters ("confidence 292 

score: >5"; "standard relation: ="; "standard type: Ki and IC50"; "standard units: nM”; “no comment 293 

inherent to inactivity”). As reported elsewhere, 26,27,46,47 these filtering criteria ensuring high activity 294 



data integrity were successfully employed for the construction of a computational tool for drug 295 

target fishing and bioactivity prediction. In the present work, only data for CB1R and CB2R binding 296 

were taken into consideration. Hence, the classifiers derived from these data predict active 297 

compounds but do not differentiate between agonistic and antagonistic modes-of-action. 298 

Overall, seven different datasets were built based on the following criteria: 299 

1. Ligand collection (DB): This dataset contains 4548 ligands with experimental pKi>5 or 300 

pIC50>5 values (i.e., <10 µM) towards both CB1R and CB2R. This dataset consists of all 301 

selective and non-selective ligands.   302 

2. Random collection (DR): 10,000 randomly selected active compounds (excluding CB1R 303 

and CB2R ligands).   304 

3. GPCR collection (DGPCR): 10,000 randomly selected G protein-coupled receptor (GPCR) 305

ligands with qualifying activity data (excluding CB1R and CB2R ligands).    306 

4. Non-selective ligand collection (DMT): 1251 non-selective ligands with experimental 307 

pKi>5 or pIC50>5 values (i.e., <10 µM) towards both CB1R and CB2R. but with a 308 

difference in potency of less than 100-fold (i.e. Dpbind ≤2).48–50 309 

5.  Selective ligand collection (DST): 3297 selective ligands with bioactivity pKi>5 or 310 

pIC50>5 values (i.e., <10 µM) for both CB1R or CB2R, but with a difference higher than 311 

100 fold (i.e. Dpbind >2).  312 

6. CB1R collection (DCB1): 1477 specific ligands with pKi>5 or pIC50>5 values (i.e., <10 313

µM) for CB1R only.  314 

7. CB2R collection (DCB2): 1820 specific ligands with pKi>5 or pIC50>5 values (i.e., <10 315 

µM) for CB2R only.  316 

External set compounds317



For challenging the generalization strength of the models, 1860 CB1R and CB2R ligands with 318 

qualifying activity values of pEC50>5 (i.e., <10 µM) collected including 342 CB1R and 1518 CB2R 319 

ligands not used for model derivation.  320 

AS analysis 321 

From all compound datasets, AS with single or multiple substitution sites were systematically 322 

identified using the Compound-Core Relationship (CCR) method.51 Analogs from the same series323

often share biological activity.52 Nonetheless, small structural modifications might dramatically 324 

affect activity (leading to activity cliffs or inactive compounds). In our analysis, AS were used to 325 

preliminary explore structure-activity relationships (SARs) and help explain CB1R and CB2R ligand 326 

selectivity. Therefore, overlapping and non-overlapping core structures of AS were isolated from 327 

the sets of selective (i.e, DCB1, DCB2) and non-selective (i.e., DMT) ligands.328

Molecular representation 329 

The recently developed Core-Substituent Fingerprint (CSFP) was employed as a molecular 330 

representation. In brief, the goal of the CSFP design was to create an easily interpretable structural 331 

fingerprint (FP) composed of molecular fragments representing as many compounds as possible 332 

with the least amount of structural information per molecule. CSFP comprises a total of 1000 bits333

with balanced composition of rings and substituents (500 instances each). Each structural fragment 334 

was assigned to a single bit position. For further details, the interested reader is referred to the 335 

original work. 21 336 

Machine learning models 337 

Classification models were built by using the RF algorithm, with a default number of trees338

(n_estimator) equal to 400, 53 implemented using the scikit-learn python package. 54 RF was chosen 339 

as an established and robust ML approach for its transparency in parameter tuning and the ability to 340 

handle high-dimensional data. 53 The training sets represented a random sample of 70% of the 341 

compounds. Model performance was assessed using the remaining 30% of the compounds not 342 

encountered during training. Prediction results were averaged over 10 independent trials based on 343 



alternative performance measures including accuracy, precision, recall, F1-score (F1) and Matthews 344 

correlation coefficient (MCC) 55, as follows: 345 

 346 
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 356 

where TP, TN, FP, and FN stand for true positives, true negatives, false positives, and false 357 

negatives, respectively. 358 

Model architecture 359 

CIRCE employs a multi-layer ML classifier constituted by four binary RF models, each of which 360 

addresses a different prediction task. As shown in Figure 9, each layer is made by an independent 361 

binary RF classifier, which is nested into a sequential workflow. 362 

 363 

Figure 9. Sequential workflow of the multi-layer machine learning classifier. 364 



 365 

1. DB vs DR: in the first layer, the classifier predicts the potential of a query compound to be 366 

cannabinoid receptor ligand. If the prediction is positive, the query enters the second layer (if 367 

not, not further predictions are carried out).  368 

2. DB vs DGPCRs: The classifier predicts the potential of the query to preferentially bind to 369 

cannabinoid receptors compared to other GPCRs. If the prediction is positive, the query enters 370 

the third layer.  371 

3. DMT vs DST: The third classification distinguishes between non-selective and selective CB1R 372 

or CB2R ligands. If the query is predicted to be selective, it is forwarded to the fourth layer.    373 

4. DCB1 vs DCB2: The last classifier predicts a query to be a selective CB1R or, alternatively, 374 

CB2R ligand. 375 

Overall, the first two layers assess the likelihood of a query compound to be considered as 376 

cannabinoid ligand. On the other hand, layers three and four predict the potential selectivity against 377 

the two Cannabinoid receptors subtypes.  378 

Feature importance analysis 379 

The SHAP analysis concept originated from cooperative game theory game theory.15 In our XML 380 

analysis, fingerprint features corresponded to players engaging in the game of predicting an 381 

individual test compound. The sum of all feature importance values gives the probability of a 382 

prediction.16,17 For RF, SHAP values were computed using the TreeExplainer algorithm.16 To 383 

increase the transparency and the reliability of this evaluation, SHAP values were computer for 384 

each individual prediction trial and then averaged over all 10 trials.  385 

CIRCE web platform  386 

Both multi-layer ML classifier and the associated SHAP analysis have been implemented in a user-387 

friendly free web platform. The web frontend of CIRCE was conceived to allow both human 388 

operation and data retrieval through POST requests. The currently available output format is an 389 

HTML page. Python Flask web framework and Jinja2 templating libraries56 have been used for 390 



building the web frontend. A graphical widget (made available by the JSME open-source project)57 391 

enabling users to draw molecules or enter them in various input formats (SDF, MOL and InChI 392 

key) is featured on the prediction interface.  393 

  394 
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represented as histograms and colored in blue. Table S1: Validation studies performed by changing 400 
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