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Abstract

We study metrics of constant @-curvature in the Euclidean space with a prescribed sin-
gularity at the origin, namely solutions to the equation

n

(=A)2w =™ — ¢y on R™,

under a finite volume condition. We analyze the asymptotic behaviour at infinity and the
existence of solutions for every n > 3 also in a supercritical regime. Finally, we state some
open problems.

1 Introduction
In this paper we will deal with the classification of the solutions to the equation
(=A)zZw = ™ — ¢dp on R”, (1)

where e™ € L'(R"), ¢ € R, & is a Dirac mass at the origin and n > 2. Equations of this
kind arise naturally in the study of the prescribed @-curvature problem with singularities. We
recall that the Q-curvature is a curvature of order n that was introduced by [3, 4, 10] and in the
last decades has been intensely studied in problems of conformal geometry. If w is a solution
of (1), then e?*|dz|? is a metric on R™ conformal to the Euclidean metric |dz|?> and having Q-
curvature equal to 1 everywhere except at the origin, where it has a special kind of singularity.
When n = 2, singularities of this kind are known as conical singularities and have been studied
e.g. in [2, 25, 26]. The case n = 1, which we will not discuss here, has a different geometric
interpretation, in terms of the curvature of curves in R? given in conformal parametrization, see
e.g. [8,9, 11, 21, 30]. In this case the term c¢dy corresponds to a corner. In dimension higher
than 2, the geometry of such singularities (in particular the shape around the singular point) has
not yet been investigated to our knowledge. Indeed, in dimension 3 and higher the Q-curvature,
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being a scalar quantity, only describes the geometry of a manifold in a limited way. For instance
its positivity has no implication on the positivity of the scalar or sectional curvatures, not even
in symmetric situations.

In this work we shall focus on existence results for (1), both in a symmetric and non-
symmetric setting, and on the asymptotic behavior at infinity of the solutions. Writing

c
w=u+ — log |z|,
Tn

we see that u satisfies e
(—A)zu = |z|me™ on R”, (2)

where 7, 1= (”%I)WS"\ is such that
n (1 1
(—A)2 <log ) =Jp inR",
x

and it will be convenient to study equation (2), since the RHS of (2) belongs to L!(R"™) and this
allows to use representation formulas at least for a special class of solutions.
More precisely, for a given a > —1, we consider the problem

3)

(=A)3u = |z["@e™ on R",
A= [p x|"e™ dr < oco.
Geometrically, if u solves (3), then the metric e?“|dz|> has Q-curvature |z|"™® and total Q-
curvature A. The parameter A is also the volume of the metric €2¥|dz|?, and it plays a crucial
role in the existence of solutions to (3).
In order to give a good definition of weak solutions to (3), we need to define (—A)z for
a sufficiently large class of functions. Let S(R™) be the Schwartz space of rapidly decreasing
functions, and for s > 0 set

|w(z)]

L) = {w e Lh®): |
R
Given a function v € Lg(R"), s > 0, we define (—A)*v as a tempered distribution as follows:

(—A)°v,p) := / v(—=A)’pdx for every p € S(R"), (4)

n

where .
(—A)2p = F (€1 Feo(€)),
and

. ; T efi:r{ T
Fol§) = s [ elwtevea

is the Fourier transform. The right-hand side of (4) makes sense because

(=A)*p(z) = O(Iz[7"7*) as |2| — o,

see e.g. [18, Proposition 2.1].



Definition 1.1. Given m > 1 and a tempered distribution f € S'(R™), we say that u is a
solution of
(=A)zu=f inR"

if the following holds. In case m > 2 is even, we require u € LIIOC(R") and

[ u-)Fpde= (1.0} for cvery p € O (R,

In case m > 1 is odd, we require u € L (R") and

/ u(—A)Z odz = (f, ) for every ¢ € S(R™).

As we shall see in Theorem 2.1, weak solutions to (3) are smooth away from the origin and
at least Holder continuous near the origin.
In the classical case n = 2, for any o > —1 there are explicit solutions to (3) taking the form

2(a+1)
1+ |z|2(etD)

u(a:)zlog( ) A =dr(a+1).

With the scaling uy(z) = u()\l%ax) + log A we obtain the family of solutions

2+ 1)A
ute) = log (g ) A= dmlat 1), A>0a> L @

In fact, as shown by Chen-Li [7], when n = 2 for every solution to (3) we necessarily have
A = 47(1 + ). In [25] Prajapat-Tarantello proved that solutions as in (5) exhaust the set of

solutions of (3) if « is not an integer, while when o € N instead there exist more solutions, all
of which can be written using the complex notation in the form

2 1A
u(z) =log <1 m A2T2j+l)— <‘2> , A>0,¢eC. (6)

The solutions in (6) were first introduced by Chanillo and Kiessling [6]. Interestingly, they
are not radially symmetric, except in the case ¢ = 0 (when they reduce to (5)) or a = 0 (in
which case they are radial about the point ¢) and blow up at the a4+ 1 roots of the complex
equation 2! = ¢ as A — oo.

When n > 2, the structure of the set of solutions of (3) becomes richer. If &« = 0 one can still
identify a special family of solutions, known as normal (cfr. Definition 1.2) or sperical solutions,
having an explicit expression similar to (6) (with a = 0). These solutions have total Q-curvature
A = A; := (n—1)!|S"| and are the only solutions of (3) with u = o(|z|?) as |z| — +oco. However,
in addition to these solutions there are also non-normal solutions, behaving polynomially at
infinity and with A not necessarily equal to Ay see e.g. [5, 16, 19, 20, 28].

When n # 2 and a # 0 we do not have explicit formulas for solutions to (3) (not even when
« is integer, to the best of our knowledge) so that the existence of even one single solution is
not obvious. We shall prove two existence results based on a Schauder fixed-point argument, in
a spirit similar to that of previous works, such as [16, 17, 19, 28|.



There are two crucial ingredients in this approach. One is to have a good ansatz, namely
restrict the set among which we will look for solutions to functions having a particular asymptotic
behaviour. The second ingredient is a precise information on the value of A for normal solutions
to (3), namely solutions to an integral equation, see Definition 1.2. Both this properties are
contained in the following theorem, which extends to the case « # 0 the classification results in
[22, 23, 27, 20, 18].

Theorem 1.1. For a > —1 let u solve (3) and define v as follows

o(@) /R log< ‘y’)m i) dy. @)

T |z —y|

Then there exists an upper-bounded polynomial p of degree at most n — 1 such that u = v + p.

Moreover A
@) _ g A 8)

|z|—o0 log || - Yn

Finally, if p is constant, then A = A1(1 + «).

Notice that p being upper bounded implies that p has even degree, hence p has degree at
most n — 2 when n is even.

Definition 1.2 (Normal solutions). We call a solution u to (3) normal if writing u=v+p as
in Theorem 1.1 the polynomial p is constant. Equivalently if there exists a constant ¢ € R such
that u solves the integral equation

1 1
u(z) = — log < i |y‘> ly|"e™ W) dy + c.
"o Jrn |z =y

Namely, u is a normal solution if, up to a constant, u admits an integral representation via the
fundamental solution.

The proof of Theorem 1.1 is innovative in comparison to the previous works, and it also
simplifies them considerably (see Remark 3.1). It is based on a Campanato-space estimate
(Lemma 3.6). In fact, instead of having an L*°-upper bound on the function v, which is usually
difficult to obtain in the case a = 0 and appears to be much more challenging in the case o # 0,
we content ourselves with a decay estimate on the oscillation of v, which will be sufficient to
conclude.

We can summarize Theorem 1.1 by saying that all solutions to (3) have the form v + p,
where v behaves logarithmically at infinity and p is a polynomial, and if p is constant, then
A = A1(1 + «). Using this information we can move towards the existence results.

In the first result we show existence of radial solutions up to the critical treshold A (1 + «).

Theorem 1.2. Letn > 3 and o > —1. Then for every 0 < A < A1(1+ ) there exists a radially
symmetric solution to (3). For A = Ai(1 + «) there exists a radially symmetric and normal
solution to (3).

Existence for every A < A1(1 4 «) is obtained by a standard compactness argument. These
solutions will have the form v+ p with p(z) = —|z|?>. The normal solutions obtained for the case
A = A1(1 4 «) are the higher-dimensional counterparts of (5), whose existence is not obvious,



since we do not have explicit formulas for them. For this part we will use a blow-up argument
together with a non-existence result based on a Pohozaev-type identity.

Next we show that, breaking radial symmetry, we are able to produce solutions to (3) above
the critical threshold.

Theorem 1.3. Let n > 3. Then for every o > —1 and for every A € (0,A;) there exists a
solution to (3).

Notice that Ay > A1(1 + «) for @ € (—1,0) in Theorem 1.3, hence we have an existence
result above the critical threshold of compactness.

As we shall see, the solutions given by Theorem 1.3 are non-radial, by construction. On the
other hand, in dimension 3 and 4 this is also a necessity. Indeed from the Pohozaev identity we
obtain:

Proposition 1.1. For n = 3 and n = 4 every radial solution u to (3) satisfies A < A1(1 + «)
with identity if and only if u is normal.

1.1 Some open problems

Using a variational argument as in [16] one should be able to find solutions to (3) of the form
u = v + p with the polynomial p prescribed. For instance one could try to prove that for n > 3,
a>—1,0< A < Aymin{l,1+ o} and a given polynomial p with deg(p) < n — 1 and satisfying

|x|—o00

p(z) —— —oo, (9)
there exists a solution u to (3) such that

|z| =00

u(w) = (o) — 5 logla] +C +o(1), (1)

Also the existence of solutions to (3) for arbitrarily large A is open, in analogy with the case
a = 0 studied in [15, 17, 24]. In the radial case, using methods from [17] it should be possible
to prove that for n > 5, @ > —1 and for every A > 0 there exists a radially symmetric solution
to (3). Notice that the condition n > 5 is necessary in view of Proposition 1.1 and the known
results in dimension 1 and 2. If instead we drop the radial symmetry, it is unknown whether
already in dimension 3 and 4 we can have solutions to (3) with arbitrarily large A, for « # 0.

Notation In what follows Br(z) will denote the ball of radius R centered at x (the dependence
on z will often be omitted if z = 0) and C' will denote a generic constant that can change from
line to line.
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2 Regularity of solutions

If Q@ C R"™ is an open set, we denote
c%gy:{uecwunzpwueo%—wwn} s—1<|s] <s, |s] €N,

Then, we set
Ce (R") :={u € COR") : ulg € C(Q) for every Q € R"}.

Theorem 2.1. Let u be a solution of (3) with « > —1. If o € (—=1,0) or naw — 1 € 2N,

then v € C®(R™\ {0}) N CY _(R™), for s < n(l + «). If a > 0 with na ¢ N we have u €
C>*([R™\ {0}) N n(l+) (R™), and if na € 2N we have u € C°(R").

1oc

Proof. First, we claim that e™ € Lfoc(]R”) for any ¢ > 1. Indeed, given any ¢, we can take

€ = £(q) such that ¢ < * and we can split |z|"*e™ = f1 + fa, where f1, f» > 0 and
fie ®)NLZRY), |fallp@n <e

Let us define the functions

muy:] /1%<1+M>ﬂ(), ER", =12

Tn |z |

and
U3 = U — U] — UD.

It is easy to see that u; € C"1(R™) and that us is §-harmonic (that is (=A)2uz =0 in R™, in

the sense of Definition 1.1) and hence uz € C°°(R™). Moreover, using Jensen’s inequality we get

nqus _ anf2|| <1+ ‘y|> fQ(y) >
/BR e dr = / exp (/n " log z=o) TPl dy | dz
ng|| fall | <1+ |y|)> 2(y)
/BR fow (" e (5) ) o

14 | | qu2H
Y
po) [ () dsay
||f2H R™ Br |z — g
< C(q, R), (10)
where || - || denotes the L!(R™) norm. Hence the claim is proved.
Set p:= —1 for & € (—1,0) and p := oo if @ > 0. Then |-["* € L} (R") for every 1 < p < p.
It follows that (—A)zu = | - ["@e™ LY (R™) for p < p, and this implies u € W’(R") for

p < p. Indeed, for any given R > 0, we can write u = v + v2 + v3, where v3 is §—harmonic
(and thus vz € C*°(R")) and

1 1
vi(x) = / log < + ]y\) gi(y)dy, xeR" i=1,2, (11)
Tn JRn ’x - y|
with
g =11"¢"xXBg, g2=1- |W€7WXB;;-



Differentiating (11) we obtain that v; € W”’p(Bg) (by the Calderon-Zygmund theory) and
V9 € COO(BE )
By the Sobolev embedding we then infer that u € C} .(R") for s < n(1 4+ min{«, 0}).
Since |- |"* € C*>°(R™\ {0}), by bootstrapping regularity we see that « € C*°(R™ \ {0}) for
every a > —1. Now, if o > 0, we observe that
C"™(R"™) ifna ¢ N,
|-|"*e < C: (R") if s <na, na—1 € 2N,

loc

C>®(R")  if nov € 2N.

In any case, we can conclude the proof by bootstrapping regularity using Schauder’s estimates.
O

3 Proof of Theorem 1.1

Lemma 3.1. Let u be a solution to Problem (3) and let v be as in (7). Then for |z| > 1 we
have
o(z) > ~Blogle], (12

where 3 is as in (8).

Proof. Since |z| > 1, thanks to the triangular inequality we have
[z =yl < 2|+ |yl < [=] + [2]ly| = =] (L + Jyl),

for any y € R™. Therefore
1
log < + |y!> > —log |z|.
|z =yl

O]

Lemma 3.2. Let u be a solution to Problem (3) and v as in (7). Then u = v+ p where p is a
polynomial of degree at most n — 1.

Proof. Set p=wu — v so that (—A)2p = 0. From Lemma 3.1 we have
p(z) <u(x)+ Blog(l+ |z|) + C.

Recalling that | - [**e™ € L, it follows from a Liouville-type theorem (see Theorem A.1 in the
Appendix) that p is a polynomial of degree at most n — 1.

O
Lemma 3.3. Let p be a polynomial as in Lemma 3.2. Then
sup p(z) < +00. (13)
z€R™
In particular p has even degree. Moreover for every ¢ > 1 and 0 < p < pg there exists C =
C(q, po) such that
/ e®dx < Clz|"P~), (14)
By(x)

for any x € R™ with |z| > 1.



Proof. We start by proving (13). Following [23] we define
f(r) = supp.
0By

From Theorem 3.1 in [14] it follows that if supg. p = +00 then there exists s > 0 such that
lim /()

r—+4oo 1S

From Lemma 3.2 p is a polynomial of degree at most n — 1. In particular, we have that
IVp(z)| < Clx|*~2 for |z| large. From Lemma 3.1 it follows that there exists R > 0 such that
for every r > R we can find z, with |z,| = r such that

u(y) = v(y) +ply) > r°

for |y — z,| < TH%Q Now using Fubini’s theorem we get

+oo s
/ |x|"Ye™ dax > / / "™ do dr
Rn R JoB.(0)"B,a n(zr)

+o00 Tnaenrs
- C/R ) 4= e

that is a contradiction, hence (13) is proven.
The proof of (14) follows at once from (13) and Lemma 3.1. Indeed, if || > 2py then

c > / |y e W) dy > C/ |y[(@=B) W) gy > C‘x’n(a—ﬁ)/ Wy,
Bp(x) BP(I) Bp(l‘)

while (14) is trivial for |z| € [1,2po). O

Lemma 3.4. For any € > 0 there exists R > 0 such that for |x| > R

v(z) < (=f+¢)loglx| + 1/ log <
Bi(z)

n

y|"e™dy. 15
— y‘) 1 (15)

Proof. The simple proof is similar to [22, pag. 213] and is omitted. O

Lemma 3.5. For any q > 1, e1,e92 > 0 there exists a constant C = C(q,e1,€2) such that for
0<p<1landzxeR"
1 gy < — ¢
prTe2 B (x) - ’x‘(ﬂ—fl)q

Proof. For x in a compact set the statement is trivial. Set f(z) = |z["*e"*(*) and fix R > 0
such that

q
%Hf”Ll(B}C%) < es.

From Lemma 3.4 up to taking R larger, we have for |z| > R+ 1

o) < (B +enloglel + - [ s (251) Pty

n

n

1
< (=B +e1)log|z| + / log < ) FW)X|z—y <1y
Tn J B (0)

|z —yl



Applying Jensen’s inequality with respect to the measure du(y) = dy in Bf, we get

o ||fHL1(BC

for |z] > R+ 2

HfHLl(Bc>
/ eq”(z)dzg/ ;eq T IB%(W10g(Iziyl)X‘Z*y‘ﬁld“(y)dz
B,(@) By(a) 2|75

p

anLl(Bc)
/ / 10g<‘z y‘)X‘z y\<1du( )d
=l " 1 S, Jmg0)
5210g o— y‘>X|z y\<1d d
_\$|B‘51)’1/v(0)/3 2du(y)

< e i /B)< o ) deduty)

Cpn €2
= || (B—e)a’

O]

Remark 3.1. Using Lemma 3.5 one gets a simpler proof of Theorem 1.1 in the classical case
a =0, or even if a € (—1,5). Indeed using the Hélder inequality in (15), with ¢ < f — « and
applying Lemma 3.5 with €1 = ¢ and p = 1 we get for |z| large

1 1 no
/ log ( > ly|"“e™ dy< C|:L'|”O‘/ log <> e"dy < C% <C.
Bi(z) |z — | Bi(x) |z — y |z|

The proof of (8) follows at once from (15), and the rest of the proof will follow easily from the
Pohozaev identity as we shall see below.

Remark 3.2. Arguing as in Lemmas 3.1-3.5 one can also obtain the following: Let v be a

solution to . .
v(z) = / log ( + |y\> K(y)e™Wdy + ¢
Tn JRn |z — |

for some ¢ € R and some non-negative function K € L™ (R™\ By) with Ke™ € L'(R™). Then

v(z) :—i Ke™dzx.
|z|—o0 log |2 Yn Jrn

From now on we shall assume o > .

Lemma 3.6. We have

1
7(x) := sup 1/ v(y) —][ v(2)dz| dy = o(1), (16)
p€(0,4] Pn—h(’glzl By(x) By(z)
with o(1) — 0 as |x| — 00. As a consequence we have
v(z) —wv
8 = o OZU oy 41), (1)

0,— L
¢ losll0l D (Bi(wo))  eweBi(eo) |g — | TelmolD
Ay

with o(1) = 0 as |zg| — oo.



Proof. We start proving (16). We have

foo oo —rontsans [ Lo (54

) ' f(&)dedzdy,

where f(z) = |z|"*e™(®). By (14), Lemma 3.5 and Holder’s inequality we get for given

€1,€2,7 > 0, that

2
|ty < clape ( / ezmdy> ( / emdy>
r(z) Br(z) Br(z)

1

1
,rnfsg 2 =
:8_ 2
S C|$|na <‘$|2n(5€1)> <|$|n( a))

Choosing r = 2,/p, together with Lemma A.2 this yields

D= [T S o (=

<cpr /B 1(6)de

25 ()
< Cp't =T |afor,

Now choosing €2 < % and taking |z| sufficiently large, we have § — £ — ——

p € (0, |a:|_8%), we further bound

1 n
= o(1)p" BER p§ |z

= 0(1)pn+®7

and with Lemma A.2 part ii)

o / Foo),
Bp Bp .’D) BQ\/* IE)C

For p € (|:c\ , 1) we write

o T oo %
T A A

where

10

) ‘ F(€)ded=dy

( >‘f Vdédzdy = Iy + I,
ly — ¢

1
2

. Then, for

£)dédzdy < Cp™3 = o(1)p el
(Iy g|>‘f §dzdy < Cp o(1)p

1og< )‘f Jdedady, Ar = Bu(x), Ay = A5,
ly — ¢ 5



Using Lemma A.2 we bound the I;’s as
L<Cp [ FE)dE = o(1)p" = o(1)p" TR,
Ay

and

where we have used that

|z| =00

1
—_— 0, |x’m =€, diSt(AZa 1")

|z| =00

||f||L1(A1)
This proves (16).
For the proof of (17) we essentially follow Theorem 5.5 of [12]. Given z € R™ and p > 0 we

use the notation
Vg p 1= ][ v(y)dy.
BP(I)

Fix
1

o=—"—
log(|xo| + 1)
For 0 <r <R <4,z € Bi(xg) and z € Br(z) we have

€(0,1) and A=n+o.

‘Uzﬂ“ - UJC,R’ < v(2) = v + v(2) — Uz, R,

and integrating with respect to z we bound

1
00— Vgl < 2o (/ o) = verldz [ fo(a) - vx,Rydz>
1Br| \ /B, () Br(z)

C A A
< e (r +R ) 7(z)
< CRM "1 (x).
Setting Ry = 2% we infer
|U$,Rk - UI,Rkﬂ’ < CRU2_IW7—($)-
Applying the triangular inequality for h > k we bound

h—1 h—1

i CR?
|2 Ry, — VR | < Z |Uz,Rj+1 - v;,;ij| < CR° 22 191 (x) < - 2707'(@.
j=k j=k

Since the function s + ;=5= is increasing in [0, 1] one has 5= < 2 and we get

C g

(v, = var, | € —R77(@)  O<k<h.

Taking k = 0 and letting h — oo we now obtain

C ag

vy r —v(z)| < =R71(x), x € Bi(zo). (18)

o

11



For z,y € By(x¢) with x # y, take R = |z — y|. Then with (18) and the triangle inequality
we bound

[0(2) —v(Y)] < Jva2r — v(@)] + [v22r — vy 2r] + vy 2R — V(Y)|

(
(t(x)+T1 19
< SR+ 70D |y o oo, (19)

For any z € R™, we have

[vz2r — vy2Rr| < |ve2r — V(2)| + vy 2R — V()]

Integrating as z € Bag(x) N Bar(y) we get

1
Vgop — U < v(z) — vy dz+/ v(z) —v dz
02,2 = vy 2] |Bar(z) N Bag(y)| (/BZR(;L«)| () = v 2nl Bon(y) [0(z) = vy2nl )
_ ORMr(2) +7(y))
< R
< CR7(7(x) + 7(y))-
From (16) and (19) we finally infer

= E < € 0(a) 4 7(0) = o1 ool + 1)

Proof of Theorem 1.1. First we prove that (8) holds. From Lemma 3.1 we have

lim inf v(@) > —p.
|z|—oo log |x]
We assume by contradiction that
lim 25 g

Then there exists a sequence of points (z) in R™ such that |xi| — oo and
v(zg) > (—=F + 20)log|zk| for some § > 0.
Indeed, for |xy| large, by Lemma 3.6
v(z) = v(zk) + o(1)log |zg| > (=B + 6)log |xk| for x € By(xy).

Hence
lim ]:U;CB_‘S/ ¢"@dz > lim |93k|6_5/ el=B+0)loglzel gy — | By|.
k=00 B () Bi (k)

k—o00

This contradicts Lemma 3.5 with p =1, ¢ =1 and 0 < e; < J. Thus (8) is proved.
It remains to show that A = A;(1 + «) if p is constant. In this case we have

1 1
u(z) = / log ( + |y\> ly|" e W dy + C.
Tn JRrn |z —y|

Then, we are in position to apply the Pohozaev-type identity of Proposition A.2 to conclude
that A = A1(1 + Oé).

0

12



4 Proof of Theorem 1.2

When A € (0,A1(1 + «)) we will look for solutions of the form u(z) = v(z) — |z|> + ¢ where
c € R and v satisfies the integral equation

1 1
o) =2 [ o (g e oay (20)
n n
so that in particular
(_A)%v(a:) = ‘gj|”a€—n\x|2€”(v(a¢)+c)'

Our approach will be based on Schauder’s fixed-point theorem (see [13, Theorem 11.3]), an idea
already exploited in several works on the construction of entire solutions. More precisely we set

v(z
X = {v € C’Bad(]R") Hvllx < oo}, lv]|x := sup [v(2)] .
reR™ 1+ |I”
For v € X we set ¢, € R such that
/ el n()+en) gy = A

and define T'=Ty : X — X, Tv = v where

1 1
v(x) = / log (_) |y’m@*nly\Qen(v(y)Jrcu)dy.
Yn Jrn lz —yl

Lemma 4.1. The operator T : X — X is compact.

Proof. Continuity follows by dominated convergence. Let now (v;) C X be a bounded sequence.
From the definition of ¢,, it follows easily that |c,,| < C. Therefore,

ok ()] < C/ [log o = yl[[y|"e™ " dy < C'log(2 + |a). (21)
Rn

Moreover,

i)~ )| <€ [

log (Z - y||> ’ |y‘na€*\y|2dy —0, aslr—z —0, z,z€R".
-y

|z

Thus, the sequence (y) is equicontinuous on R™. Hence, by the theorem of Arzela-Ascoli, up
to a subsequence, v — v in CP _(R™) for some v € C°(R™). In particular, ¥, — v in X, thanks
to (21). O

Lemma 4.2. The function v is radially decreasing.

Proof. Consider the functions

1

= s
n "\ B

o (1) el e gy
|z =y

Differentiating under the integral sign one gets Av. < 0, which implies that v. is radially
decreasing. Letting now ¢ — 0 we get v. — v by dominated convergence, hence v is radially
decreasing. O

13



Lemma 4.3. There exist constants C,C(s) > 0, for s > 0, such that

7 _— |AD| C(s)
/BR |AB|dz < CR"2, /B ‘x|n+sdx < Ferz (22)
R

for anyv € X and R > 0.

Proof. For any y € R™ we have

1 1 1
/ —dz < / —dx +/ —dr < CR" 2.
B [T =l Br(y) 17 =Yl BrNBr(y)e |7 — Yl

Then writing by Fubini-Tonelli’s theorem

1
/ |Av|dx < C'/ |y|”o‘e_”|y2e”(”(y)+6”)</ 2d:x>dy
Br R™ Br |z — ]
< CR" A

the first estimate in (22) follows. The second one is proven in the same way since

/ —1 dzr < / 71 dr + / 1 dxr <
T < €T T =~ .
se 10—yl S o o= g PR T e e BT S Rt

We are now in a position to prove the main a priori estimate.

Proposition 4.1. Assume that A € (0, A1(1+ «)). Then there exists C > 0 such that for every
(v,t) € X x [0, 1] satisfying v = tT'(v) we have ||v|| < C.

Proof. Assume by contradiction that there exists (vg,tx) € X x [0, 1] such that
v =t T(vg) and ||vg]| — oc.

Then vy, satisfies the integral equation

t 1
vp(z) = k/ log < ) |y‘na€*n|yl2en(vk(y)+cvk)dy_ (23)

Tn JR |x - y|
We observe that if )

Wk = Uk + ¢, + —logty < C on R",

n
then from (23)
enC 2
) < S [ Jiogle —ylllyPe oy < Clog(z + o)

n

a contradiction to our assumption ||vg|| — co. Thus, together with Lemma 4.2, we have

max wy = wi(0) — oo.

14



We set

m(x) = wi(rpa) — wg(0), it = e WO .

Then, on compact sets we get
(=8 Eny(e) = [ e Ml em@) = (14 o(1) e
Moreover by Lemma 4.3 we obtain

_ Ang(x)| C
Ang(z)|de < CR™ 2, / |7da:§ — 24
/BR| 77k( )| B\ B |$|2n72 R» ( )

Then by elliptic estimates, Proposition A.3 in the appendix, up to a subsequence, 1 — 1 locally
uniformly R” and in C*~*(R™\ {0}). Note further that we have

loc

2™ @) dz = lim lim || e (@) g
n R—o00 k—o0 Br

= lim lim t || en vk (@) eu) gy
R—00 k—o0 By,

< Atso. (25)

where, up to a subsequence, tyo := limy_ o tx. Thus t5, # 0 and
/ |z|"Ye™dx < oo.

We claim that 7 is a normal solution to (—A)2 5 = |z|"@e™, namely

1 1
n@)=— [ log ( ks ’y') e Wy + c, (26)
Tn JRn ’w - y’

for some ¢ € R. Since n > 3 we have that Any — An locally uniformly in R™ \ {0} and by
the first estimate in (24) we conclude that Any — An in Ll _(R™). Then, also using the second
estimate in (24) and recalling that for ¢ € S(R™) we have

n—2

(=A)"2 ] < C(1+ |z]) 722,

we get
/ (AN (=A)T pdz = lim [ (~Ap)(-A)"7 ede
n k—oo Rn
k—o00 Rn
= lim ‘x’"ae—"h“kﬂd?em?k(pdx
k—o0 R”
:/ |z|" e pdx. (27)
R

15



In order to prove that (27) implies (26) (compare to Definitions 1.1 and 1.2), we set
1 1
() = / log <+ M) ly[* "W dy,  pi=n -
Tn JR™ |z —yl

Then p satisfies

A ne
/ |Ap|dz < CR™"2, / |7p2‘_2dx < 00, Ap(—A)ngodx =0,
Br rn 1+ |z Rn

for every ¢ € S(R™). Hence Ap € L n2 (R™) is ";2—harmonic in R™, which implies that Ap is a

polynomial (see e.g. the proof of [18, Lemma 2.4]). Now the estimate fBR |Ap|dz < CR™ 2 gives
Ap = 0. Since 7j(z) > —C'log(2+|z|) on R™ (see the proof of Lemma 3.1), and |-|"®e™ € L!(R"),
by Theorem A.1 we get p = const, and (26) follows.

From the Pohozaev identity of Proposition A.2 (case p = 0) and (25), we infer

AM(1+a) = / |z|"e™dr < A,

which contradicts our assumption A < A;(1 + «). O

Proof of Theorem 1.2 (completed). Assume first A € (0, A;1(1+«)). Thanks to Proposition
4.1 we can apply Schauder’s theorem, hence T" has a fixed point v. Then the function u(z) =
v(z) — |z|? + ¢, satisfies (3), as wished.

Now we consider the case A = Aj(1+ «). We fix a sequence Ay T A, and for each k we apply
the previous procedure to find vy, fixed point of the corresponding T, . We claim that

vk (0) + ¢y, — 0. (28)

Otherwise, from (23) we would infer that vy satisfies |vg(z)| < C'log(2+ |z|) on R™. Then from
the definition of ¢,, we get |c,, | < C. Moreover (vy) is equicontinuous on R™, and therefore, up
to a subsequence, vy — v locally uniformly in R™. The limit function v satisfies

1 1
v(z) = / log () |y’"%*my\Qen(v(y)ﬂ)dy’
In JRn |z =y

where ¢,, — ¢ and
/ [y el W) gy < Tim Ay, = Ay (1 + a),
Rn k—o0
a contradiction to Proposition A.2 (case p = n). This proves (28).

Setting
() = vp(rpz) — vp(0), 1t = e H O 0,

as in the proof of Lemma 4.1, one obtains 7, — 7, where 7 is a normal solution to (3). O
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5 Proof of Theorem 1.3

We set

X = O(R™) : = [v(z)] .
(e CO®Y: ol <o} fuli= sup 1L

We fix A € (0,A;) and a € (—1,00). For v € X let ¢, € R be determined by

/ el n(v)+en) gy — A (29)
Rn
and let v* € R be given by
v* = sup eTra (V@) ten),
jel<1

We define T': X — X, v — v where
1 1
o(x) = / log <+ |y> ]y\”o‘e_"lyFe”(”(y)+c”)dy +v* ).
Tn JR? |z —y|

Notice that 2
(—A)35(z) = |z[reen®@—lel+e),

We will look for solutions of the form
u(z) = v(z) — |z)? + .
Lemma 5.1. The operator T': X — X is compact.

Proof. Asin Lemma 4.1 continuity follows by dominated convergence. Moreover given a bounded
sequence (vx) C X, from the definition of ¢,, it follows that |c,,| < C. This in turn implies
lvf| < C. If we set O () := Up(x) — viz1, we get |U(z)] < Clog(2+ |z|), and the sequence ()
is equicontinuous, with the same proof as in Lemma 4.1. In particular, up to a subsequence,
U, — ¥ in X. Since, up to a subsequence, |[viz1 — coz1|| = 0 for some ¢y > 0, we conclude that
U — U+ coxq in X. L]

The proof of Theorem 1.3 follows at once from Schauder’s fixed-point theorem and the
following a priori estimate.

Proposition 5.1. There exists C > 0 such that
|lvl| < C  for every (v,t) € X x (0,1] with v =tT(v).
The proof of Proposition 5.1 will be based on the following three lemmas.

Lemma 5.2. For every R > 0 there exists a constant C(R) > 0 such that for every (t,v) €
(0,1] x X with v =tT(v), that is

t 1
v(z) = / log < + ]y\) ]y|"°‘e_"‘y|2e”(”(y)+c“)dy + tv*xy, (30)
Tn JR® |z —y|

we have 1
w:=v+c¢,+ —logt < C(R) on Bg.
n
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Proof. Assume by contradiction that for a sequence (¢, vx) € (0, 1] x X such that vy, = ¢, T (vg)
one has

1
max wy =: Wi (&) = vk(k) + ¢y, + —logty, — 00
BQRO n

for some Ry > 0. We set zj, := & and s = 0 if €| /4 2R, and otherwise we let x € Br,(&k)
and si € [0, Rp] be such that (see [1])

(Ro — sk)ew’“(x’“) = (Rp — sx) max e“* = max <(R0 — §) max ewk> =: L.
BSk (&) s€[0,Ro] B (&k)

Then Lj — oo, and

L Ry—s
wi(xp + ppr) — wi(zr) <log2 for |z| < 7]“, g = OL k. (31)
k

We distinguish the following cases.

Case 1 Up to a subsequence |z T@e@s(#6) — ¢q € [0, 00).
In this case we have z; = & — 0, which implies that wy < wg(zg) on Br,. We set

i(x) = wi(rezr) — wi (), r?‘o‘ — o~ wk(Tk)

It follows from the definition of 7y that |xg| = O(ry). Therefore, on any compact set
(—A) En(@) = |o]" emm@emniriel= (14 o(1)) 2] (), (32)
Since a > —1 and 7, < log 2 for large k on any compact set, from (32) we obtain
I(=A)2nellzo(pry) < Clp,R) for 1< p<p,

and
1(=2)2 | oo i) < C(K)  for every K € R™\ {0},

Moreover, differentiating in (30) as in Lemma 4.3 (notice that the part v*x; does not play a role
in Any), we obtain

_ Ang(x)| C
A de < CR"? |7d < —. 33
[, i <cr [ < o (33)

We also have ng(z) = 0, where Zj, := f—: satisfies |Zp| = O(1). Then by Proposition A.3, up to
a subsequence, n;, — 1 in C2_(R™) N CLY(R™\ {0}) and Amy, — An in L (R™) for some 7.

loc
Then, with the same argument of Lemma 4.1 we obtain that n satisfies the integral equation

1 1
n(z) = — log ( + ]y|> \y|”aem7(y)dy +c. (34)
Tn JRn ’:C - y|

In particular, differentiating (34) we obtain that for every R > 0

/ |Vn(z)|de < CR™L.

Br
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Using (30) one obtains for every R > 0

,
/ |Vn(x) — tprivger|de < tk/ / —k‘y|”a€—n\y|26n(vk(y)+cvk)dydx
Br B Jrn T8 + 18T — Y|

< CR" L.

Therefore, for every R > 0

lim txrivr|Br| < lim (|Vne(z) — tprpvier] + | Var(x)]) de < CR™L.
k—o0 k—oo Br
This shows that
lim tgrivg, = 0.
k—o00

Since t — to # 0, we must have
lim rivy = 0.
k—o0

2
This is a contradiction since from lim inf te > 0 we infer v > LeTra (™) hence
k—oo Uk k C )

1
C€

1
TRUE > Tra k@) 5 o0,

Case 2 Up to a subsequence |z | ek (@) — oo,
We set
e (x) = wi(z + rre) — wi(Tr),

where
T = |ag| ¥R,

Notice that by (31) for every R > 0 we have ni(z) < log2 on Bp for k > ko(R). Moreover
r = o(|zg|) and we compute

no

Tk Tk MMk — (CO +0(1))€nnk7

(—A)Eme(x) = e PP (14 o(1)) | =5 4 =
k| |kl

X

2 . . .
on compact sets, where z — o and ¢y := e "%0l". Then, similarly to Case 1, we obtain N — N
where 7 is a normal solution to

n

(—=A)2n = cpe™ in R", / e"dr < oo,

that is, 1 is a spherical, a contradiction as A < Aj. ]

Lemma 5.3. There exists C > 0 such that for every (t,v) € (0,1] x X such that v = tT'(v) one
has v* < C and ¢, < C.
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Proof. Take (t,v) € (0,1] x X be such that v = ¢tT'(v) and let w be as in Lemma 5.2. For |z| < 1
we obtain from (30)

1 1
’U(iL‘) — tv*xl = — / _|_/ ]Og < + ’y‘> ’y‘nae—n\y|26nw(y)dy
T \Jpl<2 Jjy>2 |z —y

1
:O(l)/| 2log< +|y|> yl”ady+0(1)/ |y | e e w) gy,
y|I<

|z —y ly>2

= 0(1), (35)

where the last equality follows from (29), while in the second inequality we have used that
w < C on By thanks to Lemma 5.2, and the estimate log (L:L—‘le) = O(1) for (z,y) € By x BS.
Therefore,

v(x) + ¢y = ¢y +tv*x; +O(1) on Bj.

This and (29) imply that v + ¢, < C on Bj, which is equivalent to v* < C. In particular, from
(35), we have v = O(1) in By, and (29) yields ¢, < C. O

Lemma 5.4. For every € > 0 there exists R > 0 such that the following holds: Given (t,v) €
(0,1] x X with v =tT(v) one has

el
/ e n|z| |x|naenw(x)dx <e,
|z|>R

where w 1= v + ¢, + %logt.
Proof. We use a Pohozaev type identity for the integral equation

1 1 y _ 1
o) = ’Y/R o <|x y|> ety et dy 4+ e, + ~ logt,
n n -

where @ := w + tv*z;. Since (t,v) € (0,1] x X, we can apply Proposition A.1 to get

tA(tA — Ay) = c/ y-V (e‘”'y‘Q_t”*yl \y|”°‘) W) gy

Cm/ ly[rere v e @) gy — C/ (2nly|? + to*yr)e WP |y[reenv ) gy,

= cnatA\ — ¢ (/ —|—/ > (271‘@/’2 4 tv*yl)e—n‘w? ’y‘naenw(y)dy
Bry Ro

=: cnat\ — c(y + I2),

where Ry > 0 is such that 2n|y|* 4+ tv*y; > |y[* on Bf . We observe that |I;| < C(Ro, A, n),
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thanks to Lemma 5.2 and the estimate v* < C' of Lemma 5.3. Therefore, for R > Ry we obtain

/ eIV |y [nexgme(w) g
BC

[yPeE [y e W dy
R R

< —
R? Jp

<=5 | @nlyP + wory)e e @y
B
= 1%2/ (2nlyl” + tv*yr)e "V |y e W dy
B,
1
< ?C(ROaAan)

This proves the lemma.

O]

Proof of Proposition 5.1. Since v* < C, thanks to Lemma 5.3, it is sufficient to show that

0 := v — tv*zy is bounded in X (we want to show that |0(z)| < C'log(2 + |z|)). We have

1 = t *
i) = | 10g( +|y|>K<y>e"”<y>dy, K(y) i= [yl enevtntvran

|z =y Tn

As v* < C and ¢, < C, there exists R > 0 such that

K(y) < e 2 on B%,.

By Lemma 5.4 we can also assume that

Ke™dy < i
Bc

R

Then, as in Lemma 3.4 one obtains

1

o(x) < (—tA + 1) log || +/ log () K(y)e™Wdy, |z| > R.
4 Bi(x) lz —yl

In the spirit of Lemma 3.5 we get

2n(z) 1
/ e dz < Clzols, |xo| > R+ 2.
B (z0)

By (37) and Holder inequality, from (38)

1
o(z) < Zlog]a:\ +C, |r|>R+2.
Therefore,
1
lo(z)] < C [ |log (“") ‘ e 1P dy < Clog(2 + |z)),
R™ [z —y|

thanks to Lemma 5.2.
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A Appendix

A.1 A Pohozaev-type result

Proposition A.1. Assume that K € VV&S(R” \{ohH)nL?

oc(R™) for some p > 1, n>2. Letn
be a solution to the integral equation

1 1+|y>
T) = — log< "W dy + ¢ 39
) == [ 1o (20 ) K() (39)

for some c € R, with Ke™ € LY(R") and (VK - z)e™ € LY(R"). If there exists Ry,e > 0 such
that

1
‘K(x)‘erm(w) < PE= for |z| > Ry, (40)
then, denoting A := fR" "”(’”)dx we have
ﬁ (A—2y,) =2 / (& VK (2)) @ (41)
n n n

Proof. Noticing that n € CO(R™) N W2 (R™), in the spirit of [29, Theorem 1.1], for any R > 0

loc
we can multiply Vn by x - Vi and integrate on Bpr using the divergence theorem to get

1 R
Ke"dx + — / (r-VK(zx))e"dx — — Ke™"do(x)

OBRr
x — (x+y)

K ()™ K (2)e"%) dyda
2%/BR/F DS K e K @)y
+ — K (y)e™)dy K(z)e™®) dg.

2’Yn R” Bgr

It follows from (40) that the boundary term and the double integral term go to 0 as R — oc.

Therefore, taking R — oo, we obtain (41).
O

We are interested in the following special cases of the above proposition.
Proposition A.2. Given n > 2, o > —1, p > 0 let n be a solution to (39) with ¢ € R,
K :=|-|["e# " and

A= K(2)e"®dz < +oc.
R

Then, A < A1(1+ «) and the equality holds if and only if = 0.

n
2

Proof. First, we claim that (40) holds. If 4 = 0, then 75 is a normal solution to (—A)zn =
|z|"**e™ and the classification part of Theorem 1.1 implies that
x A
(@) _ _B8, 8= (42)
|00 log |] Tn
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Moreover, arguing as in Lemma 3.1 we get
v(z) = —ploglz| +e¢, [z] =1, (43)

and from Ke™ € L! we find that 3 > 1+ . Then (40) follows at once form (42). If p > 0,
we get (42) from Remark 3.2 and the function Ke™ decays exponentially at infinity, so that
(40) trivially holds. Observe now that the condition (VK - x)e™ € L'(R") is satisfied, since
VK -z =naK for =0, and since (VK - z)e™ decays exponentially for u > 0 thanks to (42).
Then, we can apply Proposition A.1 to get

A (A—=2v,) = z/n (x \% (\x|”a67“|zl2>> (@) dy;

Tn
— 2aA — 4p ‘x’na+2€—u|xl26nn(x)dx
n Jrn
< 2aA,
with equality holding iff ;x = 0. Since Ay = 27, the proof is complete. 0

A.2 A Liouville-type theorem

Lemma A.1. Let a € (—1,0) and u be a measurable function such that | - |**e™ € LY(R™).
Then for any x € R™ we have
][ utdy — 0
Br(z)

as R — oo.

Proof. Fix z € R™. From nut < €™, multiplying and dividing by |y|"® we get

n][ utdy < ][ e™ dy
Br(z) Br(x)

S e T

Br(z)

_ C@+la) ™

< T
where we used that for y € Br(z) we have |y| < R+ |z| and that [p, |2[**e™ dz < oco. The
claim follows letting R — oo, since « € (—1,0). O

Theorem A.1. Let a > —1, m > 1 and consider h: R" — R with (—A)2 h = 0 in the sense of
Definition 1.1. If m is even, assume further that h(z) < u+ Clog(1l+ |z|) + C for any x € R",
with fR" |z|"@e™ dx < oo. Then h is a polynomial of degree at most m — 1.

Proof. If m > 1 is even, the proof is almost identical to the one of Theorem 6 in [23], the only
difference being the estimate of the term fBR @) ut dy — 0 for a € (—1,0), which is true thanks
to Lemma A.1. In the case m > 1 odd, notice that i € L= (R") by Definition 1.1. This implies
that h is a polynomial of degree at most m — 1 (see e.g. the proof of [18, Lemma 2.4]). O
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A.3 A non-local elliptic estimate

Proposition A.3. Assume n > 3. Let (ug) C Lz (R") be a sequence of solutions to
(-A)2up = fr,  in R"
for some fr € L'(R™) satisfying
[ fillr@ny < Cy N fkllzesr) < €5 N fellpeay < C, (44)

for some p>1, R > 0 and an open set A € R" \ {0}. Assume further that

up <ug(0) =0 in Bg and / |Aug|dz < C.
Br

Then the sequence (uy) is bounded C’loo’gl (Br) and in C’{(L)zl’@ (A) for some o1 = a1(p) € (0,1)
and for every oz € (0,1).

Proof. We set

wte)i= = [ g (L) e = (45)

_%R \iﬂ—y’

Then by [18, Lemma 2.4] we have that py is a polynomial of degree at most n — 1. It follows
from the assumptions on fj and from (45) that (vg) is bounded in C’loo’gl (Br) and in Cg;l’” (A).
Therefore, p; satisfies

suppr < C(R), [pe(0)] < C, |Apg|dx < C.
Br Bpr
2
Hence, (px) is bounded in C{ _(R") for every £ € N. O

A.4 Some integral estimates

Lemma A.2. There exists C > 0 such that for every p € (0,1] we have for any x,§ € R™

i)
\Z—€|>
1 LA
/B,,(x) /Bp(:v) o8 <|y — ¢
i) If |z — & > 2/p then

/Bp(x) /Bp(x) g (:; : §|>
oo fo 2 (5=5)

dzdy < Cp*".

dzdy < C’p2”+% .

iii)
|z—&|—00
%

dzdy = 0(1)p*",  o(1) 0.
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Proof. Under the rescaling

i) will be equivalent to showing

/;1 (0) /B1 (0)

If |¢’| > 2, then it suffices to apply the triangular inequality to get ‘log ( g D ’ < log 3.
On the other hand, for |¢'| < 2 one has
Y
<|Z, €I‘>‘dz/dy/
ly —¢|

_ /
Foio oo s (=it == [ |
B1(0) /B1(0 Bs(¢') J B3(¢')
S
/ / log (’ ”’>'dzl/dy//
B3(0) / B3(0 ‘ |

szwamy/ [log 2] ="
B3(0)

<C.

o — /!
(24w =

independently on x, £’

To prove ii) first notice that for [z — £| > 2,/p one has

|z =& _ly—& 4|z —yl
1+2 .
e S y—g ST

Exchanging the role of y and z we find the same estimate for ‘Izig Therefore

‘log (IZ:EI)' < log(1+2/p) < 2\/p.

The proof follows immediately.
As for the proof of iii) it suffices to notice that as |z — &| — oo we have

|z — ¢
ly — ¢

— 1 uniformly for y,z € B,(x) C Bi(x).
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