Transboundary and Emerging Diseases

Equine hepacivirus persistent infection in a horse with chronic wasting

Journal:	Transboundary and Emerging Diseases
Manuscript ID	TBED-RC-071-17.R1
Manuscript Type:	Rapid Communication
Date Submitted by the Author:	n/a
Complete List of Authors:	Elia, Gabriella; University of Bari, Veterinary Medicine Lanave, Gianvito; Universita degli Studi di Bari Dipartimento di Medicina Veterinaria Lorusso, Eleonora; Universita degli Studi di Bari Aldo Moro, Veterinary Medicine Parisi, Antonio; Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Sezione di Putignano, Trotta, Adriana; Universita degli Studi di Bari Aldo Moro, veterinary medicine Buono, Raffaele; Azienda Sanitaria Locale Bari Martella, Vito; Università degli Studi di Bari, Veterinary Medicine Decaro, Nicola; University of Bari, dept of Veterinary Public Health Buonavoglia, Canio; University of Bari, Veterinary Medicine
Subject Area:	Hepacivirus, horse, hepatitis, viraemia

SCHOLARONE[™] Manuscripts

Transboundary and Emerging Diseases - submitted manuscript

2 3 4	1	Equine hepacivirus persistent infection in a horse with chronic wasting
5 6	2	
7 8	3	Gabriella Eliaª#, Gianvito Lanaveª, Eleonora Lorussoª, Antonio Parisi ^b , Adriana Trottaª,
9 10	4	Raffaele Buono ^c , Vito Martella ^a , Nicola Decaro ^a , Canio Buonavoglia ^a
11 12 13	5	
13 14 15	6	^a Department of Veterinary Medicine, University of Bari, Strada per Casamassima Km 3 - 70010
16 17	7	Valenzano (Bari), Italy
18 19	8	^b Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Sezione di Putignano, Contrada San
20 21 22	9	Pietro Piturno, 70017 Putignano (Bari), Italy
22 23 24	10	^c Azienda Sanitaria Locale Bari, Lungomare Starita, 6, 70132 Bari, Italy
25 26	11	
27 28	12	
29 30	13	Short title: Hepacivirus persistent infection in a horse
31 32 33	14	
34 35	15	
36 37	16	
38 39	17	#Corresponding author:
40 41 42	18	Department of Veterinary Medicine, University of Bari,
43 44	19	Strada per Casamassima Km 3, 70010 Valenzano, Bari, Italy Tel: +390804679805
45 46	20	Tel: +390804679805
47 48 40	21	Fax: +390804679843
49 50 51	22	E-mail: gabriella.elia@uniba.it
52 53	23	
54 55	24	
56 57	25	
58 59 60		1
50		*

Equine hepacivirus is the closest homolog of hepatitis C virus. Limited data on the clinical

features of this infection are available. We report the identification of a horse with high-titer

viremia by equine hepacivirus. Over a 15-month follow up, the clinical signs and the viremic

.e, hepatitis, vir.

2 3	1
4 5	2
6 7 8	3
9 10	4
11 12	5
13 14	6
15 16 17	7
18 19	8
20 21	9
22 23	10
24 25 26	11
20 27 28	12
29 30	13
31 32	14
33 34	15
35 36 37	16
37 38 39	
40 41	17
42 43	18
44 45	19
46 47	20
48 49 50	21
50 51 52	22
52 53 54	23
55 56	24
57 58	25
59 60	

2

1

Summary

status persisted, suggesting a chronic evolution.

Key words: Hepacivirus, horse, hepatitis, viraemia.

Recently, several new hepaciviruses (HVs), Flaviviridae family, have been discovered
in different animal species. Among those, equine HV (EqHV), originally described as canine
HV, or non-primate HV, represents the closest known relative of hepatitis C virus (HCV)
identified to date. Moreover, in terms of viral tropism and course of infection, EqHV also
resembles HCV infection in humans as its RNA is detectable predominantly within
hepatocytes and the infection evolves trough two stages (acute and chronic) in horses
(Pfaender et al., 2014, 2015).

EqHV has been identified in horses from United States, Brazil, Japan, New Zealand, and Europe (Pronost et al., 2016) with antibodies being detected in 30-40% and viremia in 3% of the animals, but its association with liver disease remains uncertain. A mild elevation of liver enzymes was observed at seroconversion in some of the affected horses (Pfaender et al., 2015), thus suggesting that adaptive immunity may contribute to acute liver damage by EqHV, as observed for HCV acute infection in humans (Maasoumy and Wedemeyer, 2012). However, in most of the infected horses, analyses of the liver functionality did not reveal hepatic impairment since the serum levels of hepatic markers (GGT, AST and ALT) were mainly within the reference range<mark>s</mark> (Lyons et al., 2014; Pfaender et al., 2015; Ramsay et al., 2015). Only a few reports describe severe hepatitis in EqHV-infected horses (Reuter et al., 2014; Pfaender et al., 2015). Post-mortem analysis of tissues from a highly viremic horse revealed histopatologically mild-to moderate hepatitis (Pfaender et al., 2015), suggesting EqHV hepatotropism. However, the horse was also co-infected by pegivirus (Flaviviridae family) and it was not possible to assess the contribution of each virus to the observed liver disease. Yet, a causative relationship between EqHV and hepatitis needs to be addressed thoroughly. This study reports the detection of a natural infection by EqHV in a horse with apparent liver disease and high-level viraemia.

Page 4 of 13

$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
3
5
6 7
8
9
10
12
13 14
15
16 17
18
19
20 21
22
23 24
25
26 27
28
29
30 31
32
33 34
35
36 37
38
39
40 41
42
43 44
45
46 47
48
49 50
50 51
50 51 52 53 54 55 56
53 54
55
56 57
57 58 59 60
59 60
υo

4

1

1 Case report

2	On October 2015, a 16-year old male horse from a farm located in Locorotondo, prefecture of
3	Bari, Apulia, required medical attention. The animal displayed weight loss and reluctance to
4	work although the appetite was preserved. The veterinarian collected whole blood and serum
5	samples which tested negative for a panel of horse pathogens (panel HP), including equine
6	infectious anaemia virus, Anaplasma, Ehrlichia and Babesia spp. in conventional PCR assays
7	(Nagarajan et al., 2001; Kim et al., 2003; Nagore et al., 2004). The hepatic markers were
8	altered (Table 1) whilst the hematocrit was normal.
9	In spite of changes in feed management, the animal did not gain weight and after one year, on
10	November 2016, the veterinarian collected serum and blood samples for virological and
11	bacteriological investigations. Biochemical screening of the hepatic functionality was
12	repeated, revealing altered levels of the liver markers (Table 1), <mark>with the hematocrit being</mark>
13	normal.
14	The animal again tested negative to the diagnostic panel HP and to bacteriological
15	investigations. As we suspected an infectious hepatic disease, we also included EqHV and two
16	equine pegiviruses (Theiler's disease associated virus, TDAV, and equine pegivirus, EPgV) in
17	the diagnostic panel HP, using a TaqMan assay developed for detection and quantification of
18	hepacivirus (Burbelo et al., 2012) and <mark>a</mark> conventional RT-PCR (Chandriani et al., 2013) for
19	pegiviruses. The animal tested negative for TDAV and EPgV whilst EqHV RNA was detected at
20	high titers (3,51 x 10^6 RNA copies per ml) in the blood. We therefore re-tested the serum
21	sample collected in 2015 and also a serum sample collected on January 2017. Both the
22	samples tested positive for EqHV (Table 1), indicating high-level viraemia in the animal <mark>,</mark> at
23	least since October 2015.
<u>.</u>	
24	RNA extracts of the 2015 and 2017 sera samples were subjected to conventional RT-PCR,

1

5'UTR (Figure 1). The amplicons (of 187 nucleotide [nt], 308 nt and 293 nt in size,

1	
2	
3	
4	
5	
6	
6 7	
8	
å	
9 10	
10	
11	
12	
13	
14	
15	
16	
11 12 13 14 15 16 17	
18	
19	
20	
20 21	
19 20 21 22 23	
22	
24	
25	
24 25 26 27 28 29 30	
27	
28	
29	
30	
31	
32	
33	
33	
34	
35	
36 37	
37	
38	
39	
40	
41	
42	
43 44	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
58 59	
59	

2	respectively) were purified, cloned and sequenced (GenBank accession numbers KY554652,
3	KY554653 and KY554654). Sequence editing, multiple codon-based (translation) alignments
4	and phylogenetic analysis of detected viruses were performed <mark>using</mark> Geneious software v9.1.5
5	(Biomatters, Auckland, New Zealand). Phylogenetic trees were inferred on the basis of the
6	5'UTR, NS3 and <mark>NS5B</mark> , using the Unweighted Pair Group Method with Arithmetic Mean. The
7	evolutionary distances were computed using the Maximum Composite Likelihood method.
8	Upon sequence comparison, the 2015 and 2017 EqHV strains displayed 100% identity to each
9	other. These results are consistent with the literature, reporting a very low genetic variation
10	for EqHV (Burbelo et al., 2012; Simmonds, 2013). By Fasta
11	(http://www.ebi.ac.uk/Tools/sss/fasta/nucleotide.html) interrogation of the sequence
12	database, the equine virus shared the highest nt identity to strain KU771/JPN/2015
13	(LC030428) in the NS3 (92.7%), B82/BGR/2015 (KX421286) in the <mark>NS5B</mark> (94.5%) and H3-
14	011/USA/2011 (JQ434008) in the 5' UTR (98.1%). Upon phylogenetic analysis using a set of
15	sequences from European and non-European <mark>countries</mark> , two distinct clusters <mark>were</mark> observed
16	in the <mark>NS5B</mark> , NS3 and 5'UTR trees, and the sequences of the EqHV strain identified in this
17	study segregated within subtype 1 (Figure 2).
18	

19 Discussion

Although EqHV has been described repeatedly in horses worldwide, its association with liver
disease has not been determined firmly. In several studies on EqHV-positive horses, the liver
markers fell in the reference ranges with only a few exceptions (Lyons et al., 2014; Pfaender
et al., 2015). It has been shown that, in contrast to HCV infection, at least 60% of the horses
are able to clear EqHV within two months. So it could be speculated that this high rate of viral

5

1	
2	
3 4	
4	
5	
5 6 7	
7	
8 9 10	
9	
10	
11	
12	
13	
14	
11 12 13 14 15 16 17	
16	
17	
18	
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	
20	
20 21	
∠ I 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36 37 38	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40	
49 50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59 60	
60	

3

1 clearance among horses together with their average lifespan (25-30 years) may result in less 2 extensive liver injury during infection (Pfaender et al., 2015).

4 signs of a wasting condition and with hematochemical parameters suggestive of hepatic

An interesting finding of our case was the long-term viremia by EqHV in a horse with clinical

5 disease. Consecutive sampling from the animal revealed EqHV viremia for at least 15 months,

6 with the viral load higher than 10⁵ RNA copies/ml. As reported by the owner, during the

sampling period, the horse clinical conditions (weight loss and reluctance to work) remained 7

8 stable. In parallel, biochemistry analyses indicated that the liver enzymes remained altered

9 but the animal was not icteric, with the bilirubin levels being normal. This is not unusual, as

10 several horses with chronic liver disease do not become icteric. In a five-month follow up of

11 EqHV infection in a horse, a correlation was suggested between decreasing of EqHV titers in

12 blood and normalization of the hematochemical parameters (Reuter et al., 2014). This

13 correlation (persistence of clinical signs/altered liver markers and high-titer viremia) was

14 also apparent in our case, although virus persistence was much longer.

15 Our study had some limitations. We could not perform a liver biopsy to confirm the hepatic

16 inflammation and to demonstrate the presence of EqHV antigen in the hepatic tissues. Also,

17 we only based our observations and speculations on a single case report.

18 Gathering information on the disease patterns associated with EqHV will be helpful to

19 understand better if and to which extent EqHV is able to affect liver functionality. Also,

20 additional information on the epidemiology and genetic diversity of EqHV will be helpful to

21 understand if there are differences in terms of virulence (i.e. progression of liver disease) and

22 geographical distributions among the various strains, as observed for HCV in humans (Irshad

23

24

- - 25

6

et al., 2013).

1		
2		
3	1	References
4	2	
5	3	Burbelo, PD, Dubovi, EJ, Simmonds, P, Medina, JL, Henriquez, JA, Mishra, N, Wagner, J,
6 7	4	Tokarz, R, Cullen, JM, Iadarola, MJ, Rice, CM, Lipkin, WI and Kapoor A., 2012. Serology-
8	5	enabled discovery of genetically diverse hepaciviruses in a new host. J Virol., 86, 6171-
9	6	6178.
10	7	
11	8	Chandriani, S, Skewes-Cox, P, Zhong, W, Ganem, DE, Divers, TJ, Van Blaricum, AJ, Tennant,
12	9	BC and Kistler, AL, 2013. Identification of a previously undescribed divergent virus from
13	10	the Flaviviridae family in an outbreak of equine serum hepatitis. Proc Natl Acad Sci U S A,
14 15	11	110, 1407-1415.
16	12	
17	13	Irshad, M, Mankotia, DS and Irshad K, 2013. An insight into the diagnosis and pathogenesis
18	14	of hepatitis C virus infection. World J Gastroenterol, 19, 7896-7909.
19	15	
20	16	Kim, CM, Kim, MS, Park, MS, Park, JH and Chae JS, 2003. Identification of Ehrlichia
21	17	chaffeensis, Anaplasma phagocytophilum, and A. bovis in Haemaphysalis longicornis and
22	18	Ixodes persulcatus ticks from Korea. Vector Borne Zoonotic Dis, 3, 17-26.
23 24	19	
25	20	Lyons, S, Kapoor, A, Sharp, C, Schneider, BS, Wolfe, ND, Culshaw, G, Corcoran, B, McGorum,
26	21	BC and Simmonds P, 2012. Nonprimate hepaciviruses in domestic horses, United
27	22	Kingdom. Emerg Infect Dis, 18, 1976-1982.
28	23	
29	24	Lyons, S, Kapoor, A, Schneider, BS, Wolfe <mark>,</mark> ND, Culshaw, G, Corcoran, B, Durham, AE,
30	25	Burden, F, McGorum, BC and Simmonds, P, 2014. Viraemic frequencies and seroprevalence
31	26	of non-primate hepacivirus and equine pe <mark>giviru</mark> ses in horses and other mammalian
32 33	27	species. J Gen Virol, 95, 1701-1711.
34	28	
35	29	Maasoumy, B and Wedemeyer, H, 2012. Natural history of acute and chronic hepatitis C.
36	30	Best Pract Res Clin Gastroenterol., 26, 401-412.
37	31	
38	32	Nagarajan, M.M. and Simard C, 2001. Detection of horses infected naturally with equine
39	33	infectious anemia virus by nested polymerase chain reaction. J. Virol. Methods, 94, 97-109.
40 41	34	
42	35	Nagore, D, Garcia-Sanmartin, J, Garcia-Perez, AL, Juste, RA and Hurtado, A, 2004. Detection
43	36	and identification of equine Theileria and Babesia species by reverse line blotting:
44	37	epidemiological survey and phylogenetic analysis. Veterinary Parasitology, 123, 41-54.
45	38	
46	39	Pfaender, S, Brown, RJ, Pietschmann, T and Steinmann E, 2014. Natural reservoirs for
47	40	homologs of hepatitis C virus. Emerg Microbes Infect, 3, 3-9.
48 40	41	
49 50	42	Pfaender, S, Walter, S, Todt, D, Behrendt, P, Doerrbecker, J, Wölk, B, Engelmann, M,
50	43	Gravemann, U, Seltsam, A, Steinmann, J, Burbelo, PD, Klawonn, F, Feige, K, Pietschmann,
52	44	T, Cavalleri, JM and Steinmann, E, 2015. Assessment of cross-species transmission of
53	45	hepatitis C virus-related non-primate hepacivirus in a population of humans at high risk of
54	46	exposure. J Gen Virol, 96, 2636-2642.
55	47	
56 57	48	Pronost, S, Hue, E, Fortier, C, Foursin, M, Fortier, G, Desbrosse, F, Rey, FA, Pitel, PH,
57 58	49	Richard, E and Saunier, B, 2016. Prevalence of Equine Hepacivirus Infections in France and
56 59	50	Evidence for Two Viral Subtypes Circulating Worldwide. Transbound Emerg Dis, 24,1-14.
60		7

191520162117221823192420252026212722282329243025312632273327332733273428352936303731383239334034413543364437453846394740484149425042514352445345544655475648574958505950608	2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 10 11 11 12 11 11 12 11 11 11 11 11 11 11	1 2 3 4 5 6 7 8 9 10 11 12 13 14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 22	17 18	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24 25	20	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 28	22 23	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 31 32	25 26	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 34 35	28 29	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37 38	31 32	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 41	34	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43 44	36 37	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46 47	39 40	
52 44 53 45 54 46 55 47 56 48 57 49 58 50 59 50	49 50	42	
55 47 56 48 57 49 58 50 59 50	52 53	45	
58 50 59 50	55 56	47 48	
	58 59		8

Ramsay, JD, Evanoff, R, Wilkinson, TE Jr, Divers, TJ, Knowles, DP and Mealey, RH, 2015. Experimental transmission of equine hepacivirus in horses as a model for hepatitis C virus. Hepatology, 61, 1533-1546.

Reuter, G, Maza, N, Pankovics, P and Boros, A, 2014. Non-primate hepacivirus infection . i. i. with apparent hepatitis in a horse - Short communication. Acta Vet Hung, 62, 422-427.

Simmonds, P, 2013. The origin of hepatitis C virus. Curr Top Microbiol Immunol, 369, 1-15.

1 2		
2 3 4	1	Figure legend
5 6	2	Fig.1. Genomic regions analysed for characterization of EqHV. Oligonucleotides' position (nt) is
7 8	3	referred to the genome sequence of the EqHV strain AK-2012 NPHV-NZP-1 (GenBank accession
9 10	4	no. JQ434001).
11 12	5	Fig. 2. Phylogenetic trees based on partial NS3, NS5B and 5'UTR genomic portions. HCV
13 14	6	subtype 1a H77/USA/1997 (GenBank accession number AF00960) was used as outgroup. The
15 16	7	samples detected in our study are indicated by black arrows. The scale bar indicates the
17 18 19	8	number of substitution per site.
20 21	9	
22 23	10	
24 25	10	
26 27		
28		
29 30		
31 32		
33		
34 35		
36		
37 38		
39		
40 41		
42		
43 44		
44 45		
46		
47		
48 49		
50		
51		
52 53		
53 54		
55		
56		
57 58		

	Horse 826/15			Reference range in horse	
	Serum October 2015 Serum	November 2016	Serum January 2017		
Total bilirubin	0.95	0.71	0.86	0.50-3.00	
AST	609*	861	878*	170-330	
LT	18*	19*	19*	4-16	
LP	534*	274	311	160-380	
GT	20.8	18.6	20.3	8-25	
	20.8 850*				
.DH		1105*	1110*	100-600	
РК	254	256	251	100-260	
Real time RT-PCR ¹ AST, aspartate aminot	1.04x10 ⁵ ransferase; ALT, Alanine transa	3.51x10 ⁶ minase; ALP, alka	1.07x10 ⁶ line phosphatase; GGT, C	- Gamma-glutamyltransferase; LDH,	
Jactate dehydrogenase	e; CPK, Creatine phosphokinase;	; *, altered values;	(copies/ml).		

Table 1: Biochemical parameters and EqHV quantification in serum samples collected form a naturally infected horse

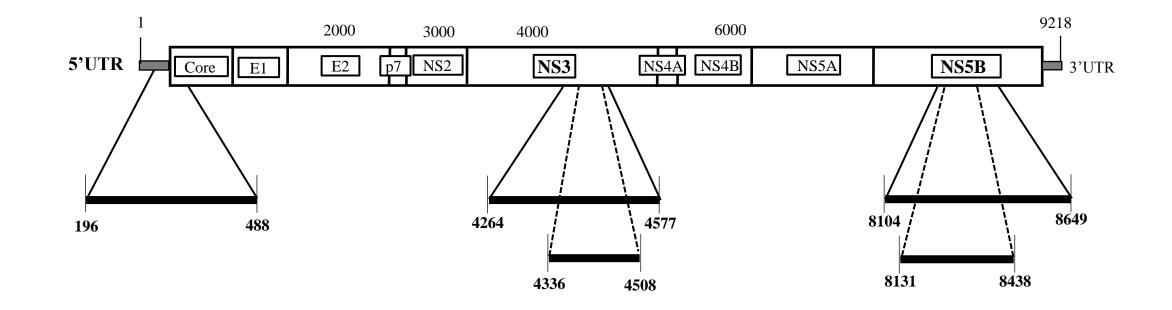
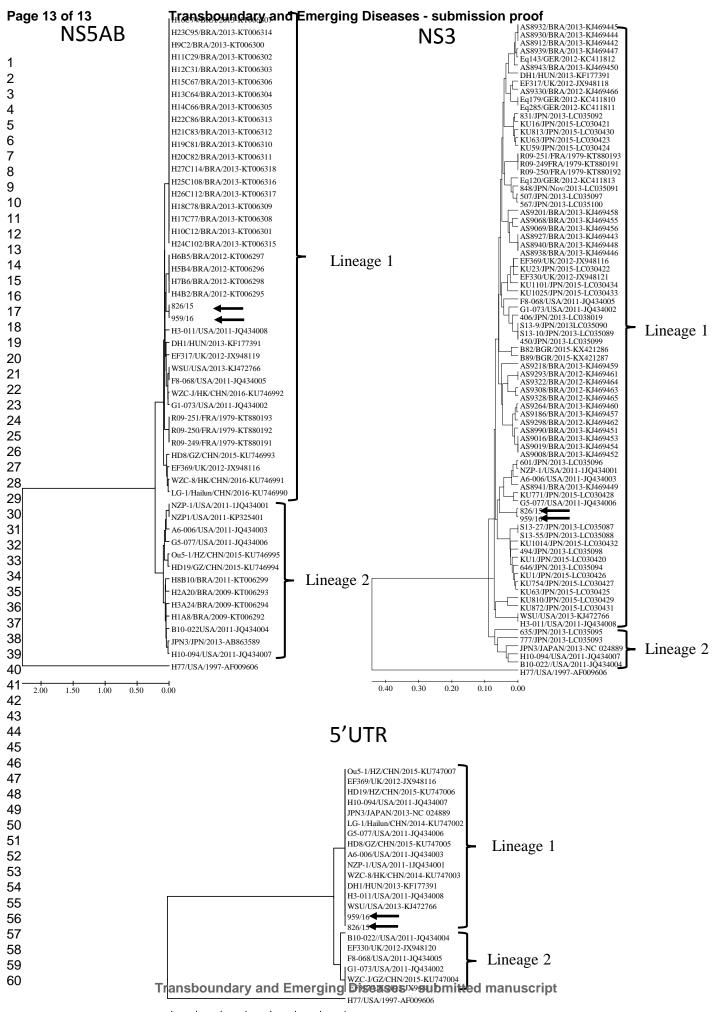

Transboundary and Emerging Diseases - submitted manuscript

 Table 2. List of oligonucleotides used in PCR protocols for sequencing of genomic fragments. Amplicon


 sizes are referred to the sequence of Hepacivirus strain AK-2012 NPHV-NZP-1 (GenBank accession no.

 JQ434001).

Gene target	Primer	Sequence 5'-3'	Amplicon size	Reference	
5'UTR	Quanti5UF1	GAGGGAGCTGRAATTCGTGAA		Burbelo et al., 2012	
	492R	GCGCCGGAMGGGAATACTAC	293nt	This study	
NS3 —	EQNS3OS	ATWTGTGATGARTGCCAYAGYAC			
	EQNS3OAS	TAGTAGGTBACAGCRTTAGCYCC	314nt	Lyons et al., 2012	
	EQNS3IS	TCYAARGGTGTDAAGCTTGTTGT			
	EQNS3IAS	TGGCAGAAGYTAAGRTGYCTYCC	187nt		
EQ NS5AB EQ	EQNS5BIS	AARTGYTTTGACTCYACBGTCACTC		Lyons et al., 2012	
	EQNS5BOIS	ACTRTGACTRATYGTYTCCCAACTCG	413nt		
	EQNS5BIS2	CAYGATATAGAHACTGAGAGRGA			
	EQNS5BIAS2	TCRTCTTCCTCRACGCCYTTRCTGG	308nt		

Transboundary and Emerging Diseases - submitted manuscript

^{0.140 0.120 0.100 0.080 0.060 0.040 0.020 0.000}