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Abstract

We consider a network of identical piecewise smooth bimodal systems, also known as systems of Filippov type, that synchronizes
along the asymptotically stable periodic orbit of a single agent. We explicitly characterize the fundamental matrix solution of
the network along the synchronous solution and extend the Master Stability Function tool to the present case of non-smooth
dynamics of Filippov type.
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1 Introduction

Synchronization of dynamical networks is a fascinating,
widely studied, and impactful phenomenon; e.g., see [24],
[4], [18] for early applications in the applied sciences,
and the review [13] –and the many references there– for
a thorough account on the topic of oscillators synchro-
nization. In the most typical and studied circumstance,
one has a network of N nodes, the so-called agents, that
obey N identical nonlinear differential equations with
vector field f , coupled through linear anti-symmetric
coupling. The key concern is to find conditions that tie
together the strength of the coupling, the structure of
the network, and the agent’s dynamics, in such a way
that the network synchronizes. This problem has been
extensively studied, under a number of different scenar-
ios, for networks of smooth systems; e.g., see the work
of Pecora and coauthors [3], [22] for a study exploiting
Lyapunov exponents ideas, and see [16] for a study more
along the lines of the theory of dissipative attractors.

After the cited works of Pecora and coauthors, proba-
bly the most widely adopted and successful tool to in-
fer convergence to, and/or stability of, a synchronized
solution in networks of smooth dynamical systems has
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been that of the master stability function (MSF). How-
ever, as remarked in [7], this “approach requires some
degree of smoothness in the agents’ vector fields ... and
extensions need to be found” when dealing with piece-
wise smooth (PWS) systems. Our goal in this work is
to provide such extension for Filippov systems, that is
when the agents satisfy a differential system with dis-
continuous right-hand side.

There are several types of PWS differential equations,
all being characterized by a change occurring when the
solution crosses a specific set (termed the discontinuity
set) and the discontinuity set itself is typically assumed
to have a smooth manifold structure. The three most
common types of PWS systems are the following.

(i) The state changes across the discontinuity set, i.e. the
solution jumps to a different value as the discontinu-
ity set is reached, even though the vector field does
not change. Important examples are spiking neuronal
networks, so-called integrate and fire systems, or also
impact oscillators in mechanics. We may call these im-
pacting PWS systems.

(ii) The right-hand side (the vector field) changes dis-
continuously as the solution reaches the discontinuity
boundaries. These are more properly called differen-
tial systems with discontinuous right-hand-sides, and
are usually known as Filippov, or bimodal, systems.
This is the class of PWS on which we will focus our
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attention in this work.
(iii) The discontinuities take place in higher derivative

terms, and for these reasons these are often called
PWS continuous systems. The well studied Chua’s
circuit is in this class.

Of course, the above cases present distinct character-
istics and difficulties, and need not be mutually exclu-
sive. However, in the present work, we only study the
synchronization problem for networks where each agent
satisfies a nonlinear piecewise smooth system of Filip-
pov type. We will call these piecewise smooth Filippov
networks, or just Filippov networks, or simply piecewise
smooth (PWS) networks if it is clear from the context. As
it turns out, Filippov networks are the type of networks
for which the extension of the MSF is lacking, whereas
the standard theory and numerical methods hold un-
changed for networks where the agents satisfy a PWS
continuous system, and the case of networks where the
agents satisfy an impacting PWS system have been con-
sidered before, at least in some cases; see below.

To reiterate, we consider the network

ẋi = f(xi) + σ

N∑
j=1

aijE(xj − xi), xi ∈ Rn , (1)

for i = 1, . . . , N , where f is only piecewise smooth:

f(xi) =

{
f+(xi), h(xi) > 0

f−(xi) h(xi) < 0
,

i = 1, . . . , N , and h(x) = 0 describes the discontinuity
manifold. In (1), A ∈ RN×N = (aij)i,j=1,...,N is the ad-
jacency matrix of the graph describing the network, and
recall that aij = 1 if there is an arc connecting i-th and
j-th node, and aij = 0 otherwise; as usual, we assume
that the graph is undirected, simple and connected, so
that A is symmetric. Also, σ ≥ 0 is the the coupling
strength, and E ∈ Rn×n is the coupling matrix describ-
ing which components of the two agents xi and xj , i 6= j,
are connected to one another. Next, we let D be the

diagonal matrix with elements dii =
∑N
j=1 aij , and let

L = −(D−A), L ∈ RN×N , be the negative of the graph
Laplacian. Then, using Kronecker product notation, we
rewrite (1) as

ẋ = F (x) + σMx, where

x =


x1

...

xN

 ∈ RnN , F (x) =


f(x1)

...

f(xN )

 ∈ RnN ,

M = L⊗ E ∈ RnN×nN .

(2)

As noted, our present interest is in the case when, taking
σ = 0 in (2), each agent obeys identical piecewise smooth
bimodal dynamics:

ẋi = f(xi) =

{
f+(xi), h(xi) > 0

f−(xi), h(xi) < 0
, i = 1 : N, (3)

with f± : Rn → Rn smooth vector fields (say, C1), and
the scalar function h : Rn → R defines the discontinuity
boundaries and is assumed to be at least C2. For each
agent, the manifold of discontinuity is the zero set {x ∈
Rn : h(x) = 0}, and we will use the following notation:

Σ = {x ∈ Rn | h(x) = 0}, R± = {x ∈ Rn | h(x) ≷ 0}.
(4)

Remark 1 In general, the set Σ is a co-dimension 1
manifold embedded in Rn. For example, in R2, it would
be given by (the union of) non-intersecting curves. A typ-
ical case we have seen in many applications is when Σ is
a hyperplane, h(x) = cTx − b, but this is not necessary
in our work. Finally, it should be appreciated that there
may be several functions h whose 0-sets define distinct
discontinuity manifolds, in which case the meaning of f±

has to be understood to hold with respect to the discon-
tinuity manifold h = 0 provided; for example, the situa-
tion h(x) = |cTx|−b = 0 gives two distinct discontinuity
planes.

As customary, we say that a point x ∈ Σ is a transversal
crossing point if

(∇h(x)T f−(x))(∇h(x)T f+(x)) > 0, (5)

and it is an attractive sliding point if

∇h(x)T f−(x) > 0, ∇h(x)T f+(x) < 0. (6)

On Σ, sliding will be assumed to take place in the sense
of Filippov, whereby on Σ the dynamics of an agent is
given by

ẋ = fΣ(x) := (1− α)f−(x) + αf+(x) ,

α =
∇h(x)T f−(x)

∇h(x)T (f−(x)− f+(x))
.

(7)

Finally, a point x̄ ∈ Σ is called tangential exit point into
R− if a trajectory x(t) sliding on Σ reaches it at some
value t̄ and there it holds that

∇h(x̄)T f−(x̄) = 0, ∇h(x̄)T f+(x̄) < 0,[
d

dt
∇h(x(t))T f−(x(t))

]
t=t̄

< 0,

and similarly for a tangential exit point into R+. The
combination of transversal crossings, transversal entries
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on Σ, and tangential exits from Σ, are called generic
events, or simply events. To illustrate these occurrences,
referring to Figure 1, the point s1 is a crossing point, s2

is a transversal entry point, and s3 is a tangential exit
point.

Let the single agent (3) have a limit cycle with a finite
number of events, and not entirely contained in Σ (see
[15], [11], [5] for examples of self sustained oscillations
in discontinuous systems with partial sliding along the
discontinuity manifold). Let xS(t) be the corresponding
T -periodic solution. Then, given the structure of M , the

function xS(t) =


xS(t)

...

xS(t)

 is a periodic solution of (2)

of period T ; we will call this the synchronous solution.
However, even if xS(t) happened to be asymptotically
stable for the single agent, there is no guarantee that
xS be stable for the network dynamics for all values of
σ; further, when N is large, the numerical study of the
stability of xS(t) may be prohibitively expensive. This
issue can be overcome by extending the Master Stability
Function (MSF) tool of Pecora and Carroll, see [22], to
PWS networks.

The MSF technique relies on exploiting the structure of
the fundamental matrix solution of the network, and for
this reason in the present work our goal is two-fold. When
the network synchronizes on xS(t), first we will give the
explicit expression of the fundamental matrix solution
along the synchronous solution. Then, we will extend the
Master Stability Function (MSF) to piecewise smooth
Filippov networks. A rigorous justification of the use
of the MSF for general, nonlinear, PWS Filippov
networks appears to be lacking, and it is our purpose
to give it in this work.

Other authors before us have considered piecewise
smooth networks, and some important studies have been
made to resolve the outstanding concern of how to infer
asymptotic convergence in networks of piecewise-smooth
systems. An example is the recent work of [8] where dis-
continuous diffusive coupling is adopted. But also the
MSF tool has been used in some special type of PWS
networks. To witness, in the works [5], [6], the authors
use the MSF approach to study limit cycles in piecewise-
linear integrate-and-fire systems; the chosen vector field
is sufficiently simple that the authors can achieve some
analytical progress. The work of Ladenbauer et al., [19]
also considers use of the MSF on a special class of PWS
networks. The authors are concerned with impacting
PWS networks, in which the state –but not the vector
field– changes at so-called reset points. In particular,
their model is free of sliding regions, and only crossing
discontinuity can occur. More precisely, they consider a
planar, nonlinear, integrate-and-fire agent, and modify
the smooth MSF tool to study a synchronous periodic

orbit of a spiking neuronal network with delays, by
adopting the methodology of saltation matrices to form
the monodromy matrix through impact points (reset
points, in their case). To do so, they derive the salta-
tion matrices at the (intersection of) discontinuities. In
the case studied in [19], these saltation matrices can be
computed without ambiguity since a unique vector field
must be evaluated at the discontinuity point regardless
of the perturbation of the synchronous solution. But, in
the case of PWS Filippov networks (the case we con-

sider), several vector fields (precisely 2N +
∑N
k=1

(
N
k

)
)

are defined in the neighborhood of a discontinuity point
of a synchronous solution and this in general produces
a severe ambiguity of the saltation matrix. Overcoming
this ambiguity is an important theoretical achievement
in our work and it allows for use of the MSF on Filippov
type systems with crossings and sliding regions.

Remark 2 An alternative to considering the PWS sys-
tem as such (monitoring events, switching vector fields,
and so on) consists in replacing the original discontin-
uous vector field f± of the Filippov system (3) with a
globally smooth one, which reduces to f± away from a
small neighborhood of Σ. This approach is known as reg-
ularization and one possible regularization technique, the
one that has been mostly used in the literature, was orig-
inally introduced in [23]; a basic version of it consists in
replacing (3) with

x′ = (1− gε(z))f−(x) + gε(z)f
+(x) , z = h(x) , (8)

where gε is a Ck transition function, k ≥ 1, such that

gε(z) =

{
1 z ≥ ε
0 z ≤ −ε and g′(z) > 0 in (−ε, ε). If we do

this, then –for each given ε > 0– we are left with a smooth
problem. Of course, the trade-off is that this smooth prob-
lem depends on ε and we would need to study the limit as
ε → 0 of the solution of the regularized system. Now, it
is well understood that, for ε sufficiently small, there is a
periodic solution of (8), and that, in the limit as ε→ 0,
this periodic trajectory of the regularized problem con-
verges to the Filippov periodic trajectory of (8) (e.g., see
[2], [12]). In short, there is a non-ambiguous limit, and
the limit is known. However, there is a (big) difference be-
tween inferring that as the regularization parameter goes
to 0 the solution of the regularized problem converges to
the Filippov solution, and implying that the monodromy
matrix along the regularized solution converges to the one
evaluated along the Filippov solution. A proof of this last
statement is less clear to us unless some more restrictive
assumptions apply. As a consequence of this, for a net-
work of Filippov agents the convergence of the regularized
solution to the Filippov one does not imply convergence
of the Master Stability Function as well. Moreover, even
willing to assume that there is a convergence of some type
of the MSF of the regularized problem, where does this
“regularized MSF” converge? There are no results avail-
able the literature on the monodromy matrix along a syn-
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chronous periodic orbit of a network of piecewise smooth
agents. In this paper, we derive the expression for the
monodromy matrix and then compute the MSF of the net-
work. It would certainly be desirable that the monodromy
matrix along the synchronous periodic orbit of the reg-
ularized problem, and hence the MSF of the regularized
network, converges to the monodromy matrix of the Fil-
ippov network. As appealing as this sounds, this result is
not easy to prove and it is beyond the scope of this paper.

A plan of the paper is as follows. In Section 2, we derive
the precise form of the monodromy matrix along the
synchronous solution. In Section 3, we extend the MSF
tool to piecewise smooth networks. Finally, in Section
4 we give detailed numerical study of a network arising
in mechanical vibrations and infer that, for a range of
values of σ, the synchronous solution is stable.
Notation.
e ∈ RN is the vector with all elements equal to 1, so that
xS = e⊗ xS is the synchronous solution in RnN . Ip will
always indicate the (p, p) identity matrix, and e1, . . . will
be the standard unit vectors.
hi(x) = h(xi), i = 1, . . . , N . Σi = {x ∈ RnN | hi(x) =
0}, i = 1, . . . , N , and Σ = ∩Ni=1Σi. We will also write
hi,j(x) to mean one of hi(x) or hj(x), and similarly for
Σi,j .

2 Fundamental matrix solution for synchronous
periodic solutions

The main difficulties we need to address in this section
are the following.

(i) The network (2) has N discontinuity manifolds and
solutions might slide on the intersection of two or
more manifolds (in fact, as we will see, a synchronous
periodic solution xS with xS having a sliding por-
tion, will necessarily slide on the intersection of all N
manifolds). But, in general, the sliding vector field on
the intersection of the discontinuity manifolds is not
uniquely defined and we need to address how this im-
pacts the form of the fundamental matrix of the lin-
earized system. In the specific case we consider here,
there is no such ambiguity, see Lemma 8 and Theorem
17.

ii) The monodromy matrix along a periodic solution of
the piecewise system (3) is not continuous: it has
jumps at the entry points (crossing or sliding) on
the discontinuity manifold. These jumps are taken
into account via so called jump or saltation matri-
ces, whose scope is to transform the vector field at
the entry time, say t−, into the vector field at the
exiting time, t+. The correct expression for such ma-
trices is well known in the literature in the case of
a single discontinuity manifold (see [1], [21], [20]).
However, synchronous sliding solutions have to slide
on the intersection of N discontinuity manifolds and
the fundamental matrix solution along a synchronous

solution must take into account jumps at this inter-
section. In the literature, there are results about these
jump matrices relative to the intersection of two dis-
continuity manifolds, see [17] for the case of crossing
and [10] for the case of sliding, but no result exist for
the intersection of more than two manifolds. Surely
this must be because, in the case of sliding solutions,
there is no uniquely defined Filippov sliding vector
field on the intersection of discontinuity manifolds, as
noted in i) above. However, this is not the only issue.
Indeed, in general, on the intersection of discontinuity
manifolds, the jump matrix itself is not uniquely de-
fined, even if we are willing to select a specific sliding
vector field (again, see [17] for the case of crossing and
[10] for the case of sliding). This being the case, the
fundamental matrix solution cannot be defined in a
unique way. Theorems 13 and 15 deal with this aspect
in case of the synchronous periodic solution xS of (2).

After the expression for the monodromy matrix is ar-
rived at, in Section 3 we will see how to extend the MSF
tool to PWS networks.

For the above reasons, hereafter we derive the mon-
odromy matrix along the synchronous solution xS of (2).
The main results are given in Theorem 13 and 15, where
we show that the saltation matrices can be represented

in a unique way. Recalling that xS =


xS
...

xS

, where xS is

the periodic solution of a single agent (3), we will assume
that xS has a finite number of generic events. Because of
this, we will make the following convenient assumption
on the dynamics of xS .

Assumption 3 We assume that (3) has a periodic so-
lution xS(t) of period T that:

0) At t = 0, xS(t) = s0 is in R−;
1) At t = t1, xS crosses Σ transversally at the point s1 =

xS(t1) to enter R+;
2) At t = t2, xS reaches transversally the attractive slid-

ing point s2 = xS(t2) ∈ Σ and xS begins sliding on Σ;
3) At t = t3, xS reaches the tangential exit point s3 =

xS(t3), and it leaves Σ to enter into R−;
4) At t = T , xS is back at s0: xS(T ) = s0.

A sketch of the above situation is in Figure 1. Under the
above scenario 0)-4), the expression of the monodromy
matrix Φ(T, 0) of (3) along xS(t) can be derived with
the help of classical results in the theory of piecewise
smooth systems (e.g., see [1], [10], [21]), combining the
fundamental matrix solutions in smooth regions with
appropriate j ump matrices connecting different vector
fields at discontinuity points. Namely, Φ(T, 0) is given
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Fig. 1. Schematic of Assumption 3.

by the expression

Φ(T, 0) = Φ−(T, t3)ΦΣ(t3, t2)S+,ΣΦ+(t2, t1)S−,+Φ−(t1, 0),
(9)

where Φ± and ΦΣ are fundamental matrix solutions in

R± and Σ respectively, S−,+ = In + (f+−f−)∇h(s1)T

∇hT f−(s1)

is the jump matrix from R− to R+ and S+,Σ = In +
(fΣ−f+)∇hT (s2)
∇hT f−(s2)

is the jump matrix from R+ to Σ; here,

fΣ is defined in (7). There is no jump matrix from Σ
into R− at s = s3 since fΣ(s3) = f−(s3). Note that
S−,+f−(s1) = f+(s1) and S+,Σf

+(s2) = fΣ(s2).

Remark 4 Other than the need for a finite number of
generic events, the results in this section do not depend
on the particular structure of xS(t) given in Assumption
3 and can be immediately extended to any finite number
of generic crossings, sliding segments, and tangential ex-
its, of the periodic orbit of (3). Of course, the number
of generic events occurring, and their ordering in time,
does impact the form of the associated monodromy ma-
trix, but as long as the events and the times where they
occur are known, the monodromy matrix can be built ac-
cording to the same building blocks of what one does for
the monodromy matrix of xS(t) satisfying Assumption 3.
See also Remark 22.

Now, for N agents, there are 2N subregions (and corre-
sponding vector fields), and we can represent them us-
ing a tree diagram with 2N branches. We number the
regions, and the vector fields, from 1 to 2N following the
branches of the tree.

Example 5 For N = 3, we have the following corre-
spondence between region numbering and signs of h1, h2

and h3:

1 2 3 4

(−−−) (−−+) (−+−) (−+ +)

5 6 7 8

(+−−) (+−+) (+ +−) (+ + +)

In each subregion Rj, the vector field in (2) is F (x) =

Fj(x) =


f±(x1)

f±(x2)

f±(x3)

, j = 1, . . . , 8, where in f± we select

the sign in agreement with the region numbering above.

For example F3(x) =


f−(x1)

f+(x2)

f−(x3)

.

Remark 6 It is simple, but important, to observe that
if x ∈ Σ is an attractive sliding point for the single

agent, then Fj(x), x =


x
...

x

, points toward Σi for all

i = 1, . . . , N , and j = 1, . . . , 2N , i.e.,

∇hi(x)TFj(x) > 0, ∇hi(x)TFj(x) < 0.

The inequalities above imply that all solutions in a neigh-
borhood of x reach Σ in finite time. Then x = e⊗x ∈ Σ
is an attractive sliding point on Σ for the full network.
Similarly, if x ∈ Σ is a tangential exit point into R− (re-
spectively, R+) for the single agent, then x = e⊗ x ∈ Σ
is a tangential exit point into R1 (respectively, R2N ) for
the full network.

Remark 6 justifies the following fact. Let xS(t) satisfy
Assumption 3 and let sj = e⊗ sj , where sj is defined in
Assumption 3, j = 1, . . . , 4. Then, the synchronous so-
lution xS(t) = (e⊗xS(t)) obeys the following evolution
(see Figure 2):

0) At t = 0, xS(0) = s0 is in R1;
1) At t = t1, xS crosses R1 at s1 and enters into R2N ;
2) At t = t2, xS reaches the attractive sliding point s2

and starts sliding 1 along Σ;
3) At t = t3, xS exits Σ at the tangential exit point

x = s3 and enters into R1;
4) At t = T , xS reaches s0.

1 Although, in general, sliding along Σ is not unambiguously
defined, presently this is not a concern, since we are just
describing the evolution of the specific xS .
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Remark 7 Note that the synchronous solution xS sat-
isfies the following : i) it can only evolve in the regions
R1 or R2N ; ii) it can only cross the discontinuity mani-
folds at points on Σ, and iii) if it slides, it can only slide
on the intersection of all N discontinuity manifolds, i.e.,
on Σ. However, the solution of a problem relative to
perturbed initial conditions in general will not sat-
isfy the restricted motion described by points i)-iii) above,
and it may slide on, or cross, some of the Σi’s and
not just Σ. This fact must be taken into account when de-
riving the expression of the fundamental matrix solution
of the linearized dynamics, in particular of the saltation
matrices.

Next, we study the case N = 2 in detail. Appropriate
modifications required to generalize to the case N > 2
are given below. Following the tree diagram for N = 2,
we have the following four subregions of phase space and

corresponding vector fields, for x =

[
x1

x2

]
∈ R2n:

R1 = {x | h1(x) < 0, h2(x) < 0}, F1(x) =

[
f−(x1)

f−(x2)

]
,

R2 = {x | h1(x) < 0, h2(x) > 0}, F2(x) =

[
f−(x1)

f+(x2)

]
,

R3 = {x | h1(x) > 0, h2(x) < 0}, F3(x) =

[
f+(x1)

f−(x2)

]
,

R4 = {x | h1(x) > 0, h2(x) > 0}, F4(x) =

[
f+(x1)

f+(x2)

]
,

and F (x) in (2) is equal to Fi(x) for x ∈ Ri. Moreover
we have Σ1,2 = {x ∈ R2n | h1,2(x) = 0} and we con-
sider also the sets Σ±1,2, defined as follows: Σ±1 = {x ∈
R2n | h1(x) = 0, and h2(x) ≷ 0}, and similarly for Σ±2 .

The synchronous solution is xS(t) =

[
xS(t)

xS(t)

]
, and (un-

der Assumption 3) it evolves schematically as in Figure
2.

As already pointed out in Remark 7, while xS(t) can
only evolve in R1 and R4, and can only cross/slide-on
Σ = Σ1 ∩ Σ2, a perturbed solution might instead cross
just Σ1 or Σ2, and evolve in R2 or R3 and it might slide
along Σ1 and/or Σ2. Hence, in order to compute the
fundamental matrix solution, we will need the expres-
sions of the sliding vector fields on Σ1, Σ2 and Σ. Let
fΣ : Rn → Rn denote the sliding vector field of (3) on
Σ (see (7)) and let FS : R2n → R2n denote the slid-
ing vector field on S, where S is any of the following:
S = Σ±1 ,Σ

±
2 ,Σ.

The next result provides –at a point x on Σ– the four
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Fig. 2. Schematic of the periodic orbit for the network.

vector fields on Σ±1,2.

Lemma 8 Let x ∈ Σ, x =

[
x

x

]
, and suppose that x is

an attractive point with respect to both Σ1 and Σ2: cfr
(6) and Remark 6. That is, we have

0 <
∇h(x)T f−(x)

∇h(x)T (f−(x)− f+(x))
< 1 . (10)

Then, we have

FΣ±
1

(x) =

(
fΣ(x)

f±(x)

)
, FΣ±

2
(x) =

(
f±(x)

fΣ(x)

)
,

FΣ(x) =

(
fΣ(x)

fΣ(x)

)
= e⊗ fΣ(x),

where with fΣ(x) we denote the sliding vector field of (3)
on Σ, as defined in (7).

PROOF. We prove the statement for FΣ. The proofs
for the other sliding vector fields are analogous. Letxk be
a sequence of points in Σ, converging to the synchronous
point x: lim

k→∞
xk = x ∈ Σ. Since xk ∈ Σ, we have

xk =

[
xk1

xk2

]
and h(xki ) = 0 for all k and i = 1, 2. Now, let
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F̂j(x
k) = Fj(x

k) + σMxk =

[
f±(xk1)

f±(xk2)

]
+ σMxk with

j = 1, . . . , 4 and the sign in f± is taken in accordance
with the regionRj . Then the Filippov sliding vector field
on Σ is given by the convex combination

FΣ(xk) =

4∑
j=1

λkj F̂j(x
k) =

(
(λk1 + λk2)f−(xk1) + (λk3 + λk4)f+(xk1)

(λk1 + λk3)f−(xk2) + (λk2 + λk4)f+(xk2)

)
=

(
αk1f

−(xk1) + (1− αk1)f+(xk1)

αk2f
−(xk2) + (1− αk2)f+(xk2)

)

and αki , i = 1, 2, must be found from the requirement
that FΣ is tangent to Σ, that is

(∇hT ,∇hT )FΣ(xk) = 0 .

Therefore,

αk1 =
∇hT f−(xk1) + σ(∇hT , 0)Mxk

∇hT (f−(xk1)− f+(xk1))
,

αk2 =
∇hT f−(xk2) + σ(0,∇hT )Mxk

∇hT (f−(xk2)− f+(xk2))
.

Now, for any ε > 0, there exists Kε such that if k > Kε,
then ‖xk − x‖ < ε. This means that (for k sufficiently
large) all points xk are attractive sliding points rela-
tive to Σ, since –because of (10)– 0 < αki < 1 for k
sufficiently large. Thus, the sequence of sliding vector
fields on Σ is well defined. In the limit as k → ∞,

αki →
∇hT f−(x)

∇hT (f−−f+)(x)
(since Mx = 0 for x ∈ Σ) and

hence (see (7)) we obtain

FΣ(x) =

[
fΣ(x)

fΣ(x)

]
.

The argument for FΣ±
1

and FΣ±
2

is completely analogous

to the one above, with a few differences due to the way
the vector fields are constructed. For example, for FΣ−

2

we have FΣ−
2

= (1 − αk)F̂1(xk) + αkF̂2(xk), and αk

must be found from the requirement that FΣ−
2

is on the

tangent plane to Σ−2 , that is

(0,∇hT )

[
(1− αk)

[
f−(xk1)

f−(xk2)

]
+ αk

[
f−(xk1)

f+(xk2)

]
+ σMxk

]
= 0 .

Solving for αk and letting k →∞, we obtain that αk →
∇hT f−(x)

∇hT (f−−f+)(x)
and hence (see (7)) we obtain

FΣ−
2

(x) =

[
f−(x)

fΣ(x)

]
.

Remark 9 Lemma 8 extends to the case N > 2 as
follows. The sliding vector field FΣi

(x) along a single Σi,
has fΣ(x) in the i-th block while the components of the
vector field in the j-th block, j 6= i, are equal to f+(x)
or f−(x) in agreement with the sign of hj(x). Moreover,

FΣ(x) =


fΣ(x)

...

fΣ(x)

.

Next, in the case of N = 2, let X(T, 0) denote the mon-
odromy matrix along xS(t). Then, using the same ar-
guments as in [21] equation (9) formally generalizes as
follows:

X(T, 0) = X1(T, t3)XΣ(t3, t2)S4,ΣX4(t2, t1)S14X1(t1, 0),
(11)

where

dXi(t, τ)

dt
= (DFi(xS(t)) + σM)Xi(t, τ),

Xi(τ, τ) = I2n, i = 1, 4,

dXΣ(t, τ)

dt
= (DFΣ(xS(t)) + σM)XΣ(t, τ),

XΣ(τ, τ) = I2n,

where DFi, i = 1, 4, and DFΣ are the Jacobian matrices
of the vector fields Fi, i = 1, 4, and FΣ, respectively, and
in (11), the matrix S14 would be the jump matrix from
R1 into R4, and the matrix S4,Σ the jump matrix from
R4 into Σ. However, in general, see [10], [17], the jump
matrix on the intersection of two discontinuity manifolds
(here, Σ) is ambiguous and hence (11) is not uniquely
defined. In Theorems 13 and 15 we show that for our
problem we can use a unique expression for the jump
matrix.

Remark 10 Formally, the extension of (11) for N >
2, is easily obtained replacing S14 and S4,Σ with S1,2N

and S2N ,Σ. See Remark 7. The formal derivation of the
monodromy matrix also in this case requires the same
arguments as for a single agent, though of course we
will need to ensure lack of ambiguity in the jump matrix
S2N ,Σ, which we will do below for our problem.
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2.1 Jump matrix at the crossing point

Now, let y(t) =

[
y1(t)

y2(t)

]
be the solution of (2) with per-

turbed initial conditions y(0) = s0+∆s, ‖∆s‖ � 1. Re-
call that the monodromy matrix expresses, at first order
in ∆s, the evolution of these perturbed initial conditions
after one period. Below we give details on how to com-
pute S14. To go from R1 to R4, y(t) might either cross
directly Σ at time t1 + ∆t or it might instead cross Σ1

and Σ2 at two different times ∆t1 and ∆t2 before enter-
ing R4 (see Remark 7). In [17], the form of S14 is given
and the author points out that the jump matrix is am-
biguous. In Lemma 11 and 12 we give the expression of
S14 for the two different possibilities when y(t) crosses
Σ1 and Σ2 at two different times, or it crosses directly
Σ; but, then Theorem 13 states that only one expression
of S14 is needed to assess perturbations of synchronous
solutions and we give this unique expression of S14 as
a Kronecker product of the identity matrix I2 with the
jump matrix of the single agent.

Lemma 11 Let xS =

[
xS

xS

]
where xS satisfies Assump-

tion 3. Let y(t) =

[
y1(t)

y2(t)

]
be the solution of (2) with ini-

tial conditions y(0) = s0 + ∆s, s0 =

[
s0

s0

]
and ‖∆s‖ �

1. Let (t1 + ∆t1) and (t1 + ∆t2) be the times at which
y(t) crosses respectively Σ1 and Σ2 before entering R4.
Assume ∆t1 6= ∆t2. Then, the jump matrix S14 is given
by

S14 = I2⊗In+I2⊗
(f+(s1)− f−(s1))∇h(s1)T

∇h(s1)T f−(s1)
= I2⊗S−,+,

with S−,+ = In + (f+(s1)−f−(s1))∇h(s1)T

∇h(s1)T f−(s1)
being the jump

matrix for the single agent in (3) from R− to R+.

PROOF. We examine below the case ∆t1 < ∆t2. The
proof for the case ∆t2 > ∆t1 is similar. Following [17]
and [10], we can rewrite S14 as the composition of two
jump matrices: S14 = S34S13, with Sij being the jump
matrix from Ri to Rj . Using standard results on jump
matrices for one discontinuity manifold, we have that
(note that σMx = 0 along a synchronous solution)

S13 =

(
S−,+ 0

0 In

)
, S34 =

(
In 0

0 S−,+

)
,

with S−,+ defined in the statement. Then S34S13 =
I2 ⊗ S−,+. The case ∆t1 > ∆t2, in which the perturbed

solution first crosses Σ2 to enter intoR2 and then crosses
Σ1 to enter into R4, gives S14 as the product S24S12. It
is easy to verify that S24S12 = S34S13.

The case N > 2 can be treated in a similar way, and
see also [17, comments following Proposition 1] for an
explanation on how to extend the result to the inter-
section of N > 2 discontinuity manifolds. Using same
notations and same reasoning of the proof above, for
∆t1 < . . . < ∆tN , the jump matrix is given by the prod-
uct of the following N matrices

S1,2N = S2N−1,2N . . . S2N−1+1,2N−1+2N−2+1S1,2N−1+1.

The first factor S1,2N−1+1 is the jump matrix at Σ1. For
k > 1, S∑k−1

i=1
2N−i+1,

∑k

i=1
2N−i+1

is the jump matrix at

Σk and it is block diagonal with the k-th block equal to
S−,+ and the other blocks equal to In. For N = 3, for
example,

S18 = S78S57S15 =


In 0 0

0 In 0

0 0 S−,+



In 0 0

0 S−,+ 0

0 0 In



×


S−,+ 0 0

0 In 0

0 0 In

 = I3 ⊗ S−,+.

(12)

In the Lemma below we consider the case when the per-
turbed solution y(t) crosses Σ1 and Σ2 at the same time,
and give a unique expression for the jump matrix S14 in
this case.

Lemma 12 As in Lemma 11, let xS =

[
xS

xS

]
where xS

satisfies Assumption 3. Let y(t) =

[
y1(t)

y2(t)

]
be the solution

of (2) with initial conditions y(0) = s0 + ∆s, s0 =[
s0

s0

]
and ‖∆s‖ � 1. Let (t1 + ∆t1) and (t1 + ∆t2) be

the times at which y(t) crosses respectively Σ1 and Σ2

before entering R4. Assume ∆t1 = ∆t2 = ∆t, so that
necessarily y(t) from R1 crosses Σ to enter into R4.
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Then, without loss of generality,

S14 =

In + (f+(s1)−f−(s1))∇hT (s1)
∇hT (s1)T f−(s1)

0
(f+(s1)−f−(s1))∇hT (s1)

∇hT (s1)f−(s1)
In


= I2 ⊗ In +

(
1 0

1 0

)
⊗ (f+(s1)− f−(s1))∇hT (s1)

∇hT (s1)f−(s1)
.

PROOF. Following [17] and [10], there are two possible
expressions for S14 when ∆t1 = ∆t2:

S
(1)
14 = I2n + (F4(s1)− F1(s1))

∇hT1 (s1)

∇h1(s1)TF1(s1)

=

In + (f+−f−)∇hT (s1)
∇hT f−(s1)

0
(f+−f−)∇hT (s1)
∇hT f−(s1)

In

 ,

S
(2)
14 = I2n + (F4(s1)− F1(s1))

∇hT2 (s1)

∇h2(s1)TF1(s1)

=

In (f+−f−)∇h(s1)T (s1)
∇h(s1)T f−(s1)

0 In + (f+−f−)∇hT (s1)
∇hT (s1)f−(s1)

 .

Below we show that the two expressions are equivalent,
in the sense that their action on the input vectorxS(t1)−
y(t1) is identical.

Explicit computation of S
(1)
14 (xS(t1) − y(t1)) and

S
(2)
14 (xS(t1)− y(t1)) gives

S
(1)
14 (xS(t1)− y(t1))

=

(s1 − y1(t1)) + (f+(s1)− f−(s1))∇h(s1)T (s1−y1(t1))
∇h(s1)T f−(s1)

(f+(s1)− f−(s1))∇h(s1)T (s1−y1(t1))
∇h(s1)T f−(s1)

+ (s1 − y2(t1))

 ,

S
(2)
14 (xS(t1)− y(t1))

=

(s1 − y1(t1)) + (f+(s1)− f−(s1))∇h(s1)T (s1−y2(t1))
∇h(s1)T f−(s1)

(f+(s1)− f−(s1))∇h(s1)T (s1−y2(t1))
∇h(s1)T f−(s1)

+ (s1 − y2(t1))

 .

The statement then follows if we show

∇h(s1)T (s1 − y1(t1)) = ∇h(s1)T (s1 − y2(t1)) + h.o.t..
(13)

We use the following Taylor expansions

y1,2(t1 + ∆t) = y1,2(t1) + f−(y1,2(t1))∆t+O(∆t2),

h(y1,2(t1)) = h(s1) +∇hT (s1)(y1,2(t1)− s1)+

O(‖y1,2(t1)− s1‖2),

0 = h(y1,2(t1 + ∆t)) =

h(y1,2(t1)) +∇h(y1,2(t1))T f−(y1,2(t1))∆t+ h.o.t.

= h(s1) +∇h(s1)T (y1,2(t1)− s1)+

∇h(s1)T f−(s1)∆t+ h.o.t..

From the last equality it follows that

∇h(s1)T y1(t1) = ∇h(s1)T f−(s1) + h.o.t.

∇h(s1)T y2(t1) = ∇h(s1)T f−(s1) + h.o.t.
(14)

and this implies (13).

ForN > 2, the arguments are not different. Assume that
∆t1 = ∆t2 < ∆t3 < . . . < ∆tN , i.e., the perturbed so-
lution crosses Σ1 and Σ2 at the same time and then it
crosses the other manifolds at subsequent times. It fol-
lows that the saltation matrix has the following expres-
sion

S1,2N = S2N−1,2N . . . S1,2N−1+2N−2+1.

The perturbed solution starts in R1, it crosses Σ1 ∩
Σ2 and enters R2N−1+2N−2+1. The jump matrix from
R1 into R2N−1+2N−2+1 can be derived as in the proof
above. Following exactly the same steps as in the proof
of Lemma 12, we can use the expression

S1,2N−1+2N−2+1 = IN ⊗ In+
(

1 0

1 0

)
⊗ (f+−f−)∇hT (s1)

∇hT f−(s1)
0

0 I(N−2)n

 .
(15)

The other factors are jump matrices through the Σk’s,
k = 3, . . . , N . For N = 3, for example, the jump matrix
for ∆t1 = ∆t2 is given by S18 = S78S17, with S17 as
in (15) and S78 as in (12). For clarity of exposition, we
will do one more step. Assume that ∆t1 = ∆t2 = ∆t3 <
∆t4 < . . . < ∆tN . This means that the perturbed solu-
tion crosses at the same time Σ1, Σ2 and Σ3. Then

S1,2N = S2N−1,2N . . . S1,2N−1+2N−2+2N−3+1,

with

S1,2N−1+2N−2+2N−3+1 = IN ⊗ In+


1 0 0

1 0 0

1 0 0

⊗ (f+−f−)∇hT (s1)
∇hT f−(s1)

0

0 I(N−3)n

 .
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We now have the following theorem, that gives a unique
expression for S14.

Theorem 13 With same notation as in Lemma 12,
without loss of generality we can use the following ex-
pression for the jump matrix S14:

S14 = I2 ⊗ S−,+, (16)

where S−,+ is the jump matrix of the single agent (3)
from R− into R+.

PROOF. As a consequence of Lemmas 11 and 12, the
jump matrix S14 can be taken as follows

S14 =



I2 ⊗ In + I2 ⊗ (f+(s1)−f−(s1))∇h(s1)T

∇h(s1)T f−(s1)
,

∆t1 6= ∆t2,

I2 ⊗ In +

(
1 0

1 0

)
⊗ (f+(s1)−f−(s1))∇h(s1)T

∇h(s1)T f−(s1)
,

∆t1 = ∆t2.

Moreover, if ∆t1 = ∆t2, then (13) implies that at first
order ∇h(s1)T y1(t1) = ∇h(s1)T y2(t1) and similarly to
the proof of Lemma 12, easy computations imply that
at first order(

I2 ⊗
(f+(s1)− f−(s1))∇h(s1)T

∇h(s1)T f−(s1)

)
y(t1)

=

((
1 0

1 0

)
⊗ (f+(s1)− f−(s1))∇h(s1)T

∇h(s1)T f−(s1)

)
y(t1).

(17)

Then, at first order,

y(t+1 )− x(t+1 ) = (I2 ⊗ S−,+)(y(t−1 )− x(t−1 )),

for any y(t) perturbed solution of xS(t).

We stress that in general the saltation matrix at crossing
points on the intersection of two or more surfaces is am-
biguous, see [17,10]. However, at a synchronous solution,
for N = 2, equation (17) guarantees that the different
expressions for the saltation matrix are all equivalent.
The same is true for N > 2. If for example ∆t1 = ∆t2,
then equation (14) is verified also for N > 2. This in
turn implies that at first order a formula analogous to

(17) is verified, namely(
IN ⊗

(f+ − f−)∇h(s1)T

∇hT f−(s1)

)
y(t1) =

(
1 0

1 0

)
⊗ (f+−f−)∇h(s1)T

∇hT f−(s1)
y(t1) 0

0 IN−2 ⊗ (f+−f−)∇h(s1)T

∇hT f−(s1)

y(t1).

Then for N > 2 we can use the following expression for
the jump matrix at the crossing point s1

S1,2N =

(
IN ⊗

(
In +

(f+ − f−)∇h(s1)T

∇hT f−(s1)

))
.

Remark 14 Lemma 11 and 12 and Theorem 13 ex-
tend in a straightforward way to the case N > 2, via
the replacement of S14 with S1,2N = IN ⊗ S−,+, giving

y(t+1 )− x(t+1 ) = (IN ⊗ S−,+)(y(t−1 )− x(t−1 )).

2.2 Jump matrix at the sliding point

Going back to (11), we next need to analyze S4,Σ, that
is the jump matrix from R4 to Σ. In general, the jump
matrix from the region R4 to Σ is not uniquely defined,
which makes it not possible to give a unique expression
for the mondromy matrix. However, the jump matrix for
xS(t) is an exception, as stated in Theorem 15, in the
sense that (at first order) we can give a unique expression
for the action of S4,Σ on y(t−2 ) − xS(t−2 ). The proof in
Theorem 15 sums up results analogous to the ones given
in Lemmas 11 and 12 and in Theorem 13 for S14.

Theorem 15 Let xs =

[
xs

xs

]
where xs satisfies Assump-

tion 3. Then, without loss of generality we can use the
following expression for the jump matrix S4,Σ:

S4,Σ = I2⊗(In+
(fΣ(s2)− f+(s2))∇h(s2)T

∇h(s2)T f+(s2)
) = I2⊗S+,Σ,

where S+,Σ is the jump matrix of the single agent (3)
from R+ into Σ, and it is explicitly given by S+,Σ =

I +
(fΣ(s2)− f+(s2))∇h(s2)T

∇h(s2)T f+(s2)
, with fΣ given in (7).

PROOF. Following [10], a perturbed solution of xS(t)
might either reach directly Σ in a neighborhood of s2

or it might first slide along Σ1 or Σ2 before reaching

Σ. Let y(t) =

[
y1(t)

y2(t)

]
be the perturbed solution, with

y(0) = s0 + ∆s and ‖∆s‖‖ � 1.
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i) We first consider the case in which the perturbed so-
lution reaches Σ+

1 , slides along it and then it reaches
Σ. Then S4,Σ = SΣ+

1 ,Σ
S4,Σ+

1
with

S4,Σ+
1

= I2n +
(FΣ+

1
(s2)− F4(s2))∇h1(s2)T

∇h1(s2)TF1(s2)

=

In + (fΣ(s2)−f+(s2))∇h(s2)T

∇h(s2)T f+(s2)
0

0 In

 ,

SΣ+
1 ,Σ

= I2n +
(FΣ(s2)− FΣ+

1
(s2))∇h2(s2)T

∇h2(s2)TF1(s2)

=

In 0

0 In + (fΣ(s2)−f+(x))∇h(s2)T

∇h(s2)T f+(s2)

 ,

where the vector fields FΣ and FΣ+
1

are as in Lemma

8. Then the statement follows in this case. The case in
which y(t) reaches Σ+

2 before reaching Σ is analogous
and gives the same expression for the jump matrix.

ii) We next consider the case in which y(t) reaches Σ
directly at time t2 + ∆t. As in [10], in this case S4,Σ

has two expressions, namely

S
(1)
4,Σ = I2n +

(FΣ − F4)(s2)∇h1(s2)T

∇h1(s2)TF4(s2)
,

S
(2)
4,Σ = I2n +

(FΣ − F4)(s2)∇h2(s2)T

∇h2(s2)TF4(s2)
.

Using the same reasonings as in Lemma 12, at
first order the perturbed solution must satisfy
∇h1(s2)Ty(t2) = ∇h2(s2)Ty(t2), i.e.,∇h(s2)T y1(t2) =
∇h(s2)T y2(t2) + h.o.t.. In this case we can use a
unique expression for S4,Σ:

S4,Σ = I2 ⊗ In +

(
1 0

1 0

)
(fΣ − f+)(s2)∇hT

∇hT f+(s2)
.

iii) The final argument is analogous to the one in the
proof of Theorem 13. We have two possible expres-
sions for the jump matrix: in i), when y does not
reach Σ directly and in ii) when y reaches Σ directly
from R4. In this last case however, ∇hT (s2)y1(t2) =
∇hT (s2)y2(t2) + h.o.t. and this implies that at first
order

y(t+2 )− x(t+2 ) = (I2 ⊗ S+,Σ)(y(t2)− x(t2)).

The above points i), ii), iii) imply the statement of the
theorem.

Remark 16 The extension of Theorem 15 to the case
of N > 2 is immediately achieved by taking S2N ,Σ =
IN ⊗ S+,Σ.

2.3 Monodromy matrix at the synchronous periodic or-
bit

Finally, the following theorem gives the complete expres-
sion for the monodromy matrix of (2) linearized about
the synchronous solution xS(t). The proof puts together
all the results previously derived in this section and is
therefore omitted.

Theorem 17 Let xs(t) be the limit cycle of (3), and
let Assumption 3 be satisfied. Let xS(t) = e ⊗ xS(t) be
the corresponding synchronous solution of (2). Then, the
monodromy matrix of (2) along xS can be taken as

X(T, 0) = X1(T, t3)XΣ(t3, t2)(IN ⊗ S+,Σ)

X2N (t2, t1)(IN ⊗ S−,+)X1(t1, 0),

with

dXi(t,τ)
dt = (DFi(xS(t)) + σM)Xi(t, τ),

Xi(τ, τ) = INn, i = 1, 2N

dXΣ(t,τ)
dt = (DFΣ(xS(t)) + σM)XΣ(t, τ),

XΣ(τ, τ) = INn,

where DFi and DFΣ are the Jacobian matrices of the
vector fields Fi, i = 1, 2N and FΣ respectively. 2

Following Remark 4, Theorem 17 can be generalized to
any periodic solution with a finite number of generic
events. The monodromy matrix will be given by the
product of fundamental matrices in R1,2N or Σ and
jump matrices (IN ⊗ S∓,±) for each crossing event and
(IN ⊗ S±,Σ) for each sliding event. See also Remark 10.

The key implication of Theorem 17 is that the saltation
matrices appearing in the expression of X(T, 0) can be
obtained from the saltation matrices of a single agent in
the network, which is a great simplification. However,
computation of the matrices Xi and XΣ involves all N
agents. In case of large networks, these computations are
too expensive, and an extension of the MSF theory to
(2) is needed. This is the purpose of the next section.

3 Master Stability function

The MSF is a very nice technique which allows to study
linearized stability of the synchronous solution of a
smooth network of N agents of size n each, by working
with N linearized systems of size n, rather than one
linearized system of size nN , a substantial saving! The
key idea in the MSF technique is to consider the varia-
tional equation along the synchronous solution and to
perform a change of coordinates induced by the matrix
of eigenvectors of the matrix L. For smooth systems,
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this change of coordinates brings the whole network
into a block diagonal structure with sub-blocks of size
n × n and this in turn allows one to study the stability
of N systems of dimension n instead of the stability of
one system of dimension nN (see [22]).

In the case of piecewise smooth vector fields for the
agents, there are at least two new concerns. First, the
same change of coordinates, while still bringing the vari-
ational equation along the synchronous solution into
block diagonal form, will also change the equations of the
discontinuity manifolds that will now in general involve
more than one agent, and possibly all of them. Then,
we should not expect the saltation matrices to be block
diagonal. However, we will see that the transformation
preserves the block structure of the saltation matrices of
Theorem 17. In other words, the Kronecker products in-
volved in the expression of the saltation matrices along
a synchronous solution are left unchanged by the coordi-
nate change induced by the eigenvectors of L (see equa-
tion (18)). The second concern is related to the portion
of the fundamental matrix solution on Σ, in particular
to the Jacobian of FΣ. The general lack of uniqueness in
expressing the sliding vector field on the intersection of
two or more discontinuity manifolds is not a concern in
this setting, since, by Lemma 8, on Σ we have a unique
Flilippov sliding vector field. However, a difficulty is re-
lated to expressing the Jacobian itself, since again the co-
ordinate change seemingly will destroy the sought block
structure. We deal with this difficulty in Lemma 19 be-
low. As a final result, in Theorem 21 we will see that we
can use the MSF technique also for PWS networks, and
in particular to study stability of the synchronous solu-
tion xS by linearized analysis on N systems of size n.

As before, below L = LT is the negative of the graph
Laplacian matrix, and let W be the matrix of the or-
thonormal eigenvectors of L: WTLW = Λ, with Λ di-
agonal of eigenvalues λ1 = 0 > λ2 ≥ · · · ≥ λN . Then
M = L ⊗ E has eigenvalues λiµj , i = 1, . . . N , j =
1, . . . , n, with λi’s the eigenvalues of L, and µj ’s the
eigenvalues of E. Moreover, with V = W ⊗ I, we get
V −1MV = (WT ⊗ In)(L ⊗ E)(W ⊗ In) = Λ ⊗ E. In
[22], the change of variables y = V −1x reduces the vari-
ational equation along a synchronous solution xS(t) into
the following block diagonal form

żi = (Df(xS) + σλiE)zi, i = 1, . . . , N,

that is we have N systems of size n. The issue with non-
smooth agents is that the change of variables above in
general changes the equations of the discontinuity man-
ifolds as well, and this makes it impossible to study N
systems independently. In particular, the new equations
of the discontinuity manifold(s) might involve all the
agents.

Example 18 To illustrate the last statement, take L =

(
−1 1

1 −1

)
and M = L ⊗ I2. Then, using the same no-

tations as before, W = 1√
2

(
1 1

1 −1

)
and V = W ⊗ I2.

If the discontinuity surface for the single agent is the
plane {x ∈ Rn|h(x) = eT1 x = 0} , then Σ1 and Σ2 in
the y coordinates become respectively eT1 y = −eT3 y and
eT1 y = eT3 y . It follows that the agents cannot be stud-
ied independently even though the variational equations
for the fundamental matrix solution are in block diagonal
form.

Nevertheless, we will now see that the special structure
of the fundamental matrix solution for the case of a syn-
chronous periodic solution of (2), allows to study the
stability of xS via N systems of dimension n.

With V = W⊗I, consider the monodromy matrix for the
linearization along the synchronous periodic solution.
Let yS(t) = V −1xS(t) and Y (T, 0) = V −1X(T, 0)V .
Then

Y (T, 0) = Y1(T, t3)YΣ(t3, t2)(V −1S2N ,ΣV )

Y2N (t2, t1)(V −1S1,2NV )Y1(t1, 0),

with Yi(t, τ) = V −1Xi(t, τ)V , i = 1, 2N , and YΣ(t, τ) =
V −1XΣ(t, τ)V .

First notice that the particular structure of the jump
matrices is such that

(V −1S1,2NV ) = (WT ⊗ In)(IN ⊗ S−,+)(W ⊗ In)

= (WT INW )⊗ (InS−,+In) = IN ⊗ S−,+,
(18)

and similarly for S2N ,Σ.

Secondly, we show that the Yi’s can be obtained solving
block diagonal systems of ODEs. Note that

V −1DFi(V xS(t))V

= (WT ⊗ In)(IN ⊗Df∗(xS(t))(W ⊗ In)

= IN ⊗Df∗(xS(t)),

with Df∗ = Df− for i = 1, and Df∗ = Df+ for i = 2N ,
and hence

dYi(t, τ)

dt
= [IN ⊗Df∗(xS(t)) + σΛ⊗ E]Yi(t, τ),

Yi(τ, τ) = INn, i = 1, 2N .
(19)

The following Lemma shows how to rewrite the sliding
vector field V −1DFΣ(xS)V as a Kronecker product as
well.
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Lemma 19 LetxS(t) be a synchronous periodic solution
of (2) and let FΣ(xS(t)) be the sliding vector field defined
as in Lemma 8. Then

V −1DFΣ(xS(t))V = IN ⊗DfΣ(xS(t)) + σΛ⊗ E+

{ σ

∇hT (f− − f+)
Λ⊗ [(f+ − f−)∇hTE]}xS(t) .

(20)

PROOF. For simplicity, we will show the statement for
N = 2, the generalization for N > 2 is immediate. The
sliding vector field on Σ for (2) is defined in Lemma 8.
That is, FΣ is

FΣ(x) =

[
(1− α1(x)))f−(x1) + α1(x)f+(x1)

(1− α2(x)))f−(x2) + α2(x)f+(x2)

]
+σMxS ,

where we have kept the term MxS even though it is 0
(since xS is synchronous), to clarify the computation of
the Jacobian.

Now, α1(xS) and α2(xS) must be chosen so that:[
∇h
0

]T
FΣ(xS) =

[
0

∇h

]T
FΣ(xS) = 0. Let α(xS) be

such that fΣ(xS) = (1− α(xS))f−(xS) + α(xS)f+(xS)
as in equation (7). Then, for i = 1, 2, when we impose
the tangency conditions, using M = L⊗ E, we get:

αi(xS) = α(xS) +
σ

∇h(xS)T (f− − f+)(xS)
×

∇h(xS)T (li1Ex1 + li2Ex2)x1,2=xS
= α(xS),

where the last equality follows from the definition of the
matrix L (li1 = −li2 ) and the fact that the solution is
synchronous, i.e. x1 = x2 = xS . The gradient of α1(x)
is then obtained as follows

Dx1
α1(xS) = [∇α(x1)]x1=xS

+
σ

∇hT (f− − f+)(xS)
l11∇h(xS)TE+

σ
∇hT (l11Ex1 + l12Ex2)(∇hT (Df+ −Df−))

(∇hT (f− − f+))2
|x1=xs

= [∇α(x1)]x1=xS
+

σ

∇hT (f− − f+)(xS)
l11∇h(xS)TE,

and similarly

Dx2
α1(xS) =

σ

∇h(xS)T (f− − f+)(xS)
l12∇h(xS)TE.

Therefore,

∇α1(xS) =

[∇α(x1)]x1=xS
+ σ
∇hT (f−−f+)

l11∇hTE
σ

∇hT (f−−f+)(xS)
l12∇hTE


xS

.

For α2(xS) we obtain in a similar way

∇α2(xS) =

 σ
∇hT (f−−f+)

l21∇hTE
[∇α(x2)]x2=xS

+ σ
∇hT (f−−f+)

l22∇hTE


xS

.

Then

DFΣ(xS) =


DfΣ(xS) + σl11B σl12B

σl21B DfΣ(xS) + σl22B

+ σM

= IN ⊗DfΣ(x) + σL⊗B + σL⊗ E,
(21)

where B = (f+−f−)(xS)∇h(xS)T

∇h(xS)T (f−−f+)(xS)
E. Then the statement

follows at once.

Remark 20 In the case of N = 2, the negative Lapla-

cian matrix is trivial: L =

[
−1 1

1 −1

]
. But, aside from

this simplification, the proof of Lemma 19 is identical for
the case of N > 2 except that we have to account for
more entries in the Laplacian matrix. In particular, the
expression (21) remains valid.

From Lemma 19 and (19), with Df∗ = Df− for i = 1,
and Df∗ = Df+ for i = 2N , we get

dYi(t, τ)

dt
=
(
IN ⊗Df∗(xS(t)) + σΛ⊗ E

)
Yi(t, τ),

Yi(τ, τ) = INn, i = 1, 2N ,

dYΣ(t, τ)

dt
=(

IN ⊗DfΣ(xS(t)) + σΛ⊗ E + σΛ⊗B
)
YΣ(t, τ),

YΣ(τ, τ) = INn.
(22)

To sum up

Y (T, 0) = Y1(T, t3)YΣ(t3, t2)(IN ⊗ S+,Σ)

Y2N (t2, t1)(IN ⊗ S−,+)Y1(t1, 0),
(23)

with Y1, Y2N and YΣ as in the block diagonal equations
(22). In conclusion, we proved the following key theorem.

Theorem 21 Let λ1 = 0 > λ2 ≥ · · · ≥ λN be the
eigenvalues of the (negative graph Laplacian) matrix L,
and let ν = −σλi, i = 1, . . . , N . The Floquet multipliers
of (2) along the synchronous periodic orbit xS(t) are the
nN eigenvalues of the N matrices Zi(T ), i = 1, . . . , N ,
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satisfying the following variational equations

Żi =


(Df−(xS(t))−νE)Zi, 0 ≤ t < t1,

(Df+(xS(t))−νE)Zi, t1 < t < t2,

(DfΣ(xS(t))−ν[E +B])Zi, t2 < t < t3,

(Df−(xS(t))−νE)Zi, t3 < t < T,

(24)

where B = (f+−f−)(xS)∇h(xS)T

∇h(xS)T (f−−f+)(xS)
E, and subject to the

initial conditions: Zi(0) = In, Zi(t
+
1 ) = S−,+Zi(t

−
1 ),

Zi(t
+
2 ) = S+,ΣZi(t

−
2 ), Zi(t

+
3 ) = Zi(t

−
3 ). 2

Remark 22 In agreement with Remark 4, the case of a
periodic orbit xs of the single agent with several generic
events (transversal crossings, transversal entries on Σ,
and tangential exits) will result in immediate adjustments
of (24). To exemplify, suppose that the orbit starts at s0

in R− (time 0), has a generic crossing at s1 (time t1)
from R− to R+, then has a transversal entry on Σ at
s2 (time t2) and sliding on Σ until there is a tangential
exit back onto R+ at s3 (time t3), followed by another
transversal entry on Σ at s4 (time t4) and sliding on Σ
until the tangential exit onto R− at s5 (time t5), and
finally returns to s0 after the period T . The structure of
the matrices Zi’s is similar to that in (24), namely now
we would have

Żi =



(Df−(xS(t))−νE)Zi, 0 ≤ t < t1,

(Df+(xS(t))−νE)Zi, t1 < t < t2,

(DfΣ(xS(t))−ν[E +B])Zi, t2 < t < t3,

(Df+(xS(t))−νE)Zi, t3 < t < t4,

(DfΣ(xS(t))−ν[E +B])Zi, t4 < t < t5,

(Df−(xS(t))−νE)Zi, t5 < t < T,

where the initial conditions are given by Zi(0) = In,
Zi(t

+
1 ) = S−,+Zi(t

−
1 ), Zi(t

+
2 ) = S+,ΣZi(t

−
2 ), Zi(t

+
3 ) =

Zi(t
−
3 ), Zi(t

+
4 ) = S+,ΣZi(t

−
4 ), Zi(t

+
5 ) = Zi(t

−
5 ).

As usual, we call Floquet exponents 1
T times the loga-

rithms of the multipliers. For sure there is a 0 exponent,
since 1 is a multiplier, because xS is a periodic solution
of (2). Now, since our network is connected, L has only
one eigenvalue equal to 0, let it be λ1 = 0, all other
eigenvalues of L being negative. With this observation,
we are ready for the following definition.

Definition 23 Let λ1 = 0 > λ2 ≥ · · · ≥ λN be the
eigenvalues of the (negative graph Laplacian) matrix L.
Let τi,j(σ) be the multipliers of (24), for ν = −σλi, and
i = 2, . . . , N , and let li,j = 1

T log |τi,j |, j = 1, . . . , n. The
Master Stability Function (MSF) for (2), relative to the
synchronous periodic solution xS, is the largest value li,j,
call it λ. The synchronous solution xS is transversally
stable for those values of σ, if any, for which λ < 0.

Remark 24 In the literature for smooth networks, the
MSF is defined in terms of the Lyapunov exponents of
the linearized problem. Of course, in the case of periodic
orbits, these are the Floquet exponents, and hence our
definition is consistent with previous usage of the MSF.

Naturally, the value of the MSF λ depends on the cou-
pling strength σ, as well as on E and the (negative)
Laplacian L. However, for a given network topology
(hence, for given L and E), the MSF depends only on
σ. We must further appreciate that the synchronous
solution xS is asymptotically stable if all parameters
values σλk, k = 2, . . . , N , give multipliers less than 1 in
modulus.

4 Periodic orbit of a piecewise smooth mechan-
ical system. Computation of the MSF

Here we study a system of identical piecewise smooth
mechanical oscillators. The case of two oscillators was
first studied in [15]. When they are not coupled, the
single agents have a periodic solution which is stable in
finite time, denote it as xs(t).

4.1 A piecewise smooth network

The equations of the single agent are

ẏ1 = y2

ẏ2 =− y1 ±
1

1 + γ |y2 − v̄|
(25)

with γ ≥ 0. In the notation of (3), we have

f±(y) =

[
y2

−y1 ∓ 1
1±γ(y2−v̄)

]
, y ∈ R2 ,

and the discontinuity surface is the plane y2 − v̄ = 0, so

that ∇h =

[
0

1

]
. In the computations below, we fix v̄ =

0.15, andγ = 3 as in [15]. For these parameter values, the
agent (25) has a stable (in finite time) periodic solution of
period T , xs(t) = (y1(t), y2(t))T , which we plot in Figure
3. Without loss of generality, we assume that the entry
point of xs(t) on the discontinuity line y2 = v̄ occurs at
t = 0. The Floquet multipliers along xs(t) must be 1 and
0. (Note that, in the presence of sliding,the system of a
single agent is not reversible in time and the monodromy
matrix must be singular, since the jump matrix from a
region to Σ has rank 1 in this case; e.g., see [10, Lemma
2.4].)

We consider a network as in equation (2) with L be-
ing the negative of the nearest neighbor Laplacian ma-
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Fig. 3. Periodic orbit of (25).

trix and E =

(
0 0

1 0

)
. Recall that, in our notation,

L =



−1 1 0 · · · 0

1 −2 1
. . .

...

. . .
. . .

. . .

1 −2 1

1 −1


and it has eigenvalues λj =

−4 sin2
(

(j−1)π
2N

)
, j = 1, . . . , N .

Now, consider N agents x1, . . . , xN , each one satisfying

equation (25) and let x =


x1

...

xN

. Then, the network

satisfies the differential equation

ẋ =


f±(x1)

...

f±(xN )

+ σMx, M = L⊗ E, (26)

with σ ≥ 0.

We use the MSF approach to study the stability of the
synchronous periodic solution. For σ = 0, the oscillators
are uncoupled and the synchronous solution has N Flo-
quet multipliers at 1 and N multipliers at 0 since xS is a
sliding periodic orbit. Of course, the synchronous solu-
tion persists for σ ≥ 0, though its stability will depend
on σ. We use the MSF to compute the Floquet expo-
nents of the synchronous solution for σ > 0.

We proceed like in Section 3. Recall that xs(t) intersects
y2 = v̄, at t = 0. Then, in order to study the stability
of the synchronous solution xS(t) for a given σ, instead
of computing the nN Floquet multipliers of (26) along

xS(t), we employ the MSF approach and compute the
Floquet multipliers of N −1 linear non autonomous sys-
tems of dimension n = 2. Let λi, i = 2, . . . , N , be the
eigenvalues of L different from 0, and for ν = −σλi con-
sider the following matrices

Żi =

{
(DfΣ(xs(t))− ν(E +B))Zi, ∇hTxs(t) = v̄,

(Df−(xs(t))− νE)Zi, ∇hTxs(t) < v̄,
(27)

with Zi(0) = S−,Σ and S−,Σ =

(
1 0

0 0

)
being the salta-

tion matrix from R− into Σ. We emphasize that Theo-
rem 15 applies also to the jump matrix S1,Σ fromR1 into
Σ and that it is its rewriting as the Kronecker product
(IN ⊗ S−,Σ) that allows us to use the MSF approach.

Finally, in (27) B = (f+−f−)(xS)∇hT (xS)
∇h(xS)T (f−−f+)(xS)

E, and we point

out that for our problem (26), we have E +B = 0, and
therefore in the sliding phase of (27) the linearized prob-

lem is simply Żi = DfΣ(xS(t))Zi. We stress that for
each value of ν = −σλi, we always obtain two Floquet
multipliers, regardless of the value of N . Moreover one
of these multipliers is 0 since S−,Σ is a rank 1 matrix.

4.2 Numerical experiments

Thanks to Theorem 21, the Floquet exponents of the
synchronous solution of (26) for a given σ, can be com-
puted from (27). Therefore, our task is to compute the
solution of a single oscillator over one period, and then
for ν = −λiσ, i = 2, . . . , N , compute the monodromy
matrix Zi(t) of (27) and extract its Floquet multipliers.
Computation of the periodic orbit of the single agent is
done with the 4th order event technique of [9] and fixed
stepsize equal to 10−4 (so to have a local error per step
of size about eps) and the monodromy matrix is com-
puted on the same mesh at once. In Figure 4 we show
the multiplier different from zero in function of ν.

To confirm the results of the MSF analysis, we also in-
tegrated the full discontinuous system (25) with a vari-
able stepsize integrator and event location techniques for
sliding along the intersection of two discontinuity man-
ifolds. For ν = 4.8 the MSF plotted in Figure 4 predicts
asymptotic stability of the synchronous solution. The
integration of a discontinuous system with N > 2 dis-
continuity hyperplanes is not trivial and it is beyond the
scope of the present paper, hence we verify correctness
of our results for N = 2. In this case, L has eigenvalues
λ1 = 0 and λ2 = −2, and so we need to verify that the
synchronous solution xS(t) is asymptotically stable for
σ = η

2 = 2.4. Given initial conditions that do not belong
to the synchronous manifold we integrated the full net-
work for sufficiently long time to observe convergence of
the numerical solution to the synchronous periodic or-
bit. In Figure 5 we plot (x1(t)− x3(t)), after discarding
the transient.
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We do not see synchronization for other parameter val-
ues such as σ = 0.5, or σ = 1.3, while we see synchro-
nization for σ = 1.35, as predicted by the MSF. Finally,
for the value of σ = 1.2, our analysis based on the MSF
validates the observation in [15, Section 9] that the syn-
chronous manifold is unstable.

5 Conclusions

In this work, we extended the Master Stability Function
(MSF) tool to Filippov networks of identical Piecewise
Smooth (PWS) differential systems, in order to infer sta-
bility of a synchronous periodic solution of the network.
Our analysis rested on the appropriate extension of the
fundamental matrix solution in the present PWS case.
We had to overcome several difficulties, in primis the
lack of uniqueness of suitable saltation matrices on the
intersection of several discontinuity manifolds and the
possibility to decouple the (large) linearized nN -system
into N systems of size n, in order to exploit the MSF

technique. We succeeded in doing this under very gen-
eral assumptions, for the network synchronizing along a
periodic orbit of a single agent. We complemented our
analysis by a numerical illustration of the use of the MSF
for a PWS system of mechanical oscillators synchroniz-
ing (for some values of the coupling parameter) on a
stick-slip oscillatory regime. The case of synchronization
on an orbit different from a periodic one remains to be
analyzed.
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