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ABSTRACT

We propose approxSemanticCrossE, an approach for generating
explanations to link prediction problems on Knowledge Graphs.
Due to their incompleteness, several models have been proposed
to predict missing relationships (link prediction task). To date, the
most effective methods are based on embedding models, represent-
ing entities and relationships as a multi-dimensional vectors in a
vector space. Explaining the results of this task means finding a
meaningful reason for which entities are predicted as linked. This
work presents a structural and semantically enriched approach for
generating explanations for link predictions, by exploring the data
available in the knowledge graph. The solution searches for paths
and examples of similar situations that justify the prediction carried
out using numerical approaches. Specifically, CrossE is adopted
as the underlying embedding model to compute predictions. Then
explanations are searched exploiting ad hoc semantic similarity
measures. The proposed solution has been experimentally evalu-
ated, showing that the new approach is able to provide meaningful
explanations compared to the considered baseline.

CCS CONCEPTS

• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION

Real business is founded upon data collection and valuable services
that exploit huge amounts of data to produce complexmathematical-
statistical models. To allow the extraction of even more value, data
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can be hosted across the Web infrastructure in the form of the
so-called Knowledge Graphs (KGs).

A KG is as a multi-relational graph intended to convey knowl-
edge of the real world and composed of entities and relations which
are regarded as nodes and different types of edges, respectively [7].
It also integrates information defined in well-established Web vo-
cabularies/ontologies allowing the usage of reasoning to derive
further explicit knowledge [8]. Several examples of large KGs exist,
spanning from enterprise products, such as those built by Google1
and Amazon2 (and many others), to several Open KGs, such as the
DBpedia, Freebase, Wikidata and YAGO. In this work we consider
Open KGs, which are published online and freely accessible [7].

Due to their inherent incompleteness, two of the most com-
pelling tasks with KGs are link prediction and triplet classification
that roughly amount, resp., to predicting an unknown component
of a triple and whether a new triple is true or not. Mostly numeric-
based methods are adopted for the purpose, and specifically those
based on vector representations (embedding models) due to their
ability to scale on very large KGs. However they are also character-
ized by a very low level of interpretability for the human experts.
Hence an elusive aspect regards the trust that they can place in pre-
dictions made through such models (e.g. a side effect predicted for a
compound in the context of a KG regarding the drugs domain): the
more complex and accurate the models the more difficult to explain
become the reasons for their predictions (even by their designers).
As a consequence, providing explanations for the predicted results
is becoming increasingly important.

It is possible to distinguish the computed explanations into two
categories [10]: those related to the internal mechanisms of a model,
and those that can motivate the output predictions. Specifically,
two possible approaches can be delineated [5]:

A-posteriori methods aim at constructing explanations after
the model has provided its predictions; they do not explain
the reasons for which the internal mechanism of the model
provided a given output, but try to find a suitable explanation
based on the observed output and on the model input.

Pattern-based methods guide the process of creating numeri-
cal representations of the data contained in the KG by nar-
rowing the search space so that each dimension corresponds
to a pattern;

We will focus on the first approach as it allows to adopt link
prediction models based on numerical representations of the data,
that are more scalable than pattern-based approaches, hence more
suitable for real-world large-scale KGs, and capable of generating
1https://developers.google.com/knowledge-graph
2https://aws.amazon.com/it/neptune/knowledge-graphs-on-aws/
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explanations for the predictions computed. Actually, there are only
few examples of approaches that are able to explain the results of
link prediction problems in KGs.

The objective of this work is to define an a-posteriori
method for providing semantic-based explanations for link pre-
diction on KGs. Specifically, given the link prediction output:
⟨NickMason, recordLabel, CapitolRecords⟩ we aim to under-
stand why this output has been provided, giving valuable reasons
so that the user is able to judge this result, understand motivations,
and trust (or not) what has been computed. An explanation model
should provide an explanation such as:
⟨NickMason, associatedBand, PinkFloyd⟩,
⟨PinkFloyd, recordLabel, CapitolRecords⟩
supported by analogous situations that can be found in the KG, such
as ⟨RingoStarr, recordLabel, Parlophone⟩ for which the expla-
nation computed was:
⟨RingoStarr, associatedBand, TheBeatles⟩,
⟨Beatles, recordLabel, Parlophone⟩.

We delineate an explanation process based on new semantic
similarity measures to elicit analogous cases on which more accu-
rate explanations can be built, proposing a theoretical framework
capable to exploit more thoroughly the KG underlying semantics.

The rest of this work is organized as follows. §2 introduces the
basics that are functional to our method definition. In §3 we present
our proposed explanation method. The experimental evaluation
is described in §4; the explanation process is evaluated in both
quantitative and qualitative way to assess the performance of the
explanation algorithm and the conceptual correctness of the expla-
nations provided. In §5, related works in the field of explanation
on KGs and other kinds of knowledge bases, are discussed. §6 sum-
marizes the conclusions and delineates future works.

2 BASICS

A Knowledge Graph is a graph-based data structure K(E,R) where
E is the set of the nodes, also known as entities, and R is the set of
arcs, also known as relationships, which connect entities with each
other.

In the adopted RDF model, a KG can be thought of as a set of
triples ⟨s,p,o⟩, i.e. subject, predicate, and object where s,o ∈ E and
p ∈ R. In RDF, the terms are denoted by the elements of the setsU
(URIs), B (blank nodes) and L (literals). Hence an RDF Graph is a
set triples [5] with: s ∈ U ∪ B, r ∈ U, and o ∈ U ∪ B ∪ L.

2.1 Embedding Models

Several models have been proposed for embedding KGs in low-
dimensional vector spaces [8], by learning a unique distributed
representation (or embedding) for each entity and predicate in the
KG and considering different representation spaces (e.g. point-wise,
complex, discrete, Gaussian, manifold). Here we focus on vector
embedding in the set of real numbers.

Regardless of the learning procedure, these models share a fun-
damental characteristic: given a KG K , they represent each entity
x ∈ E by means of a continuous embedding vector ex ∈ Rk , where
k ∈ N is a user-defined hyperparameter. Similarly, each predicate
p ∈ R is associated to a scoring function fp : Rk ×Rk → R. For each

pair of entities s,o ∈ E, the score fp (es , eo )measures the confidence
that the statement encoded by ⟨s,p,o⟩ holds true.

The embedding of all entities and predicates in K is learned by
minimizing a (margin-based) loss function.

2.2 Embedding-based Link Prediction: CrossE

CrossE [14] is a KG embedding model for link prediction tasks. It
learns embeddings for relations, entities, and triples (interaction
embeddings); furthermore, explanations for link predictions are
also provided. The formulation of the explanation is based on the
search for a path linking the subject and object of a predicted triple:
this search is driven by similarities, computed by the use of the
Euclidean distance, between relation embeddings and then entity
embeddings, making structural comparisons with other paths in
the KG to reinforce the reliability of the explanation found on the
basis of the presence of similar paths (referred to as support).

Example 2.1. Given the predicted triple ⟨X , fatherOf,M⟩ a suit-
able explanation is given by the ⟨X , hasWife,Z ⟩, ⟨Z , hasChild,M⟩
and this is supported by an analogous situation given the presence
of a triple ⟨Y , fatherOf,X ⟩ known as true (so, not a prediction) for
which the explanation is ⟨Y , hasWife, S⟩, ⟨S, hasChild,X ⟩.

CrossE is based on the concept of crossover interaction, i.e. a
notion of interaction from relations to entities and from entities to
relations, as illustrated in the following example [14].

Example 2.2. Let a sample KG be represented as follows:

K = {⟨X , fatherOf,Y ⟩, ⟨X , hasWife,Z ⟩, ⟨X , wonPrize,Q⟩,
⟨X , starredIn,T ⟩, ⟨Y , fatherOf,X ⟩, ⟨Y , hasWife, S⟩,
⟨S, hasChild,X ⟩, ⟨Z , hasWife,M⟩}

A query can be written as ⟨X , fatherOf, ?⟩. The objectives are:
a) predicting the suitable object for the triple (e.g.M); b) generating
(a set of) explanations for the produced solutions. The entity X is
involved in 5+1 triples as subject or object, but only four of them
are relevant, as they deal with family relationships. The relation
fatherOf concerns the family context, and so influences the choice
of entities to be considered to produce a prediction: this represents
the concept of “interaction from relations to entities”. The second
concept involves entities having some influence on the path to
be chosen as an explanation, which intuitively should guide us
to consider ⟨X , hasWife,Z ⟩, ⟨Z , hasWife,M⟩: this represents the
concept of “interaction from entities to relations”.

Hence, for each entity and relationship the model defines:
• a general embedding that preserves structural information
about the topology of the KG
• multiple triple-specific embeddings, the interaction embed-
dings, which maintain properties concerning the crossover
interactions, generated by the Hadamard product between
an interaction matrix and the general embeddings

Each of these components is represented by a suitable embedding
matrix. Specifically, three matrices must be learned (having been
initialized according to a uniform distributionU (−6/

√
d, 6/
√
d)):

• E ∈ Rne×d general embeddings of the entities, one per row
• R ∈ Rnr×d general embeddings of the relations, one per row
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• C ∈ Rnr×d interaction matrix in which each row is related
to a specific relation based on the contexts they are involved

where ne and nr are, resp., the number of entities and relationships
in the training KG, while d is the embeddings dimension. These
matrices are exploited for generating the interaction embeddings. All
final interaction matrices are then used by the explanation process.

3 THE PROPOSED EXPLANATION METHOD

We propose approxSemanticCrossE, a method for computing
explanations for link predictions on KGs exploiting their semantics.
Specifically, moving from CrossE, we extend the solution by:
• adapting the similarity measure that leads the explanation
process. Specifically the cosine similarity is adopted rather
than the Euclidean distance in order to take into account the
angle of the vector embeddings which is disregarded by the
Euclidean distance, that focuses rather on the magnitude of
the feature values in the embedding space;
• formalizing a theoretical framework to guide the explanation
process by exploiting the underlying semantics of the KG in
order to create more accurate explanations;
• defining an approximation within this theoretical framework
to be used for coping with scalability issues with large KGs.

The base explanation process borrowed from CrossE is now
recalled, to introduce the extensions related to the employed simi-
larity measures that are illustrated and motivated in §3.1-§3.3.

Given a predicted triple ⟨h, r , t⟩ for the query ⟨h, r , ?⟩, the main
idea consists in looking for the shortest paths from h to t , and
provide them as explanations. This search aims at finding anal-
ogous situations that can support the explanation: this requires
a structural comparison between paths, to draw "support" to the
explanation.

The whole process is summarized in Alg. 1, whose steps can be
described as follows:

Given the predicted ⟨h, r , t⟩:
(1) find the set Sr of the kr closest relationships to r
(2) search for the set P(h, t) of (all) paths between h and t
• a maximum length is fixed to limit the search space; we
will consider length 2, hence six types of paths are possible,
length 1: P1 = {⟨h, rs , t⟩}, P2 = {⟨t , rs ,h⟩} and length 2:
P3 = {⟨e ′, rs ,h⟩, ⟨e ′, r ′, t⟩}, P4 = {⟨e ′, rs ,h⟩, ⟨t , r ′, e ′⟩},
P5 = {⟨h, rs , e ′⟩, ⟨e ′, r ′, t⟩}, P6 = {⟨h, rs , e ′⟩, ⟨t , r ′, e ′⟩},
where rs is a relationship similar to r , r ′ stands for any
other relationship, and e ′ is any other entity;
• a direct search is employed to find similar paths of type
1 and 2, and bidirectional search to find paths of types 3
through 6.

(3) find the set Sh of the ke closest entities to h;
• note that considering hs ∈ Sh , entities ts s.t. ⟨hs , r , ts ⟩ ∈
K are also determined

(4) search for similar structures to support the explanation
• if ∃P ∈ P(hs , ts ) such that ⟨hs , P , ts ⟩ which denotes a path
P between hs and ts in K (with ⟨hs , r , ts ⟩ determined at
step (3)) then P is an explanation for ⟨h, r , t⟩
• the triples satisfying the previous condition describe an
analogous situation involving similar entities and rela-
tionships: the support is given by P which joins a similar

Algorithm 1 Explanation of the predictions

require K(E, R): knowledge graph
⟨h, r, t ⟩: predicted triple

ensure explanations of the predicted triple and and their supports
Expl ← ∅; /∗ explanation set ∗/
Supp ← ∅ /∗ support set ∗/
Select Sr ⊆ R, with |Sr | = kr /∗ the most similar relations to r ∗/
for each path−type i do

Find the path−set Pi = {P | ⟨h, P, t ⟩ ∈ K ∧ P of type i }
Select Sh ⊆ E, with |Sh | = ke /∗ the most similar entities to h ∗/
for P ∈ P =

⋃
i Pi do

if ∃⟨hs , p, ts ⟩ ∈ K ∧ hs ∈ Sh
Expl ← Expl ∪ P
Supp ← Supp ∪ {{⟨hs , p, ts ⟩, ⟨hs , r, ts ⟩ }}

return Expl , Supp

head to a similar tail through a relation that is similar to
r , similarly to r in ⟨hs , r , ts ⟩.

Originally, the analogy between pairs of entities or relationships
was assessed by means of the Euclidean distance, applied to their
embeddings In the next subsections we move towards the cosine
similarity and adapt the measures to better exploit the underlying
semantics.

3.1 Cosine Similarity

CrossE is grounded on the intuition that having more interaction
embeddings for each entity and for each relationship leads to richer
andmore generalization-capable representations, by capturing more
of the latent information. The similarity measure in CrossE frame-
work plays a crucial role in this regard. Particularly, the Euclidean
distance is adopted to measure the similarity between embeddings
(of entities or relations) in the geometric space of the vector embed-
dings. However it is well known that Euclidean distance, focusing
on the magnitude of the vector distances in the geometric spaces,
it may present drawbacks when data values are not balanced. In
order to avoid incurring in such an issue, we investigated the usage
of other measures.

Cosine similarity3, widely used in NLP contexts, expresses the
similarity between vectors in terms of the angle between them
(the smaller the angle, the closer they are). Vectors with the same
orientation have a cosine similarity of 1, orthogonal vectors (i.e.
forming an angle θ = π/2) have a null similarity, and diametrically
opposed vectors (θ = π ) have a similarity of −1, independently of
their magnitude.

This rationale is more appropriate to our purposes. Indeed,
graph embedding methods project the data into an optimal low-
dimensional space in which structural information and properties
are preserved as much as possible. Two vectors of the embedding
space could be far from each other in terms of Euclidean distance,
and still exhibit a high cosine similarity. With methods like CrossE,
this may be useful since embeddings based on interactions from

3Given vectors x and y, it is expressed as the cosine of the angle θ between them:

simcos (x, y) = cos(θ ) = x · y/∥x∥ ∥y∥ .
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relations to entities and interaction from entities to relations are
generated. In §4, we prove the correctness of this intuition by show-
ing corroborating experimental results.

In the following, we motivate the need for exploiting the addi-
tional semantics in KG and formalize the theoretical framework to
guide the explanation process by means of the added semantics.

3.2 The Semantic Cosine Similarity

Both Euclidean distance and Cosine similarity are not able to take
into account the semantics of the KGs, which is rather rich partic-
ularly when expressive representation languages such as RDF-S
and OWL are adopted. Being able to exploit the KG semantics may
lead to generate more accurate explanations for link predictions.
To this purpose, in particular domains, ranges, and classes will be
considered: given a relationship, domain and range allow to specify
the classes whose instances can occur as head or tail in triples.
Adopting the notation of Description Logics (DLs) [1], that consti-
tute the theoretical foundation of OWL, classes may be defined
via (complex) DL expressions based on primitive concepts, such as:
Mother ≡ Female ⊓ ∃hasChild.Being.

Since many KGs refer to shared OWL ontologies endowed
with deductive reasoning capabilities that allow to infer additional
knowledge, the idea is to exploit the underlying semantics when
searching for similar entities/relations to produce explanations. To-
gether with standard reasoning services such as class subsumption
(denoted with ⊑), we will resort to retrieval as a function retK (C)
(subscript omitted when obvious from the context) returning the
known entities that can be proven to belong to a given class C .

Inferences enable the exploration of the data, in terms of domains
and ranges (for the relationships) and classes (for entities), to better
direct the search for explanations in a semantics-aware fashion,
supported also by the similarity measures that can be defined on the
embeddings produced by KG embedding methods. Hence, we intro-
duce the semantic Cosine measure which is meant to increase,the
cosine similarity of two (entities or relationships) vector embed-
dings on the ground of available additional semantic information.
Such information is captured by a semantic score function defined
for the purpose. Formally:

Definition 3.1 (semantic Cosine). Given the KG K(E,R), the se-
mantic Cosine measure for two entities e, e ′ ∈ E is defined by:

semCosα,β (e, e ′) = α · sScore(e, e ′) + β · simcos(e, e′) (1)

where e represents the respective entity embedding vector and
α , β ∈ [0, 1] are chosen so that α + β = 1.
In the case of relations r , r ′ ∈ R the measure is defined analogously.

Definition 3.2 (semantic Score). Given the set C of the classes
occurring in K(E,R), and the functions Cl : E → C, Do : R → C,
and Ra : R → C that return, resp., the conjunction of the classes
an entity belongs to, and the domain and range of a relation, the
semantic Score function for pairs of entities e, e ′ ∈ E is defined by:

sScore(e, e ′) =
|ret[Cl(e) ⊓Cl(e ′)]|
|ret[Cl(e) ⊔Cl(e ′)]|

. (2)

Analogously, given any two relationships r , r ′ ∈ R, it is defined:

sScore(r , r ′) =
|ret[Do(r ) ⊓ Do(r ′)]|
|ret[Do(r ) ⊔ Do(r ′)]|

+
|ret[Ra(r ) ⊓ Ra(r ′)]|
|ret[Ra(r ) ⊔ Ra(r ′)]|

(3)

Example 3.3 (Computing the semantic Score). Let us suppose that
Cl(e) = Student and Cl(e ′) = Student ⊔ Worker. Then:

sScore(e, e ′) =
|ret[Student ⊓ (Student ⊔ Worker)]|

|ret[Student ⊔ Worker]|
.

Similarly, the semantic Score for relations can be computed by
considering their domains and/or ranges, that are ultimately class
expressions, and summing the degree of similarity between the
domains and the degree of similarity between the ranges.

However computing concept retrieval by using a standard rea-
soner may turn out to be computationally prohibitive, or even infea-
sible from a practical viewpoint, when very large KGs, consisting of
millions of triples, are considered. For this reason, an approximated
form of the semantic Cosine measure and more specifically of the
semantic Score function is proposed.

Approximate Semantic Score. Starting from the above formulation,
we design an approximation of the semantic Score function, also
exploiting some recurrent facts of the KGs, summarized below:
• in most cases class names are used, not complex expressions
• domains and ranges are often defined via single class names
or their disjunctions
• class Thing is not informative: its extension includes all
entities.

The new measure is grounded on the same rationale adopted
by the semantic Score function but it moves to a moresyntactic
level, working on sets of concept names. Specifically, we do not
consider concept retrieval but only the class names themselves, and
intersections and unions between class names. To this purpose, the
functions Cl , Do, Ra need to be redefined as follows:

C̃l : E → 2CNames, D̃o : R → 2CNames, R̃a : R → 2CNames

where CNames represents the set of class names in the KG, so they
return possibly a collection of class names. The approximate seman-
tic Score function, denoted �sScore, is defined as in Def. 3.2, replacing
these functions to the original ones and class conjunction/disjunc-
tion (⊓/⊔) with set intersection/union (∩/∪). The combination of
the cosine similarity with the approximate semantic score, yields
the approximate Cosine similarity �semCos.

3.3 Explanations with the Semantic Cosine

The (approximate) semantic cosine measure are meant to be used
in the explanations process (see Alg. 1) for the construction of sets
of relations and entities that are most similar to those involved in
the predicted triple.

Before the execution of the explanation search algorithm, the
generation of the set Sr is carried out so that
∀r ∈ R : Sr = ∅

(1) ∀r ′ ∈ R : Sr ← Sr ∪ {(�semCos(r , r ′))}
(2) sort Sr in descending score order

(analogously for Sh , with pairs of entities as arguments of �semCos)
The following considerations need to be made to manage the

Thing class case:
• if Thing is the minimal concept both entities belong to, no
semantic score can be added as no additional information is
available, so just the cosine similarity is used;



An Approach Based on Semantic Similarity to Explaining Link Predictions on Knowledge Graphs WI-IAT ’21, December 14–17, 2021, ESSENDON, VIC, Australia

• similarly, given two relations
– if the domain of one of them is Thing, the contribution
of the domain to the score is null, and only the range is
considered in �sScore as a reward to be added to the cosine
similarity

– if the range of one of them is Thing, the contribution
of the range in the score is null and only the domain is
considered to be added to the cosine similarity in �sScore

– if both domain and range are Thing, nothing is added to
the cosine similarity (i.e. �sScore← 0).

Some further considerations can be made: the selection of the
most similar entities and relations can be optimized through clus-
tering processes based on embeddings: it would be possible to guide
the search for the most similar relations/entities by taking the first
k relations/entities belonging to the same cluster.

4 EVALUATION

The objective of the experiments is to analyze the explanations
generated for link prediction results, and establishing the impact
of an added semantic component, as realized by ApproxSemantic-
CrossE, on the explanations provided by the base-model CrossE. In
the following, we present the experimental design and then discuss
the outcomes.

The proposed solutions have been implemented in Python, while
the experiments have been executed on a remote cluster4. Code
and datasets are publicly available5.

4.1 Explanation Evaluation Metrics

A quantitative and qualitative evaluation of the generated expla-
nations for link prediction results has been performed. The former
part was aimed at assessing how capable the algorithm is of gener-
ating useful explanations for the predicted triples; the latter was
aimed at assessing how accurate and meaningful they are. In the
literature, there are still no consolidated evaluation methodologies
for the explanations offered by this kind of models. In agreement
with the evaluation of CrossE in [14], we will adopt the following
metrics for the quantitative evaluation:
• Recall: the ratio of triples for which the model can generate
explanations, determined as follows:

#predictions with at least one explanation
#total predictions

;

– conforming to the evaluation of CrossE, the generation
of explanations is limited to paths of max. length 2which
affects the number of possible explanations, maintaining
a greater focus on their quality and brevity;

– this metric does not take into account the number of expla-
nations per predicted triple so, regardless of their number,
the recall does not change;

• Average Support: the number of explanations, on average, for
each prediction. It quantifies the reliability of explanations:
the larger the support the more reliable and credible the
prediction. It is defined as:∑

x ∈P |Expl(x)|/|P |
4A cluster of 20 servers, each with 40 cores equipped with a NVIDIA Tesla K40 GPU.
5https://github.com/pierulohacker/SemanticCrossE/tree/master/explanation

where Expl returns the set of explanations generated for the
predicted triple x and P is the set of predictions for a query:
{⟨h, r , t⟩ | ⟨h, r , t⟩ is predicted for query ⟨h, r , ?⟩}.

As for the qualitative analysis, explanations have been analyzed
to understand if those generated adopting the approximate cosine
similarity resulted more meaningful than those generated with the
original setting of CrossE, based on the Euclidean distance and its
variant based on the cosine similarity.

4.2 Datasets

For the sake of comparison, the very same KGs adopted by CrossE
have been considered, except for FB15k, due to execution time
limits on the remote machines adopted: due to the huge training
set, processes were interrupted. Furthermore, since these KGs lack
of significant semantic information actually taken into account by
ApproxSemanticCrossE, we additionally considered DBpedia15k
as further test for stressing on the possible utility of the semantic
component or not. Details on the adopted KGs are summarized
below:

• FB15k-237 contains 14541 entities and 237 relationships. It
is a subset of the original dataset FB15k containing relation
triples and textual mentions of Freebase6 entity pairs;
• WN18 contains 40943 entities and 18 relations. It is a
dataset extracted fromWordNet7, where entities correspond
to synsets (sets of synonyms) and relations represent lexical
connections (e.g., hypernymy, etc.);
• DBpedia15k contains 12862 entities and 279 relations with
180,000 triples extracted from DBpedia [11].

4.3 Parameters Setting

Since CrossE was used for the preliminary link prediction phase,
the settings used in [14] were kept unchanged. The authors suggest
to consider a fixed initial number k of similar relations and j of
most similar entities. Clearly, the larger these values, the greater
would be the recall but also the noise entailed. As our objective
is to generate good quality explanations, small values have been
considered: k = j = 3. As concerns the semantic score function, the
considered settings for the weights was α = 0.2 and β = 0.8; the
motivation is that cosine similarity uses embeddings computed by
CrossE, incorporating more latent information learned, and the
semantic measure enforces the similarity complementarily.

Finally, also for the link prediction parameters the adopted val-
ues were the same used for CrossE in [14]: matrices E, R and C
were initialized with the uniform distribution; the bias vector b
initialized to 0, the positive triples for training were those in Ktrain
while negative triples for training were sampled among those not
occurring inKtrain. The Tensorflow implementation of the model
was used with Adam optimizer and dropout of 0.5 applied to the
similarity operator (max. number of iterations: 500). The parameters
that depend on the adopted datasets are in Tab. 1.

6https://web.archive.org/web/20100228011242/http://www.freebase.com/
7https://wordnet.princeton.edu/

https://github.com/pierulohacker/SemanticCrossE/tree/master/explanation
 https://web.archive.org/web/20100228011242/http://www.freebase.com/
https://wordnet.princeton.edu/
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Table 1: Dataset-specific parameter settings

params / datasets WN18 FB5K-237 DBpedia15k
neg. examples n 50 50 50
learning rate η 0.01 0.01 0.01

embeddings dim. d 100 100 100
regulariz. param. λ 10−4 10−5 10−5

batch size B 2048 4000 4000

Table 2: Results with differentmeasures and percentages: re-

call and average support per explanation by path type

dataset measure % recall

avg.support

1 2 3 4 5 6

FB15k-237
orig.

2% 0.0297 2.94 1.82 39.83 49.47 35.34 29.19
5% 0.0154 2.88 1.80 38.79 49.16 34.19 26.91

cos
2% 0.0304 3.20 2.07 39.80 50.82 40.61 33.43
5% 0.0162 3.15 2.04 37.65 47.28 39.00 30.27

WN18
orig.

2% 0.0026 1.00 4.19 2.94 2.74 2.05 2.04
5% 0.0010 1.00 4.19 2.86 2.67 1.99 1.99

cos
2% 0.0029 1.00 4.13 2.16 2.11 2.03 2.06
5% 0.0010 1.00 4.13 2.12 2.07 1.99 2.01

DBpedia15k

orig.
2% 0.0024 1.34 1.21 2.95 1.46 1.86 2.59
5% 0.0010 1.34 1.20 2.93 1.45 1.84 2.50

cos
2% 0.0021 1.35 1.18 2.97 1.51 1.94 2.69
5% 0.0009 1.34 1.17 3.08 1.50 1.93 2.66

acos
2% 0.0020 1.35 1.17 2.95 1.51 1.94 2.69
5% 0.0010 1.35 1.18 2.95 1.50 1.92 2.58

4.4 Results and Discussion

In the following the quantitative and qualitative results of the ex-
periments carried out are summarized and discussed.

4.4.1 Quantitative Evaluation. The recall and the average support
for each of the six types of explanation path (see §3) have been
computed: this allows to inspect the types on which the algorithm
performs better. The explanation algorithm has been executed on
the predicted triples of each dataset. Different ratios of predictions
have been considered for building explanations, starting from those
ranking higher in the link prediction results. This is because pre-
dicted triples that are very low in the returned ranked results may
turn out to be incorrect and, as a consequence, the corresponding
explanations less reliable. The numbers of link predictions provided
for each dataset were, resp.:
• FB15k-237 : 29,7596,106 (i.e. 20466 test triples× 14541 entities)
• WN18: 20,471,500 (i.e. 500 test triples × 40943 entities)
• DBpedia15k: 471,302,266 (i.e. 36643 test triples × 12862 enti-
ties)

The quantitative results are summarized in Tab. 2. The three
settings compared in the evaluation are indicated as orig., cos, acos:
the first corresponds to the baseline method adopting the Euclidean
distance, i.e. the original approach [14]; in the second setting the
cosine similarity is adopted, and the third involves the approximate
semantic Cosine measure which was tested only on DBpedia15k,
since, as argued in §4.2, it was the only dataset with semantic
annotations.

The first thing that can be noticed is that for the case of FB15k-
237 (both for 2% and 5% predictions, across all similarity settings),
larger support and recall values are registered when compared
to the other datasets. This is because FB15k-237 has almost twice
the triples of the other two datasets and, for the explanation pro-
cess, this means counting on a larger knowledge base in which
the algorithm can find explanations for the predictions made. It

is also worthwhile to remind that a fixed number of top 3 similar
relationships and top 3 similar entities have been considered for
computing the explanations (see discussion in §4.3), which limits
the computational costs but also the recall. Overall, looking at the
outcomes in the table it is possible to notice that the recall values
for the three settings are rather close,with a slight exception for
DBpedia15k, characterized by richer semantic annotations, where
surprisingly recall is higher in the orig. setting, decreases for cos
setting, and further decreases for acos setting (for both 2% and 5%
options). However, as shown by the qualitative analysis presented
in §4.4.2, the use of the Euclidean distance (orig. setting) offers more
results, but often introducing noisy (irrelevant) explanations whilst
both cos and acos have shown to offer more meaningful results,
with acos maintaining the best level of conceptual meaningfulness.

As mentioned before, inspecting the average support by path
type helps to understand what kind of explanations are most com-
monly retrieved. We can observe that, for FB15k-237, the expla-
nation paths of type 1 and type 2 are not common at all, in fact
they represent respectively 2% and 1% of the paths retrieved as
support for the explanations; on the other hand, the support to the
explanation inWN18 and DBpedia15k seems to be more stable on
average: for WN18, the less common support path is type 1 (7%),
and for DBpedia15k it is the path of type 2 (10%). A common aspect
across the datasets is that less type 3 paths are retrieved in the
cos setting w.r.t. the orig. setting. The capability of the algorithm
to exploit different types of paths is strictly connected to the em-
bedding method adopted: this observation was also noted in [14],
given that the authors compared their model (i.e. the orig. setting)
with explanations provided using the embeddings generated by
TransE [3] and Analogy [12].

4.4.2 Qualitative Results. The qualitative analysis required inspec-
tions on the output data to evaluate if and how the explanations
change using the different distance/similarity measures. As for
DBpedia15k, characterized by richer semantic annotations, expla-
nations for link prediction tasks have been computed considering
the three settings. The analysis below shows that the use of the
Euclidean distance (orig. setting) seems less suitable to produce
meaningful explanations; on the other hand, both cos and acos have
shown to offer more meaningful results: specifically, acosmaintains
the best level of conceptual meaningfulness.

In the following, the discussion continues with explanatory ex-
amples to describe scenarios where: orig. typically offers more
results, but often introducing noisy (irrelevant) explanations; cos
ensures a good amount of explanations yet including some that
are not very sensible, similarly to the orig. setting; acos is more
selective with more correct explanations.

Given the three settings, in some cases the same explanations
were produced. As an example, let us consider the predicted triple
⟨Dio, recordLabel, WarnerBros⟩, whose explanations are shown
in Fig. 1. The motivation is that the similarities computed for the
relationships and the entities involved are quite the same, due to
absence of additional information. An important observation can be
made on this output case: cosine and semantic settings yielded the
same Sr , and the reason is that this relationship had no additional
information about domain and range, so these correspond to Thing:
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from the analysis carried out, in fact, the ratio of relationships with
a restricted domain (resp. range) in DBpedia15k is 26.16% (36.2%).

There are several cases in which the settings based on the new
measures are able to explain predictions that the original setting
is not able to explain. This is probably due to the inability to
fully exploit latent information. As an example, the prediction
⟨ThomasMitchell, birthPlace, LA⟩ is explained by
{⟨ThomasMitchell, deathPlace, California⟩,
⟨LA, partOf, California⟩}
that is supported by ⟨Glen_ALarson, birthPlace, LongBeachCA⟩
for which the explanation found was:
{⟨Glen_ALarson, deathPlace, California⟩,
⟨LongBeachCA, partOf, California⟩}.
It is interesting to notice that this explanation is also conceptually

meaningful because they were both involved in the show business
and this latent information was retrieved.

Another meaningful example is shown in Fig. 2: given the
prediction ⟨NickMason, recordLabel, Capitol⟩, we can notice
that both cos and acos produced two type-5 explanations, but the
orig. setting could only offer one type-3 explanation and one type-5
explanation. The orig. setting uses as a type-3 example, namely
⟨RobertPlant, recordLabel, Mercury⟩, for which, the computed
explanation was:
{ ⟨NationalSecurity (2003 film), formerBandMember, RobertPlant⟩,

⟨NationalSecurity (2003 film), recordLabel, Mercury⟩ }

that is part of the KG but contains wrong triples (DBpedia is
produced by a partially automated process); the cos and acos
settings, thanks to their awareness about latent information,
avoided type-3 explanations, being more complete in supporting
only type-5 explanations.

The acos setting produced often more specific and accurate
results, as shown in the following case: given the prediction
⟨DavidHume, influencedBy, BaruchSpinoza⟩, the acos was able
to generate one explanation of type 3 and two explanations of type
5. The type-3 explanation:
{⟨GottfriedWLeibnitz, influenced, DavidHume⟩,
⟨GottfriedWLeibnitz, influencedBy, BaruchSpinoza⟩}

seems meaningful because it makes sense to say that a philosopher
is influenced by the one who influenced his/her source of inspira-
tion, however some type-5 explanations seem to be much weaker,
for example:
{⟨DavidHume, influenced, ImmanuelKant⟩,
⟨ImmanuelKant, influencedBy, BaruchSpinoza⟩}

it is less compelling to explain that Humewas influenced by Spinoza
because Hume influenced Kant who was influenced by Spinoza. On
the other hand, both orig. and cos introduced more conceptually
wrong explanations. For example, the cos setting offered an analo-
gous type-3 explanation, but also the type-6 explanation:
{⟨DavidHume, influenced, ImmanuelKant⟩,
⟨BaruchSpinoza, influenced, ImmanuelKant⟩}

.

The orig. setting introduced also more noisy and weaker expla-
nations. An exception concerns a type-6 explanation provided by
orig. and cos:
{⟨DavidHume, mainInterest, Epistemology⟩,
⟨BaruchSpinoza, mainInterest, Epistemology⟩}

which may be also considered as meaningful: if two philosophers
share their main topic, one may have influenced the other.

5 RELATEDWORK

The mentioned paper [14] is a good starting point for the problem
of explaining link predictions in the specific context of the methods
for KGs. Useful insights are offered also in [2] which tackles the
problem in the case of graphs that evolve over time. The proposed
model can: learn representations for new entities not seen during
the training phase; infer new links between them and those that
already occur in the graph; offer a reasoning path as an explana-
tion downstream of the output obtained by adopting an embedding
based method. The model is based on a Graph Transformer that
learns entity embeddings by iteratively aggregating information
from neighbouring nodes, weighted according to the relevance
to the query; the problem is cast as a Partially Observable Markov
Decision Process regarding the graph as a partially observable en-
vironment: relationships departing from each node correspond to
(deterministic) actions that an agent can explore to reach the re-
sponse (target entity) from the starting entity and thus receive a
reward;a LSTM that preserves the path history is used to guide the
search for the explanation path. This search policy is optimized to
find the goal more efficiently.

In the Thales XAI Platform [9], the authors emphasise how cru-
cial it is to contextualize the data by connecting to domain-specific
KGs, so to enrich them with additional contextual knowledge. To
explain a prediction, highly representative areas of the graph are
sought: to detect such areas, parts of the KG are iteratively removed
to assess the related loss. The model provides an encoded context,
tangible relationships and connections between data, native support
for inference and consciousness of cause and effect. Another related
problem is the explanation of clustering processes applied to graphs.
In [6] the following workflow is proposed: 1) Embedding learning
with two possible configurations: TransE [3] and Complex [4];
2) Clustering based on the learned embeddings; 3) Rule learning
to explain the generated clusters: a new learner is proposed for
producing Horn rules; 4) Rule-based inference of the membership of
new entities wrt the clusters; 5) Embedding adaptation: fine-tuning
on target entities by constructing a feedback to guide clustering in
successive iterations, thus trying to discover new similarities by
adding triples that represent the learned inference rules.

Finally, in [13] a solution is proposed to the link prediction and
triple classification tasks that integrates a rule-based with an en-
tity embedding component. Although it does not deal explicitly
with explanations, it offers interesting insights for future imple-
mentations of a rule-based explanation process. The idea is based
on a framework consisting of encoders and decoders: The encoder
encodes the subjects and objects of the triples into embeddings,
exploiting an aggregator that guides their generation; the decoder
evaluates the plausibility of the training triples in relation to the
query made. This evaluation borrows the TransE [3] scoring func-
tion. A particular attention is paid to the aggregator: it aggregates
several vectors producing an output embedding vector for the en-
tity of interest (subject or object) by gathering information from
its neighbourhood, while preserving fundamental properties to the
purpose, namely: permutation invariance: the order of the neigh-
bours (relations) of the target entity does not matter, typical when
dealing with graphs; redundancy awareness: aggregations must be
as informed as possible, and exploit the data redundancy, that is
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support

type triple explanation examples explanations

3
{ ⟨BlackSabbath, associatedMA, Dio⟩,
⟨BlackSabbath, recordLabel, WarnerBros⟩ }

⟨SteelyDan, recordLabel, Giant⟩
{ ⟨WalterBecker, associatedMA, SteelyDan⟩, ⟨WalterBecker, associatedMA, Giant⟩ },
{ ⟨DonaldFagen, associatedMA, SteelyDan⟩, ⟨DonaldFagen, associatedMA, Giant⟩ }

⟨SteelyDan, recordLabel, MCA⟩
{ ⟨WalterBecker, associatedMA, SteelyDan⟩, ⟨WalterBecker, associatedMA, MCA⟩ },
{ ⟨DonaldFagen, associatedMA, SteelyDan⟩, ⟨DonaldFagen, associatedMA, MCA⟩ }

{ ⟨BlackSabbath, associatedBand, Dio⟩,
⟨BlackSabbath, recordLabel, WarnerBros⟩ }

⟨SteelyDan, recordLabel, Giant⟩
{ ⟨DonaldFagen, associatedBand, SteelyDan⟩, ⟨DonaldFagen, associatedBand, Giant⟩ }
{ ⟨DonaldFagen, associatedBand, SteelyDan⟩, ⟨DonaldFagen, associatedBand, MCA⟩ }

5
{ ⟨Dio, associatedMA, BlackSabbath⟩,
⟨BlackSabbath, recordLabel, WarnerBros⟩ }

⟨WalterBecker, recordLabel, Giant⟩
{ ⟨WalterBecker, associatedMA, SteelyDan⟩, ⟨SteelyDan, recordLabel, Giant⟩ },
{ ⟨WalterBecker, associatedMA, DonaldFagen⟩, ⟨DonaldFagen, recordLabel, Giant⟩ }

⟨WalterBecker, recordLabel, MCA⟩
{ ⟨WalterBecker, associatedMA, SteelyDan⟩, ⟨SteelyDan, recordLabel, MCA⟩ },
{ ⟨WalterBecker, associatedMA, DonaldFagen⟩, ⟨DonaldFagen, recordLabel, MCA⟩ }

{ ⟨Dio, associatedBand, BlackSabbath⟩,
⟨BlackSabbath, recordLabel, WarnerBros⟩ }

⟨WalterBecker, recordLabel, Giant⟩
{ ⟨WalterBecker, associatedBand, DonaldFagen⟩, ⟨DonaldFagen, recordLabel, Giant⟩ }
{ ⟨WalterBecker, associatedBand, DonaldFagen⟩, ⟨DonaldFagen, recordLabel, MCA⟩ }

Figure 1: Explanation for ⟨Dio, recordLabel, WarnerBros⟩

support

type triple explanation examples explanations

3
orig.

{ ⟨PinkFloyd, formerBandMember, NickMason⟩,
⟨PinkFloyd, recordLabel, Capitol⟩ }

⟨RingoStarr, recordLabel, UnitedArtists⟩
{ ⟨TheBeatles, formerBandMember, RingoStarr⟩,
⟨TheBeatles, recordLabel, UnitedArtists⟩ }

⟨RobertPlant, recordLabel, Mercury⟩
{ ⟨NationalSecurity (2003 film), formerBandMember, RobertPlant⟩,
⟨NationalSecurity (2003 film), recordLabel, Mercury⟩ },

5
orig.

{ ⟨NickMason, associatedMA, PinkFloyd⟩,
⟨PinkFloyd, recordLabel, Capitol⟩ }

⟨RingoStarr, recordLabel, UnitedArtists⟩
{ ⟨RingoStarr, associatedMA, TheBeatles⟩,
⟨TheBeatles, recordLabel, UnitedArtists⟩ }

5
cos
acos

{ ⟨NickMason, associatedMA, PinkFloyd⟩,
⟨PinkFloyd, recordLabel, Capitol⟩ }

⟨RickRubin, recordLabel, AmericanRecordings⟩
{ ⟨RickRubin, associatedMA, Dazing⟩,
⟨Dazing, recordLabel, AmericanRecordings⟩ }

⟨CarlosSantana, recordLabel, Artista⟩
{ ⟨CarlosSantana, associatedMA, Santana (band)⟩,
⟨Santana (band), recordLabel, Artista⟩ }

{ ⟨NickMason, associatedBand, PinkFloyd⟩,
⟨PinkFloyd, recordLabel, Capitol⟩ }

⟨RickRubin, recordLabel, AmericanRecordings⟩
{ ⟨RickRubin, associatedBand, ZZTop⟩,
⟨ZZTop, recordLabel, AmericanRecordings⟩ }

⟨CarlosSantana, recordLabel, Artista⟩
{ ⟨CarlosSantana, associatedBand, Santana (band)⟩,
⟨Santana (band), recordLabel, Artista⟩ }

Figure 2: Explanation for ⟨NickMason, recordLabel, Capitol⟩

not a downside but an helpful feature for these tasks; query relation
awareness: to focus on relevant facts to the query, when aggregating
neighbours.

6 CONCLUSIONS AND EXTENSIONS

We have proposed a solution to the problem of generating explana-
tions for the link prediction tasks on KGs aiming at finding mean-
ingful reasons for which two entities are predicted as linked. This
work presented an integrated structural and semantic approach.
The solution searches for paths and examples of similar situations
that justify the prediction carried out using numerical approaches.
We adopted CrossE as a base embedding model to compute pre-
dictions, and an integrated algorithm based on semantic similarity
measures for providing explanations of the computed predictions.
The proposed solution has been experimentally evaluated, demon-
strating that the semantics-aware approach is able to provide more
meaningful explanations, compared to the baseline.

A natural further empowerment of the proposed framework
consists in taking into account additional semantic information
in KGs that may be exploited, such as transitivity and symmetry
properties of the relationships. The base explanation algorithm
could also benefit from a preliminary clustering process whose
output would be exploited for the recurring selection of the most
similar entities and relationships.

REFERENCES

[1] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider (Eds.).
2007. The Description Logic Handbook: Theory, Implementation and Applications
(2nd ed.). CUP. https://doi.org/10.1017/CBO9780511711787

[2] R. Bhowmik and G. de Melo. 2020. Explainable Link Prediction for Emerging
Entities in Knowledge Graphs. In Proc. of ISWC 2020, J. Pan et al. (Eds.). Springer,
39–55. https://doi.org/10.1007/978-3-030-62419-4_3

[3] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. 2013.
Translating Embeddings for Modeling Multi-relational Data. In Proc. of NIPS 2013,
C. J. C. Burges et al. (Eds.). Curran Associates, Inc., 2787–2795.

[4] S. Chari, O. Seneviratne, D.M. Gruen, M.A. Foreman, A.K. Das, and D.L. McGuin-
ness. 2020. Explanation Ontology: A Model of Explanations for User-Centered AI.
In Proc. of ISWC 2020 (LNCS, Vol. 12507), J.Z. Pan et al. (Eds.). Springer, 228–243.
https://doi.org/10.1007/978-3-030-62466-8_15

[5] M. Färber, F. Bartscherer, C. Menne, and A. Rettinger. 2017. Linked data quality
of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Semantic Web 9 (2017),
1–53. https://doi.org/10.3233/SW-170275

[6] M.H. Gad-Elrab, D. Stepanova, T.-K. Tran, H. Adel, and G. Weikum. 2020. ExCut:
Explainable Embedding-Based Clustering over Knowledge Graphs. In Proc. of
ISWC 2020 (LNCS, Vol. 12506), J.Z. Pan et al. (Eds.). Springer, 218–237. https:
//doi.org/10.1007/978-3-030-62419-4_13

[7] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutiérrez,
J.E. Labra Gayo, S. Kirrane, S. Neumaier, A. Polleres, R. Navigli, A.-C. Ngonga
Ngomo, S.M. Rashid, A. Rula, L. Schmelzeisen, J.F. Sequeda, S. Staab, and A. Zim-
mermann. 2020. Knowledge Graphs. Comput. Surveys 54 (2020), 1–37. Issue 4.
https://doi.org/10.1145/3447772

[8] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P.S. Yu. 2020. A Survey on Knowl-
edge Graphs: Representation, Acquisition and Applications. CoRR (2020).
arXiv:2002.00388

[9] F. Lécué, B. Abeloos, J. Anctil, M. Bergeron, D. Dalla-Rosa, S. Corbeil-Letourneau,
F. Martet, T. Pommellet, L. Salvan, S. Veilleux, and M. Ziaeefard. 2019. Thales XAI
Platform: Adaptable Explanation of Machine Learning Systems - A Knowledge
Graphs Perspective. In Proc. of the ISWC 2019 Satellite Tracks (CEUR Workshop
Proceedings, Vol. 2456), M.C. Suárez-Figueroa et al. (Eds.). CEUR-WS.org, 315–316.
http://ceur-ws.org/Vol-2456/paper85.pdf

[10] F. Lécué and J. Wu. 2018. Semantic Explanations of Predictions. CoRR
abs/1805.10587 (2018). arXiv:1805.10587

[11] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. Mendes, S. Hell-
mann, M. Morsey, P. Van Kleef, S. Auer, and C. Bizer. 2014. DBpedia - A Large-
scale, Multilingual Knowledge Base Extracted from Wikipedia. Semantic Web 6
(2014), 167–195. https://doi.org/10.3233/SW-140134

[12] H. Liu, Y. Wu, , and Y. Yang. 2017. Analogical inference for multi-relational
embeddings. In Proc. of ICML 2017. 2168–2178.

[13] P. Wang, J. Han, C. Li, and R. Pan. 2019. Logic Attention Based Neighborhood
Aggregation for Inductive Knowledge Graph Embedding. In Proc. of AAAI 2019.
AAAI Press, 7152–7159. https://doi.org/10.1609/aaai.v33i01.33017152

[14] W. Zhang, B. Paudel, W. Zhang, A. Bernstein, and H. Chen. 2019. Interaction
Embeddings for Prediction and Explanation in Knowledge Graphs. In WSDM’19.
ACM, 96–104. https://doi.org/10.1145/3289600.3291014

https://doi.org/10.1017/CBO9780511711787
https://doi.org/10.1007/978-3-030-62419-4_3
https://doi.org/10.1007/978-3-030-62466-8_15
https://doi.org/10.3233/SW-170275
https://doi.org/10.1007/978-3-030-62419-4_13
https://doi.org/10.1007/978-3-030-62419-4_13
https://doi.org/10.1145/3447772
https://arxiv.org/abs/2002.00388
http://ceur-ws.org/Vol-2456/paper85.pdf
https://arxiv.org/abs/1805.10587
https://doi.org/10.3233/SW-140134
https://doi.org/10.1609/aaai.v33i01.33017152
https://doi.org/10.1145/3289600.3291014

	Abstract
	1 Introduction
	2 Basics
	2.1 Embedding Models
	2.2 Embedding-based Link Prediction: CrossE

	3 The Proposed Explanation Method
	3.1 Cosine Similarity
	3.2 The Semantic Cosine Similarity
	3.3 Explanations with the Semantic Cosine

	4 Evaluation
	4.1 Explanation Evaluation Metrics
	4.2 Datasets
	4.3 Parameters Setting
	4.4 Results and Discussion

	5 Related Work
	6 Conclusions and Extensions
	References

