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Directional emission and photon bunching from a qubit pair in waveguide
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Waveguide quantum electrodynamics represents a powerful platform to generate entanglement and tailor
photonic states. We consider a pair of identical qubits coupled to a parity invariant waveguide in the microwave
domain. By working in the one- and two-excitation sectors, we provide a unified view of decay processes and
show the common origin of directional single-photon emission and two-photon directional bunching. Unveiling
the quantum trajectories, we demonstrate that both phenomena are rooted in the selective coupling of orthogonal
Bell states of the qubits with photons propagating in opposite directions. We comment on how to use this
mechanism to implement optimized post-selection of Bell states, heralded by the detection of a photon on one
side of the system.
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Introduction. In recent years, the field of waveguide
quantum electrodynamics [1–17] has endeavored toward the
implementation of networks to communicate and manipulate
information encoded in itinerant photons [18–23]. In this con-
text, it is crucial to achieve selective and tunable directional
propagation of photons. In the optical domain, this task is
easily achieved by exploiting the locking of the photon polar-
ization with the direction of propagation in the so-called chiral
waveguides [24–26]. In the microwave domain, where this
effect cannot be exploited, destructive interference between
fields emitted by a pair of identical two-level systems (qubits)
has been identified as a promising strategy [27–43]. One-
dimensional arrays of multiple emitters have been extensively
investigated as well [44–60], including systems in the optical
domain [61,62].

The most natural description of the a pair of identical emit-
ters in a parity-invariant waveguide uses centrally symmetric
and antisymmetric states of the propagating electromagnetic
field [29,63]. However, such a natural formulation does not
correspond to a simple experimental detectability of the two
kinds of photons, symmetric or antisymmetric, unless specific
interferometric techniques are employed. Yet, describing the
dynamics in terms of photon propagation directions gives
new insights into the system physics and the possibility to
implement new procedures.

An independent emission of photons propagating to the
left or to the right of the emitters can be achieved only
for certain specific values of the distance between the
emitters and additionally requires the implementation of a
control coupling between them: two identical qubits placed
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a quarter wavelength apart and connected via a suitable
control coupling can emit and absorb single photons di-
rectionally [64,65]. This happens as orthogonal Bell states
of the qubits get coupled selectively with different pho-
ton propagation directions (see Fig. 1). Remarkably the
same mechanism can be used to generate two-photon N00N
states [66–72].

In this letter, we provide a unified view of the decay
processes of a pair of qubits in the one-excitation and two-
excitation sectors, showing the common origin of directional
emission and bunching phenomena [63,73–76]. Differently
from the existing theoretical literature, our results are not
built on the solution of the qubits master equation but
rather on that of the closed light-matter dynamics [77–79].
The joint system state shows that the state of the emitted
photons and their entanglement can be tuned by chang-
ing the qubits distance and the strength of the control
coupling.

The unveiling of the quantum trajectories of the joint sys-
tem shows that the emission of a two-photon N00N state
with directional bunching can be regarded as an avalanche
process: the first photon is emitted toward the left or right with
equal probability, hence conserving the initial parity symme-
try; then, according to its direction, the qubits are projected
onto a different Bell state that consequently is forced to emit
the second photon in the same direction. We then show that
the mechanisms underlying left/right photon emission can
be used to implement optimized post-selection of Bell states,
heralded by the detection of photons on one or the other side
of the qubits pair.

Model and dynamics. We consider a pair of identical
qubits coupled to the same one-dimensional waveguide in
different points, at a distance d from each other. The bare
Hamiltonian of qubit j ∈ {1, 2} is H (0)

j = ω0σ
†
j σ j , where

σ j = |g j〉〈e j |, with e and g labeling the excited and ground
state, respectively. For notation shortness, we will denote
the states of the tensor product emitter basis as |ee〉, |eg〉,
|ge〉, and |gg〉. The atoms are also coupled among each
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FIG. 1. A pair of identical qubits of frequency ω0 are placed at a
distance d along a parity-invariant waveguide with linear dispersion
relation ω = vgk. Besides being coupled by field-mediated interac-
tions, the qubits interact through a control coupling Hc of strength
J . In the case shown in figure, with d = π/(2k0) = πvg/(2ω0) and
J = −γ /2, the Bell state |φ+〉(|φ−〉) absorbs/emits only left- (right-)
propagating photons. The system thus behaves as an effective four-
level system with optical selection rules.

other directly by an energy-exchange interaction described
by the Hamiltonian Hc = J (σ+

1 σ2 + σ1σ
+
2 ), which is called,

for reasons that will be clear in the following, the cancel-
lation coupling. A possible strategy to implement such a
term consists of buffering the emitter-waveguide coupling
with interacting resonant cavities [40,64,66]. The electro-
magnetic field propagates along the waveguide with a linear
dispersion relation (in the relevant bandwidth around ω0),
with constant group velocity vg. Hence, in the interac-
tion picture with respect to the bare Hamiltonians of the
qubits and the field, the coupling between the atoms and
the waveguide photons reads, within the rotating wave
approximation,

VI (t ) =
√

γ

2
{σ1[b†

R(t ) + b†
L(t )] + σ2[e−iω0τ b†

R(t − τ )

+ eiω0τ b†
L(t + τ )]} + H.c. (1)

Here, τ = d/vg is the time of flight between the qubits placed
at x = 0 and x = d , and b�(t ) with � ∈ {R, L}, where L and
R stand for left- and right-propagating photons, are the anni-
hilation operators (quantum noise), verifying [b�(t ), b†

m(t ′)] =
δ�,mδ(t − t ′) [80]. We assumed that the coupling rate γ , equal
for the two propagation directions, is constant over the rel-
evant bandwidth (first Markov approximation) [81], with the
rotating wave approximation holding true for γ � ω0 [82,83].

In the following, we will assume that the qubit distance
d has an order of magnitude of the atomic wavelength.
This condition implies that τ ∼ ω−1

0 � γ −1—that is, the
time of flight between the qubits is much smaller than the
typical lifetime of their excited states. Within this regime,
we can neglect the propagation delay between the qubits
in the quantum noise operators replacing b†

R(t − τ ) and
b†

L(t + τ ) with b†
R(t ) and b†

L(t ), and thus the dynamics
of the two qubits can be described by a GKLS master
equation [84–86].

Now, let us consider the quantum noise increment
operators defined as dB�(t ) ≡ ∫ t+dt

t ds b�(s), with
[dB�(t ), dB†

m(t ′)] = δ�,mdt for t = t ′ and 0 otherwise,
and the associated increment of the number operator
dN�(t ) ≡ ∫ t+dt

t ds b†
�(s)b�(s) [80]. The stochastic dif-

ferential equation of the unitary propagator in Itō form

reads [84,87]

dU (t ) =
{(

−iH + 1

2

∑
�

J†
�J�

)
dt +

∑
�

[J�dB†
� −J†

� dB�

+ (eiω0τ − 1) dN�]

}
U (t ), (2)

where H = He + Hc, with He = (γ /2)(σ+
1 σ2 + σ1σ

+
2 ) being

an effective qubit-qubit energy-exchange interaction mediated
by the electromagnetic field, and

JR = −i

√
γ

2
(σ1 + e−iω0τ σ2), JL = −i

√
γ

2
(σ1 + eiω0τ σ2)

(3)
are the jump operators associated with the right and left emis-
sion, respectively.

Importantly, the combination of He with the cancella-
tion coupling Hc determines a new effective Hamiltonian
dynamics

H = He + Hc = γ

2
(sin(ω0τ ) − gc)(σ †

1 σ2 + σ1σ
†
2 ), (4)

with gc = −2J/γ . Therefore, the choice gc = sin(ω0τ ) can-
cels the exchange interaction between the emitters, H = 0,
leaving the dissipation as the only non-trivial part of the dy-
namics (2) induced by the coupling with the waveguide field.

The Schrödinger equation (2) is invariant under point re-
flection through the center x = d/2; hence, to obtain selective
directional propagation, the inherent central symmetry of the
dynamics needs to be broken by preparing the system in an
asymmetric initial state [64]. Considering the form of the
light-matter coupling in (2), one could naively expect that
preparing either of the states

|ψL〉 = |eg〉 − eiω0τ |ge〉√
2

, |ψR〉 = |eg〉 − e−iω0τ |ge〉√
2

, (5)

which are selectively annihilated by the jump operators
(3) (i.e., JR|ψL〉 = 0 = JL|ψR〉) would provide pure direc-
tional emission. However, this is not the case, as the two
states are generally coupled to each other by the effective
Hamiltonian (4). The following analysis will show that fully
directional emission occurs only in exceptional cases, charac-
terized by specific values of emitter distance and by fine-tuned
cancellation couplings. Moreover, we show that these con-
ditions are identical to those in which two-photon emission
from a doubly excited emitter state is fully bunched in
direction.

One-excitation sector. Let us first consider the case where
the emitters are prepared in a pure single-excitation state
|ψ〉 = aeg|eg〉 + age|ge〉 so that the system state at a later time
t reads

|�(t )〉 = [aeg(t )|eg〉 + age(t )|ge〉] ⊗ |0R0L〉

+ |gg〉 ⊗
∫ t

0
ds[ fR(s)b†

R(s) + fL(s)b†
L(s)]|0R0L〉,

(6)

where |0R0L〉 is the waveguide field vacuum. The coefficients
of the excited qubit states are given by the matrix elements

aeg(t ) = 〈eg|K (t )|ψ〉, age(t ) = 〈ge|K (t )|ψ〉 (7)
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of the Kraus operator K (t ) ≡ 〈0R0L|U (t )|0R0L〉 acting on the qubits, whose analytical expression can be shown to be [87]

K (t ) =

⎛
⎜⎜⎜⎜⎝

e−γ t 0 0 0

0 1
2

(
e− 1

2 μ+t + e− 1
2 μ−t

)
1
2

(
e− 1

2 μ+t − e− 1
2 μ−t

)
0

0 1
2

(
e− 1

2 μ+t − e− 1
2 μ−t

)
1
2

(
e− 1

2 μ+t + e− 1
2 μ−t

)
0

0 0 0 1

⎞
⎟⎟⎟⎟⎠. (8)

Here, μ± = γ± ± iδ, where

γ± = γ [1 ± cos(ω0τ )], δ = γ [sin(ω0τ ) − gc] (9)

respectively correspond to the imaginary and the real part of
the self-energy eigenvalues in the limit of linear dispersion
relation and including the cancellation coupling, as shown in
Ref. [29]. The single-photon amplitudes f�(t ) in Eq. (6), with
� ∈ {R, L}, are given by the matrix elements

f�(s) = 〈gg|K (t − s)J�K (s)|ψ〉, (10)

whose analytical expression is reported in the Supplemental
Material [87].

Besides the trivial eigenvectors |ee〉 and |gg〉, the matrix
K (t ) is generally diagonalized by the real-coefficient Bell
states |ψ±〉 = (|eg〉 ± |ge〉)/

√
2 with decay rates γ±, as well

as relative energy splitting δ determined by the Hamiltonian
(4). Since they do not break central symmetry, the states |ψ±〉
cannot give rise to any prevalence of emission in one direction.

The most suitable candidates for directional emission
would be the states (5), but as one can observe from the form
of K (t ) in Eq. (8), the dynamics generally entails transitions
between them, thus hindering purely directional emission. A
remarkable exception is represented by the following cases,
which we can call controlled antiresonances,

ω0τ = (
n + 1

2

)
π, gc = (−1)n, with n ∈ N, (11)

in which the antiresonance condition on ω0τ makes the quan-
tities γ± equal to the isolated-qubit decay rate, whereas the
cancellation coupling is used to suppress the Hamiltonian
evolution in the single-excitation sector, thus makingK (t ) di-
agonal. In these conditions, the right- and left-emitting states
(5) specialize to the orthogonal Bell states |φ±〉 = (|eg〉 ±
i|ge〉)/

√
2: for even-n (resp. odd-n) antiresonances, one finds

|ψR〉 = |φ+〉 and |ψL〉 = |φ−〉 (resp. |ψR〉 = |φ−〉 and |ψL〉 =
|φ+〉). Due to the cancellation condition gc = (−1)n, no co-
herent transition between the two states |φ±〉 occurs, and the
preparation of either of them at the initial time generates pure
directional emission. In this case, the two qubits can be re-
garded as a four-level system with optical selection rules [40],
as depicted in Fig. 1(a), corresponding to an even-n controlled
antiresonance.

In general, the directionality of the emitted field can be
quantified through the ratio r1(|ψ〉) = P(ψ )

L /P(ψ )
R withP(ψ )

L/R =∫ ∞
0 dt | f (ψ )

L/R (t )|2 being the probability that the state |ψ〉 emits
toward left/right. The states |ψL/R〉 of Eq. (5) yield

r1(|ψL〉) = 1 + (gc − sin (ω0τ ))2 + sin2 (ω0τ )

1 + (gc − sin (ω0τ ))2 − sin2 (ω0τ )
, (12)

and r1(|ψR〉) = 1/r1(|ψL〉). Hence, as expected, the emission
is purely directional (i.e., r1(|ψL〉) = ∞ and r1(|ψR〉) = 0)
provided that ω0τ and gc verify the controlled antiresonance
condition in Eq. (11). It is interesting to compare the preced-
ing result with the one obtained using the initial one-excitation
states that break spatial inversion symmetry but are factorized
(i.e., |eg〉 and |ge〉). In this case, one finds

r1(|eg〉) = r1(|eg〉)−1 = 3 − 2
g2

c + cos2 (ω0τ )

1 + gc(gc − sin (ω0τ ))
. (13)

Therefore, despite the cancellation coupling, if the initial
states are not tailored for pure directional emission, the di-
rectionality ratio can never exceed the value r1 = 3 [63].

Two-excitation sector: entangled photons and Bell state
post-selection. When the qubits are prepared in the doubly
excited state |ee〉, which is obviously centrally symmetric,
the state at time t comprises three different amplitudes de-
scribing the following: (i) both emitters remaining excited,
(ii) the emitters being in a single-excitation state and one
photon being emitted, and (iii) the emitters being in the state
|gg〉 and two photons being emitted. The dynamics of such
an evolution is strongly influenced by what occurs in the
one-excitation sector, especially concerning the alternation of
resonances (i.e., the cases ω0τ = nπ with n ∈ N, n �= 0, when
one of the two Bell states |ψ±〉 is stable) and antiresonances
[63]. Even though the Schrödinger equation (2) enables us to
determine the dynamics at any time (see [87]), let us focus on
the asymptotic regime t  γ −1, when only the amplitudes of
type (3) survive (i.e., the emitters are found in |gg〉) and the
field state reads

|�〉 =
∑

�,m∈{R,L}

∫ ∞

0
dt2

∫ t2

0
dt1[λ�,m(t1, t2)b†

�(t1)b†
m(t2)]|0R0L〉,

(14)

with normalization achieved in the limit t → ∞. The two-
photon wavefunctions λ�,m(t1, t2) with t1 � t2 are given by

λ�,m(t1, t2) = lim
t→∞〈gg|K (t − t2)JmK (t2 − t1)J�K (t1)|ee〉.

(15)

The properties λR,R(t1, t2) = e2iω0τ λL,L(t1, t2) and λR,L(t1,
t2) = λL,R(t1, t2) imply that the probabilities Pl,m =∫ ∞

0 dt2
∫ t2

0 dt1|λl,m(t1, t2)|2 are invariant under exchange
of the propagation direction, as expected by the central
symmetry of the initial state of the system.

Hence, the ratio between the probabilities of antiparallel
emission, P�� = PL,R + PR,L, and that of parallel emission,
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FIG. 2. (a) Plot of the ratio r2 in Eq. (16), as a function of ω0τ

and gc. As expected, r2 = 0 (purely parallel emission) at the points
verifying the even-n (resp. odd-n) controlled antiresonance condi-
tion, {ω0τ, gc} = { π

2 , 1} (resp. {ω0τ, gc} = { 3π

2 , −1}). (b) Pictorial
representation of the quantum trajectories underlying the N00N state
generation: when the controlled antiresonance condition is verified,
the doubly excited state undergoes a sequence of transitions selec-
tively coupled with the two directions of propagation [see Eq. (18)].

P‖ = PL,L + PR,R, is equal to

r2 = P��
P‖

= (2 − sin2(ω0τ ))[1 + (sin(ω0τ ) − gc)2] + sin4(ω0τ )

(2 − sin2(ω0τ ))[1 + (sin(ω0τ ) − gc)2] − sin4(ω0τ )
.

(16)

In the absence of cancellation coupling, r2 always lies be-
tween the value 1/3, reached at antiresonance, and the
value 1 reached at resonance (see the small-coupling limit
in Ref. [63]). Thus, in this case, antiparallel emission
can never be suppressed, in accordance with the findings
in the single-excitation sector. Instead, by adding a can-
cellation coupling that verifies the controlled antiresonance
condition (11), one achieves pure directional bunching of
a two-photon emission corresponding to a vanishing r2

[see Fig. 2(a)]. In this case, λR,L(t1, t2) = λL,R(t1, t2) = 0,
and λR,R(t1, t2) = −λL,L(t1, t2) = −iγ (−1)ne−γ (t1+t2 )/2 (see

the Supplemental Material [87] for the explicit derivation).
Hence, the system asymptotically approaches the state |gg〉 ⊗
|�〉, with the field in the two-photon N00N state

|�〉 = |2R0L〉 − |0R2L〉√
2

, (17)

where we have introduced the Fock state notation |nRnL〉 =
(nR!nL!)−1/2(c†

R)nR (c†
L )nL |0R0L〉 associated to the mode opera-

tors cR/L ≡ ∫ ∞
0 dt

√
γ e−γ t/2bR/L (t ) [88,89], with |0R0L〉 being

the field vacuum. Note that due to the phases acquired at point
inversion, the preceding state is centrally symmetric, as well
as the initial state |ee〉.

Looking at Eq. (15), the entangling mechanism appears
transparent. As K (t )|ee〉 = e−γ t |ee〉 [see Eq. (8)], the first
jump operator acts on |ee〉 and projects it onto one of the states
|φ±〉, which is then forced to emit the second photon toward
the same direction as the first one. Therefore, in the cases (11),
the decay of the |ee〉 occurs with equal probability through the
uncoupled channels [see Fig. 2(b)]:

|ee〉 →
{|ψR〉 ⊗ |1R0L〉 → |gg〉 ⊗ |2R0L〉

|ψL〉 ⊗ |0R1L〉 → |gg〉 ⊗ |0R2L〉 (18)

with |ψR〉 = |φ+〉 and |ψL〉 = |φ−〉 (|ψR〉 = |φ−〉 and |ψL〉 =
|φ+〉) for even-n (odd-n) antiresonances.

Then, under the assumption of ideal photodetection, if two
detectors are placed on the left and on the right sides of the
emitters, the observation of the first photon by the left detector
(resp. the right one), occurring after an average time (2γ )−1,
unambiguously selects the state |ψL〉 (resp. |ψR〉). The se-
lected state does not decay until the second photon is observed
after an additional average time of γ −1. Therefore, the two-
excitation decay, Eq. (18), makes one of two orthogonal Bell
states available, with certainty, within an average time γ −1.
During this time, one can think of implementing strategies
to adiabatically decouple the emitters from the field, hence
preserving the Bell state from decaying. Triggering different
operations, depending on which detector clicks, it is possible
to select one of the two equiprobable system trajectories.

Let us note that the same post-selection scheme can give
access to a Bell state also within resonance conditions. In the
n-th resonance, only one decay channel is open:

|ee〉 → |ψ(−1)n〉 ⊗ |1(−1)n〉 → |gg〉 ⊗ |2〉, (19)

with |1±〉 = (|1R, 0L〉 ± |0R, 1L〉)/
√

2 being one-photon
states satisfying central symmetry (antisymmetry) and
|2〉 = (|2R0L〉 + |0R2L〉 + √

2|1R1L〉)/2. In this case, as
before, the first emitted photon is observed by one of the two
detectors after an average time (2γ )−1. Regardless of which
detector clicks, the qubits are left in the Bell state |ψ+〉 (resp.
|ψ−〉) for an even-n (resp. an odd-n resonance). However,
such a state subsequently decays twice as fast than |φ±〉 at
antiresonance. This halves the time for possible operations to
decouple the emitters from the field to preserve the Bell state.

Finally, when the system is neither in resonance nor
antiresonance, one can still post-select one of the states
|ψ±〉, with uneven relative probabilities γ±/(2γ ) = (1 ±
cos(ω0τ ))/2, but this would require an interferometric
detection scheme to distinguish between symmetric and
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antisymmetric single-photon states |1±〉. Moreover, it is worth
noting that in this case, the most probable state to be detected
is also the one that decays faster afterward.

Outlook. We presented an analytic description of the dy-
namics underlying the directional emission of single photons
and the generation of two-photon N00N states from a pair
of qubits in the waveguide. We displayed the common root
of these phenomena emerging in the same antiresonance
conditions, hence highlighting the primary role played by
central symmetry. The proposed approach emerges as the
ideal candidate to achieve exact modeling and characteri-
zation of arrays of multiple qubits and multi-level systems
(qudits) whose dynamics and collective properties are de-
termined by the symmetries, particularly in the microwave
domain [21]. Furthermore, by describing the closed-system
dynamics through a collision model, our analysis can be
extended to include a proper description of time delays,

feedback [53,90], and scattering phenomena [38,91], which
could also be also interesting for protocols involving two-
photon correlations [92,93].
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