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Abstract: Correlation plenoptic imaging (CPI) is emerging as a promising approach to light-
field imaging (LFI), a technique for concurrently measuring light intensity distribution and
propagation direction of light rays from a 3D scene. LFI thus enables single-shot 3D imaging,
offering rapid volumetric reconstruction. The optical performance of traditional LFI, however, is
limited by a micro-lens array, causing a decline in resolution as 3D capabilities improve. CPI
overcomes these limitation by measuring photon number correlations on two photodetectors with
spatial resolution, in a lenslet-free design, so that the correlation function can be decoded in
post-processing to reconstruct high-resolution images. In this paper, we derive the analytical
expression of CPI images reconstructed through refocusing, addressing the previously unknown
mathematical relationship between object shape and its final image. We show that refocused
images are not limited by numerical aperture-induced blurring, as in conventional imaging.
Rather, the image features of CPI can be explained through an analogy with imaging systems
illuminated by spatially coherent light.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The study of light correlations has long been of interest due to their potential to enhance traditional
measurement techniques [1–8]. Investigations into correlations in both classical and quantum
contexts have yielded significant advancements, particularly in imaging technologies [9–24]. In
the quantum domain, the unique properties of entanglement have been exploited to exceed the
sensitivity limits of traditional imaging methods [25]. This has led to breakthroughs such as
sub-shot-noise microscopy [26,27], enabling unprecedented precision in imaging amplitude and
phase samples [28]. Interestingly, similar correlation properties can also be observed in classical
systems; this convergence of quantum and classical approaches demonstrates that many protocols
initially designed for quantum applications can be effectively adapted to classical contexts
[9,29–32]. As a result, the study of correlations continues to bridge the gap between quantum and
classical imaging, offering versatile solutions that transcend traditional boundaries. Correlation
plenoptic imaging (CPI) [33–39] is emerging as a promising correlation-based approach to
light-field imaging (LFI). LFI is a technique that allows for the concurrent measurement of both
light intensity distribution and the propagation direction of light rays from a three-dimensional
scene of interest [40]. The extensive amount of information collected by a light-field device
enables single-shot 3D sampling, a task that would require multiple acquisitions across various
planes with a standard camera [41,42]. This scanning-free characteristic makes light-field
imaging one of the fastest methods for 3D reconstruction, with applications spanning diverse
fields such as photography [43–45], microscopy [46] and real-time imaging of neuronal activity
[47]. Typically, light-field imaging employs an array of micro-lenses positioned between the
sensor and the imaging device (e.g., the camera lens). However, the presence of the array
significantly limits image resolution, preventing it from reaching the diffraction limit and causing
a rapid decline in resolution as 3D reconstruction capabilities improve [48,49]. CPI addresses the
main limitation of conventional LFI by decoupling the measurement of light-field information
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onto two photodetectors with spatial resolution [33], utilizing a lenslet-free optical design.
Three-dimensional information about the sample is encoded in the four-dimensional correlation
function, obtained by correlating the instantaneous light intensity impinging on the sensors
and performing statistical averaging. This correlation function can then be decoded entirely in
post-processing, to reconstruct high-resolution images of the object without the loss of resolution
typical of conventional LFI.

In this paper, we shall obtain the analytical expression of the CPI images reconstructed through
refocusing [50]. The mathematical relationship between the object shape and its final image,
in fact, was not known. For these reason, the optical performance of the technique has always
been evaluated based on phenomenological evidence, namely, by quantifying image degradation
as a function of the axial position of the sample. However, the typical source of degradation
of CPI images is not blurring, as is the case with conventional imaging, but fringing effects
[34,38], which alter the object features and are considered as artifacts of the technique. Finding
the mathematical expression of the final image, finally allows us to associate the image quality of
CPI to a well-defined physical origin, demonstrating a perfect analogy with many of the features
characterizing imaging systems illuminated by spatially coherent light.

2. Materials and methods

2.1. Imaging properties of CPI and refocusing

In CPI, light-field information about the sample is gathered by measuring intensity, or photon
number, correlations on two spatially resolving detectors.

Γ(ra, rb) = ⟨IA(ra)IB(rb)⟩ − κ ⟨IA(ra)⟩ ⟨IB(rb)⟩ , (1)

where IA,B is the instantaneous intensity on the detectors [51], and ra,b = (xa,b, ya,b) are the
two-dimensional coordinates on the two detectors photosensitive surface; ⟨I⟩ represents the
ensemble average of the stochastic quantity I. The value of the constant κ = 0, 1 varies according
to the selected illumination source of choice: for entangled-photon illumination κ = 0 [52–54],
whereas, with thermal light intensity fluctuations (κ = 1) are correlated [34,36,54,55]. Without
loss of generality for the scope of this work, we shall assume henceforth that κ = 1.

CPI can be implemented in many variations, each optimized for a specific goal according to
the application of interest and features of the sample. However, the correlation function is always
mathematically described through a second-order response function Φ′

Γ(ra, rb) =

|︁|︁|︁|︁∫ A(rs)

∫ [︁
A∗(r′s)

]︁m
Φ

′(rs, r′s, ra, rb) dr′s drs

|︁|︁|︁|︁2 , (2)

establishing the relationship between the electric field at the detectors coordinates and the field
on the sample coordinates (see Ref. [51] for a complete formal context). In the equation, A(rs)

represents the complex electric field transmittance of a 2D sample, where m can either be 0,
if only one of the two detectors collects light from the object, or 1 if light from the sample
illuminates both sensors [51]. The optical response of CPI is thus strongly non-linear with respect
to the input function A, both because A is involved twice in the second-order response function,
and because of the square module [56]. In many cases of interest Eq. (2) can be written as [57]

Γ(ra, rb) =

|︁|︁|︁|︁∫ A(rs) [A∗(rs)]
m
Φ(rs, ra, rb) drs

|︁|︁|︁|︁2 . (3)

For definiteness, we shall limit our discussion to phase-insensitive architectures (m = 1), even
though the results we shall present can be effortlessly extended to the case m = 0. None of
our assumption throughout the work, however, limit the validity of our analysis to either the
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macroscopic light intensity regime [34] or to coincidences at the single photon level [35], so that
the results obtained in this work apply equally well to both scenarios.

In order to obtain a sharp, axially localized [57], and low-noise image [58,59], the Γ function
must be refocused; the refocusing procedure is thoroughly described in Refs. [50,51]. In few
words, refocusing consists of reconstructing a specific object coordinate r by integrating over
all the optical paths converging from the two detectors to the sample coordinate r of interest
[50,51,53]. The reconstruction at coordinate r = (x, y) is thus obtained by means of the double
line integral

Σz(r) =
∫
γx(x,z)

∫
γy(y,z)

Γ dℓxdℓy, (4)

where the integration paths γx(x, z) in the (xa, xb) plane, and γy(y, z) in the (ya, yb) have equations

γx(x, z) : α(z) xa + β(z) xb = x (5)

γy(y, z) : α(z) ya + β(z) yb = y. (6)

As inferred by the dependence on z of the two coefficients α and β, the axial coordinate z of
the reconstructed plane is determined by the slope of the integration path, controlled, in turn, by
α and β. Depending on the optical design of the experiment, the functional dependence of the
coefficients on z is governed by the optical distances and experimental parameters into play.

2.2. Analytical expression of the reconstructed image

The exact mathematical expression that relates the object transmission function A(rs), placed
at axial coordinate z, and its reconstructed image Σz(r) is not as as straightforward as in typical
imaging devices. It is customary, in imaging, to describe the optical behavior of the imaging
systems in terms of its point-spread function (PSF), so that the image of an sample is obtained by
convolution of the object intensity profile with the PSF [60]. Such is the case, for instance, of
conventional LFI, in which the width of the PSF (or resolution) is determined by the combination
of the NA of the optical design and the size of the lenslets [61]. Conversely, due to both the
non-linearity of Eq. (2) and the added complexity originating from the refocusing procedure,
the mathematical relationship between the input shape and the output image in CPI is more
complicated and cannot be described through a PSF.

We shall now give an overview of the steps required to obtain an analytical form of the
reconstructed image. As detailed in Ref. [50], the refocusing procedure entails a reparametrization
of the correlation function, so that the two line integrals in Eq. (4) can be evaluated, either
numerically or analytically, as Riemann integrals

Σz(r) =
∫
γx(x,z)

∫
γy(y,z)

Γ dℓxdℓy =
∫ ∫

Γtrans
(︁
x, y, tx, ty

)︁
dtx dty, (7)

where the transformed correlation function Γtrans, also known as the refocused correlation function,
is a reparametrization of the original Γ:

Γtrans
(︁
x, y, tx, ty

)︁
= Γ(xa(x, tx), ya(y, ty), xb(x, tx), yb(y, ty)). (8)

Refocusing is thus defined by the linear refocusing transformation⎡⎢⎢⎢⎢⎣
xa(x, tx)

xb(x, tx)

⎤⎥⎥⎥⎥⎦ = Rz

⎡⎢⎢⎢⎢⎣
x

tx

⎤⎥⎥⎥⎥⎦ , (9)

where Rz is the 2 × 2 refocusing matrix in the (x, tx) plane. The analogous relationship holds for
defining the dependence on the remaining two dimensions ya(y, ty) and yb(y, ty). The refocusing
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matrix Rz is linked to the refocusing integration path of Eqs. (5) and (6) through its inverse matrix

R−1
z =

⎡⎢⎢⎢⎢⎣
α(z) β(z)

ξ ζ

⎤⎥⎥⎥⎥⎦ , (10)

where the first row of the matrix is determined by the coefficients of the integration path, while
the second row is completely arbitrary, provided det R−1

z ≠ 0 (R−1
z must be invertible to obtain

the refocusing matrix). The mathematical expression of Σz(rs) is thus obtained by arbitrarily
choosing the second row of the matrix R−1

z and inverting it, to obtain the functional dependence
of Eq. (9); the expressions in Eq. (9) must then be plugged into the function Φ′ of Eq. (2) to
obtain the refocused correlation function Γtrans; lastly, the double integral on

(︁
tx, ty

)︁
must be

performed. Although the outlined steps lead to a perfectly determined mathematical formula, its
analytical expression is cumbersome and difficult to interpret, with the added downside of not
being universal for any CPI architecture, because both the function Φ′ and the refocusing matrix
Rz depend on the optical design.

3. Results

3.1. Refocusing in the infinite-NA approximation

It is well known that the quality of refocused images is almost unaffected by the NA of the
optical design [34,35,55,57]. In fact, apart from the plane (or planes [54]) in focus, available
at Rayleigh-limited resolution λ/NA, the quality of the refocused images can be accurately
predicted in the limit of infinitely large optical components [57]. The simplified scenario of
infinite NA is surely worth investigating, since, as we shall see shortly, it allows one to develop a
clear picture for interpreting the features of the refocused images. To this end, let us consider that
a CPI system described by Eq. (3) with m = 1 has [51,53]

Φ(rs, ra, rb) = ga(rs, ra) g∗b(rs, rb), (11)

where ga,b are the Green’s functions propagating the electric field from the object plane at
coordinate rs to the detector plane at coordinate ra,b, respectively. As schematically outlined in
Fig. 1, any CPI architecture where the object shows negligible coherence area on its surface
[58,59], can be brought back to a simple conceptual scheme: light emitted from the object
propagates through free space until it reaches the planes that are optically conjugated to each
detector, placed at a distance za and zb, respectively; from the focused planes, the electric field is
then relayed, through the imaging systems A and B, onto the two detectors, with magnifications
Ma and Mb respectively. With this picture in mind, the Green’s function in Eq. (11) can always
be written as

ga,b(rs, ra,b) =

∫
exp

[︃
i

π

λ
(︁
z − za,b

)︁ (rs − r0)
2
]︃
Pa,b

(︃
r0,

ra,b

Ma,b

)︃
dr0, (12)

where the first integrand function represents free-space propagation by an optical distance z− za,b
(which can be negative for backwards propagation) [62] and Pa,b represents the PSF of the
focused imaging systems A and B, respectively. In the infinite-NA approximation that we
shall adopt, the planes in focus are thus relayed on the two detectors with perfect accuracy
(Pa,b

(︁
ro, ra,b/Ma,b

)︁
→ δ(2)

(︁
ro − ra,b/Ma,b

)︁
), so that Eq. (11) reduces to a pure-phase term

Φ∞(rs, ra, rb) = lim
NA→∞

Φ(rs, ra, rb) = exp
[︃
i
π

λ

(︃
(rs − ra/Ma)

2

z − za
−
(rs − rb/Mb)

2

z − zb

)︃]︃
. (13)

This expression, valid for any CPI architecture, can also be used as a quick alternative
way to find the refocusing coefficients α and β in all generality. Through a stationary phase
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approximation [53], in fact, one finds that the refocusing integration paths r(ra, rb), solving

∂ argΦ
∂rs

|︁|︁|︁|︁
rs=r(ra,rb)

= 0, (14)

have equations

γx(x, z) : x =
z − zb

za − zb

xa

Ma
−

z − za

za − zb

xb

Mb
= α(x) xa + β(z) xb, (15)

for the x component, and analogous equation for the y components, exactly as expected from
Eqs. (5) and (6). The coefficients α and β can thus be used to build the refocusing matrix Rz and
the refocused correlation function. In the infinite-NA approximation, one finds an interesting
result: once the correlation is transformed, its dependence on the two integration parameters is
lost

∂Γ
(∞)
trans
∂tx,y

= 0, (16)

so that

Σ
(∞)
z (r) ∝ Γ(∞)

trans (r) =
|︁|︁|︁|︁∫ |A (rs)|

2 exp
[︃
i
π

λ d(z)
(rs − r)2

]︃
drs

|︁|︁|︁|︁2 , (17)

with

d(z) =
(︃

1
z − za

−
1

z − zb

)︃−1
. (18)

Equation (17) is easily recognized as the coherent diffraction pattern [60,62] of the intensity
profile of the object, as observed after Fresnel diffraction by an equivalent distance d(z). The
second integrand function is, in fact, the free-space propagator, already used in Eq. (12) to
propagate the electric field towards the planes in focus. Interestingly, the equivalent propagation
distance is not an optical distance physically involved in the setup, but is a function of the
displacement of the sample with respect to both plane in focus.

Fig. 1. Schematics of a generic CPI architecture

3.2. Unapproximated evaluation of refocusing with a Gaussian object

In order to appreciate what contributions to the final image quality are overlooked in the infinite-
NA approximation, we now evaluate the complete refocused image in the simple scenario of
a Gaussian object. In fact, the gaussian assumption on the sample allows us to deal with a
completely analytical expression for refocusing. For definiteness, the analysis will be carried
out for a microscopy-oriented CPI architecture, known as a correlation light-field microscope
(CLM) [34,63]. The schematics of the optical design are illustrated in Fig. 2: light emitted by the
sample propagates towards the entrance pupil of a microscope objective lens, after which it is
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split into two optical arms; the arm leading to detector A is an Ma-magnification conventional
microscope, arranged in such a way that the plane on focus on A is the first focal plane of the
objective lens; on detector B, the second principal plane of the objective lens is imaged which, in
a thin-lens approximation, can be considered as the objective lens plane. By choosing a reference
coordinate system having the zero on the lens plane, one has, in the formalism of the previous
section, za = f , where f is the objective focal length, and zb = z equal to the distance z of the
object from the lens.

Fig. 2. Schematics of CLM

According to the approximated Eqs. (17) and (18), the predicted reconstructed image is the
diffraction figure originating from the object, as observed from the equivalent distance

dCLM(z) =
(︃

1
z − f

−
1
z

)︃−1
. (19)

When the object is a Gaussian transmissive slit |A(rs)|
2 = exp

[︂
−

r2
s

2σ2
o

]︂
, Eq. (17) becomes

Σ
(∞)
z (r) = exp

[︃
− r2

2(σ2
o /2+σ(z)2diff)

]︃
with σdiff(z) = λ dCLM(z)

2
√

2π σo
. (20)

If the object is in focus (f = z, σdiff(f ) = 0), Eq. (17) predicts that the reconstructed image
has the same Gaussian shape of the sample, shrinked by a factor 1/

√
2; this prediction is in

accordance to the known fact that, if all image degradation mechanisms are neglected, a CPI
image is the squared intensity profile of the object [51,53]. When z ≠ f , instead, the predicted
broadening is inversely proportional to the object size and directly proportional to the equivalent
distance, as expected for the diffraction pattern from an aperture.

Let us now compare the prediction in the infinte-NA approximation with the expression of
the real refocused image. By assuming the limiting aperture of the setup is determined by the
objective lens acceptance, as is typically the case in conventional microscopy, both the tube lens
and the lens imaging the objective onto detector B can be approximately assumed to be infinitely
extended. For simplicity, we shall assume that the objective lens has Gaussian apodization, so
that its PSF function is also Gaussian; the width of the lens will be assumed to be σl. To keep our
analysis as general as possible, let us also include the possibility of a misfocused reconstruction:
so far, we have only considered the case of perfect refocusing, namely, when the refocusing
procedure reconstructs exactly the plane in which the object is. In most practical cases, however,
the axial position of the sample is not known a priori, so that refocusing is performed on a whole
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axial range, with the correct reconstruction being the sharpest image extracted from the whole
z-scan. To account for possible misfocusing, let us consider the general form of refocusing at
position z′, possibly different from the true object position z. The resulting image reads

Σz′(r) = exp

⎡⎢⎢⎢⎢⎢⎣−
r2

2
(︂
(σ′

o(z, z′))2 /2 + σ2
Ray(z′) + σ

2
diff(z, z′) + σ

2
CoC(z, z′)

)︂ ⎤⎥⎥⎥⎥⎥⎦ , (21)

where

σ′
o(z, z′) = z′

z σo ≃ σo σRay(z′) = λ
4π σl/z′ ≃

λ
4π σl/z

σdiff(z, z′) =
dCLM(z)+ z−z′

2

(︂
z
f −1

)︂√︃(︂
z/
√

2σl

)︂2
+8π2 σ2

o /λ
2
≃

λ dCLM(z)
2
√

2π σo
σCoC (z, z′) = |z − z′ | σl

2z . (22)

From Eq. (21) we see that, apart from the broadening stemming from misfocused refocusing
σCoC, which had been neglected in the previous case, the only missing contribution to broadening
is the Rayleigh-limited resolution σRay, determined by the effective NA. A deeper physical
understanding of the origin of the broadening mechanisms involved in Eq. (21) is obtained by
considering the approximated version of the various contributions, appearing as the rightmost
equalities in σ′

o, σRay and σdiff.

• For σ′
o(z, z′), we see that in presence of misfocusing (z′ ≠ z), the native size of the sample

can appear broadened (z′<z) or shrinked (z′>z); such effect, however, can hardly be noticed
due to the concurrent broadening induced the term σCoC (z, z′), which is the dominating
effect in case of misfocusing. As can be easily verified, the ratio between the two effects is
of order σl/2σo which, for the typical aperture and object size involved in microscopy, is
dominated by several orders of magnitude by σCoC. Hence, even when considering modest
misfocusing |z − z′ |, σ′

o can be approximated by the real size of the object σo;

• Through an analogous reasoning, the numerical apertureσl/z′ appearing in the denominator
of σRay(z′) can be replaced with the effective NA σl/z, defined by the distance of the
sample from the acceptance pupil, which has a much more defined physical meaning. This
term is, thus, the typical broadening due to the Airy disk in the focused plane;

• The third and last approximation, carried over the term σdiff, is based on two arguments.
Firstly, at the numerator, the second term depends on the product between the misfocusing
and the relative distance from focus (z − f ) /f . In a microscopy-oriented optical setup, both
this quantities are usually very small, the former for the same argument as the previous
approximations, the latter because the typical region of space that can be investigated in
CLM with high resolution needs to be around the working distance of the microscope;
the second term in the numerator can thus be neglected. The denominator is instead
dominated by the second term, since the first term becomes non-neglibible only for an
very small object size, which is only available for reconstruction very close to focus; in
such conditions, however, broadening is dominated by the Rayleigh limit. Hence, σdiff
has its physical origin exactly in the diffraction explained in terms of the infinite-NA
approximation;

• Lastly, the σCoC term is responsible for the axial sectioning capabilities of CPI, as defined
by the circle of confusion (CoC). In fact, the term describes the typical CoC blurring of
standard defocused microscopy and photography, with its radius being directly proportional
to both the misfocusing and the effective NA [64].

In summary, the only effect that is neglected in the infinite-NA approximation, when refocusing
the object plane (z′ = z), is the conventional blurring to to the Airy disk.
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4. Discussion

By analyzing Eq. (21), we have found that, in the case of a Gaussian object, the approximate
form of the refocused image obtained by neglecting finite apertures (Eq. (17)) gives a rather
good prediction of the image quality of a CPI reconstruction. In the absence of misfocusing,
in fact, the broadening of the image due to diffraction is almost identical for the true refocus
and approximated case. This is true, of course, provided the size of the imaged object is larger
than the Rayleigh-limited resolution, where the broadening due to the NA-dependent Airy disk
cannot be neglected. Such exception does not undermine the validity of our discussion: it is very
well-known that CPI can reconstruct Rayleigh-limited object only around focus, while, in the
rest of the 3D volume accessible for reconstruction, the imaging capabilities of the techniques
are inherently limited to larger object size, as defined by the resolution curves [57]. To account
for the Rayleigh limit at focus, the analytical expression of a CPI reconstruction can thus be
summarized as

Σz′=z(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︂∫

|A (rs)|
2 |P0 (rs − r)|2 drs

)︂2
when in focus|︁|︁|︁∫ |A (rs)|

2 exp
[︂
i π
λ d(z) (rs − r)2

]︂
drs

|︁|︁|︁2 when out of focus
, (23)

where |P0 |
2 is the typical incoherent PSF of the imaging system in its focus. The optical

performance of CPI can thus be attributed to two different physical phenomena, depending on
the axial position of the object to reconstruct:

• Close to focus, image quality is determined by blurring, as is the case with typical imaging,
determined by the convolution with a positive PSF (Airy disk), whose size is governed by
the NA of the imaging system;

• Far from focus, image degradation is purely determined by coherent diffraction, by an
equivalent free-space distance d(z) that depends on the particular CPI architecture.

The imaging performance of CPI can thus be explained almost entirely in terms of Eq. (23),
neglecting, for a moment, the axial sectioning capabilities. As it has been recently demonstrated,
in fact, the image quality of a coherently illuminated defocused imaging system is not determined
by CoC-induced blurring, as is the case with conventional imaging [65]. The resolution of
coherent systems has been shown to be independent of NA and obey a square-root law with
the distance from focus. In a complete analogy to coherent imaging, inspired by the striking
similarity between Eq. (23) and the optical response of such systems, one can expect to derive the
optical behavior of CPI entirely in terms of coherent imaging, with the caveat that the distance
from focus, determining the resolution, must be replaced with the equivalent distance d(z).
To confirm that such analogy is indeed correct, let us remark that the resolution of defocused
coherent systems can be explained purely in terms of diffraction from the object plane to the
plane in focus [65], as described by square-root resolution loss with the distance from focus.
Hence, the analogous resolution limit of CPI is expected to be

resCPI(z) ∝
√︁
λ d(z). (24)

This expectation is, in fact, in perfect accordance with the all the well-known resolution curves
of all the CPI architectures known to-date [33–35,54,55,57], demonstrating from yet another
viewpoint that the analogy between CPI and coherent imaging is accurate. We must point out
that, even if the arguments proposed so far have only been motivated analytically in the easy and
unrealistic case of a Gaussian object, the validity of such arguments can be verified numerically
for any other class of objects. For instance, Fig. 3 reports the results of a z′-scan, obtained by
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refocusing a range of axial coordinates z′ around the object position z = 1000 µm. For brevity, we
shall indicate with z or z′ the displacement from focus (instead of z − f ). The plots are obtained
by assuming a CLM architecture (Fig. 2), where the Gaussian-apodized objective lens has focal
length f = 30 mm, and NA= σl/f = 0.167. As the sample, a binary double-slit transmissive
mask has been chosen, whose slits have center-to-center distance of 50 µm and width of 25 µm.
On the left, the (x, z) section of the volumetric cube is reported, evaluated at fixed y = 0. From
the plot, the axial sectioning capabilities of CPI are evident: when planes different from the true
object plane are reconstructed (z′ ≠ z), the reconstruction appears blurred. As already mentioned
when discussing Eq. (21), the origin of such blurring is the CoC, as defined by the NA, which
is increasingly more severe as the misfocusing distance |z − z′ | increases. We should stress an
important aspect of the CoC affecting CPI reconstructions, which is perfectly analogous to the
propreties already demonstrated for 3D imaging through localized coherent illumination [65]:
since a single coherent image (such as any 2D slice of the correlation function, as per Eq. (3))
does not suffer from CoC-induced blurring, the existence of a CoC enabling axial localization is
a property of the refocusing algorithm, which yields a blurred image whenever the refocusing
coordinate does not coincide with the sample coordinate (z′ ≠ z) [57]. Being a linear effect (i.e.
a PSF), the CoC affects the reconstruction quality independently of the object characteristics;
hence the NA-dependent axial sectioning of the refocusing procedure is the same regardless of
the sample features, and is not a result of our choice of a Gaussian object profile in Eq. (21).

Fig. 3. Plots of the refocused images Σz′(r) of a 50-µm double slit object placed at
z = 1000 µm. Left: software z-scan obtained by refocusing the axial range 700 µm ≤ z′ ≤
1300 µm around the object. Right: comparison between the actual refocusing, without any
approximation (top), and the image Σ(∞), obtained by neglecting the finite size of pupils
(top).

On the right-hand side of Fig. 3, the image extracted from the 3D reconstructed cube at perfect
refocusing (z′ = z) is reported (upper image). The image, obtained without performing any
approximation on the correlation function and refocusing procedure, is indistinguishable from
the image obtained by applying Eq. (17) directly to the object: for the object size in play, the pure
diffraction (infinite-NA) approximation is an excellent framework for predicting the form of the
final image, even for more conventional samples such as a double-slit mask. This equivalence
between the CoC-free reconstruction in z′ = z and a diffraction pattern in a coherent imaging
context allows us to give a pyisical explanation to the NA→ ∞ limit used to obtain our results: as
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demonstrated both theoretically and experimentally [65], the most relevant contribution to image
degradation in coherent systems derive from free-space diffraction from the object plane to the
plane in focus. This is true, of course, provided the sample details to be imaged are larger than the
Airy disk. By comparison with Eq. (12), we see that also in CPI the electric field impinging on
the detectors is affected by diffraction by the defocusing distance za,b − z, and additionally blurred
by the Airy disk. Therefore, the infinite-NA approximation in this context, entailing a point-like
Airy disk in Eq. (12), is exactly the coherent-imaging analogous to considering diffraction to the
planes at focus as the main source of image degradation.

When the object size is not large enough for the approximation infinite-NA to be accurate, but
still the defocusing is sufficient to see some diffraction-induced fringing, the image shape cannot
be described by any of the two cases presented in Eq. (23). This situation can be expected to be
almost irrelevant in high-NA imaging system, where a very small natural DOF (λ/NA2) implies
a steep transition from the Rayleigh-limited (inside the natural DOF), to the diffraction-limited
regimes. For systems with a modest NA, such as the one we are considering, the transition
between the two cases can be smother, so that there might be a relevant region of 3D space that is
not correctly described by either of the two regimes. Figure 4 shows the case of a 5 µm double slit,
placed only 10 µm away from focus. The object size is barely larger than the Rayleigh-limited
resolution, expected to be of about 3 µm, and the axial placement is slightly outside of the natural
DOF. By comparing the image from unapproximated refocusing (top left) and the pure-diffraction
image (top right), one immediately recognizes that, even with clear effects of the harmonic
distortion caused by diffraction, non-negligible effect of blurring due to the Airy disk is still very
evident in the first image. Blurring is evident by considering the plot in the middle, reporting the
linear x-section at y = 0 of the two images above. The image obtained by coherent propagation
(red line) shows much richer harmonic content than the actual image obtained through refocusing
(blue line). By analyzing the harmonic content of the two curves (bottom panel), reported as the
square module of the FFT on a logarithmic scale, the refocused image can be recognized as a
low-pass filtered version of the coherent image. The attenuation of the high-frequency content
can be explained by considering that blurring due to the Airy disk is indeed equivalent to a spatial
frequency filter of width 2 NA/λ in the frequency domain (see Eq. (21)). To encompass this
effect into a general-purpose formula, even if not perfectly accurate from the point of view of the
derivation, Eq. (23) can be modified to account for the transient regime as

Σz′=z(r) ≃
∫

|P0 (r − r′)|2
|︁|︁|︁|︁∫ |A (rs)|

2 exp
[︃
i
π

λ d(z)
(rs − r′)2

]︃
drs

|︁|︁|︁|︁2 dr′, (25)

which has the property of degenerating into the two limit cases when their respective conditions
are satisfied, but to also include filtering due to the Airy disk in the intermediate scenario.

4.1. Validation with pseudo-thermal illumination

We shall now compare the predictions of our model to the real-life case in which the correlation
function (Eq. (1)) is evaluated from a discrete and finite set of speckle patterns [66]. Experimental
CPI datasets thus consist of two sets of N images I(n)A,B(xa,b, ya,b), as measured by the two detectors
A and B, with n = 1, . . . , N. The four-dimensional correlation function of Eq. (1) is thus estimated
as the time average of the dataset

Γexp(xa, ya, xb, yb) =
1
N

N∑︂
n=1

I(n)A ⊗ I(n)B −

(︄
1
N

N∑︂
n=1

I(n)A

)︄
⊗

(︄
1
N

N∑︂
n=1

I(n)B

)︄
. (26)

Once the experimental correlation function is evaluated, the refocusing procedure described by
Eq. (4) can be applied without any difference from the theoreical case. The number of meaured
frames does not affect the optical performance of the techique (resolution and depth of field),
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Fig. 4. Simulation showing the effect of neglecting finite apertures on small objects with
slit separation of 5 µm and small displacement z = 10 µm. Top: comparison between the
unapproximated refocusing (left) and the infinite-NA case (right). Middle; 1D x- axis section
of the refocused images, obtained by fixing the y coordinate; the plot compares the difference
the unapproximated (blue) and infinite-NA (red) refocusing. Bottom: comparison of the fast
Fourier transforms (FFT) of the data shown in the plot above. The dashed black vertical
line reports the expected cutoff frequency on the unapproximated case, as determined by the
Rayleigh limit, corresponding to an attenuation by a factor 1/e.

whereas the SNR of the final images is heavily affected by N [58,59]. Our model, however, has
been developed in the approximation of a infinite-SNR correlation function (N → ∞), so that a
fair comparison between Eq. (25) and the experimental refocusing can only be carried out if the
latter is available with sufficiently high SNR.

Due to the requirement of a large number of frames, we choose to validate our model in one
dimension, namely, on the x-components of the correlation function: the SNR of CPI is inversely
proportional to the number of statistically independent modes of the electric field emitted by the
object, resulting in a required N that is needlessly too large for our needs. In fact, provided the
PSF Pa,b of the imaging systems (see Eq. (12)) is approximately factorized in the two dimensions

Pa,b

(︃
r0,

ra,b

Ma,b

)︃
≃ P

(1D)

a,b

(︃
x0,

xa,b

Ma,b

)︃
P

(1D)

a,b

(︃
y0,

ya,b

Ma,b

)︃
, (27)

then also the refocused image is made up of indipendend contributions on the two dimensions

Σz′(r) = Σz′(x) Σz′(y), (28)

so that the model can be validated along only one dimension without any loss of generality.
Figure 5 shows a comparison between the theoretical model (Eq. (25)) and the refocused image

obtained from a simulated CPI dataset, assuming the sample is an emitter of pseudo-thermal
light. The experimental setup is the CLM architecture of Fig. 2, with an objective focal length
f = za = 30 mm and an entrance pupil with 15 mm diameter, resulting in NA=0.25. In order to
avoid undersampling, which might induce a pixel-limited optical performance, we have chosen a
spatial sampling about three times smaller than the Airy disk size λ/NA. The sample is a 50 µm
center-to-center double slit, placed out of focus by a distance z − za = 1 mm. The reconstructed
image prescribed by the model (solid blue line) has been obtained by propagating the sample
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profile by an equivalent distance dCLM(z) (Eq. (19)) through Fourier optics, and then by blurring
with the Raylrigh-limited PSF of the sytesm |PA |

2. The dashed gray and solid red lines report,
respectively, a low-SNR and high-SNR refocusing. The low-SNR measurement is obtained by
evaluating the correlation function from N = 103 frames, whereas the high-SNR is obtained from
N = 105. Simulated datasets are obtained by generating N speckle patterns with random phase
and exponentially decreasing intensity distribution, as expected for a pseudo-thermal emission;
each speckle pattern is multiplied by the object double-slit emission profile, resulting in point-like
correlated emission on the sample area; spatial (detector A) and angular (detector B) frames are
obtained by propagating each speckle pattern through the optical setup by using Fourier optics;
intensity distributions are obtained as the square module of each of the 2N speckle patterns; the
correlation function is then evaluated by applying Eq. (26) and refocused.

Fig. 5. Validation of the model on simulated speckle-patterns in the CLM setup of Fig. 2.
The sample is a 50 µm center-to-center double slit. The solid blue line is the theoretical
expectation, as prescribed by Eq. (25); the dashed gray line is obtained by refocusing
a low-SNR correlation function (N = 103), whereas the red line is the refocusing of a
high-SNR correlation function (N = 105). The A and B insets show, respectively, the details
corresponding to the refocused slit area and background.

As can be seen from the figure, the theoretical prediction is extremely similar to the refocused
image obtained be refocusing the correlation function obtained, in turn, from pixel-by-pixel
correlation of speckle patterns. In fact, the two images evaulate to a Pearson correlation coefficient
of 99.6%.

Figure 6 reports the comparison between the theoretical expectation and simulated speckled
dataset in another CPI architecture, named CPI-AP [54]. The simulated experimental setup is
shown in panel a): detectors A and B are arranged in such a way that the imaged planes are
imaged planes are placed at za = f − 0.5 mm and zb = f + 0.5 mm, respectively. Each of the two
optical paths is thus a two-lens microscope-like design, neither focused at the working distance
(za,b ≠ f ). As for the simulations in Fig. 5, the focal length of the first lens is f = 30 mm, with a
diameter of 15 mm. The sample, chosen as a double slit with the same size as Fig. 5 is placed
mid-way between za and zb, namely, z = f ≠ za,b. Both the theoretical curve and the simulation of
the speckled dataset is obtained as in the previous case. Due to an evidently lower SNR compared
to the previous case, a comparison between the refocused correlation function from experimental
data and the theoretical model results in a 65.7% correlation coefficient.

Regardless of the absolute value of the correlation coefficient, which is heavily dependent on
the SNR of the reconstruction and how well the approximated expression of Eq. (25) reproduces
experimental reality, Figs. 5 and 6 show that the experimental fringing effects experimentally
found in CPI can be perfectly explained as diffraction fringes. In fact, the axial position of peaks
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Fig. 6. Validation of the model on simulated speckle-patterns in a CPI-AP setup [54]. The
sample is the same double slit mask as in Fig. 5. Panel a). Experimental scheme of the
simulated CPI-AP architecture. Panel b). The solid blue line is the theoretical expectation;
the dashed gray line is obtained by refocusing a low-SNR correlation function (N = 103);
red line is the refocusing of a high-SNR correlation function (N = 105). The A and B insets
show, respectively, the details corresponding to the refocused slit area and background.

and dips of the refocused images is accurately predicted, both for CLM and CPI-AP, by the
theoretical model we developed.

5. Conclusions

Neglecting the finite size of the apertures in the optical design of CPI has allowed us obtain the
mathematical expression relating the shape of the object to the final image obtained through CPI
refocusing. The motivation for investigating such infinite-NA approximation is well-rooted in
previous literature, containing abundant experimental and theoretical evidence that the quality
of refocused images is mostly independent of the size of the optics. As recently demonstrated,
the NA indeed plays a key role in determining the tomographic capabilities of CPI [57], but the
lateral resolution is determined by a square-root trend depending the optical distances involved,
with no contribution from the NA.

The analytical expression of the refocused images (Eq. (23)) has allowed us to bridge the gap
between the phenomenological characterization of the imaging performance of the technique,
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extensively demonstrated in previous literature, and the explanation of the physical origin of
that performance. In fact, Eq. (23) implies that a defocused CPI system performs exactly as
an optical system illuminated by a spatially coherent source of light [65]. The resolution in
such systems has, in fact, the very same features already known for CPI, such as the square-root
dependence of the resolution on the distance from focus. Two differences, however, must be
highlighted: firstly, the propagation distance in the case of CPI must be substituted with an
equivalent distance d(z), which only degenerates into a pure square-root law only in the case of
CPI through position-momentum correlations (zb → ∞ in Eq. (18)) [55]; lastly, whereas coherent
imaging is sensitive to the phase content of the sample, CPI in the case of m = 1 (see Eq. (3)) is
phase-insensitive. Architectures where the object is placed only in one of the two optical arms,
however, can be expected to gain the same phase sensitivity as coherent imaging, although with a
reduced SNR [58,59].

To conclude, we should point out that the availability of an analytical form of the output image
can be expected to greatly improve the volumetric imaging capabilities of CPI. In fact, the optical
performance of the technique has been so far evaluated by studying how faithfully an object
can be reconstructed as a function of its axial position. The resolution curves of the technique
where thus obtained by selecting, for each axial position, the smallest object size resulting in a
satisfactory reconstruction. However, as we show in Fig. 7, even with very large displacement
from focus, images reconstructed by CPI (blue) are never “washed away”, as is the case with
conventional incoherent imaging systems, but show rich spatial modulation. Such spatial features,
which in past literature were considered as artifacts of the technique, can now be deterministically
related to the object shape through Eq. (23). Hence, even with axial displacements so large that
the final image does not resemble the original shape of the sample, the object can be recovered
by means of broadly-used inverse computation algorithms, used on a daily basis in conventional
coherent imaging techniques, paving the way towards even better reconstruction capabilities and
super-resolution [67–69].

Fig. 7. Comparison of the different type of image degradation affecting CPI refocused
images (blue) and standard incoherent imaging (red), as the object is moved away from focus
(z = 0). The object is a 50 µ double slit object, as in Fig. 3.
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