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Abstract: The aim of this in vitro study was to investigate the compressive strength and the bulk 

porosity of a bidirectional (bFRC) and an experimental bidirectional spiral winding reinforced fiber 

composite (bswFRC). Cylindrical-shape specimens were prepared for each material group and 

processed for the evaluation of compressive strength after different storage conditions (dry, 1 and 

3 months) in distilled water at 37 °C. The specimens were also assessed for the degree of bulk 

porosity through X-ray tomography. A scanning electron microscope (SEM) was used to determine 

the fracture mode after a compressive strength test. Data were statistically analyzed using Two-

Way Analysis of Variance (ANOVA). A significantly lower compressive strength was obtained in 

dry conditions, and after 1 month of water immersion, with the specimens created with bFRC 

compared to those made with bswFRC (p < 0.05). No significant difference (p > 0.05) was found 

between the two groups after 3 months of water immersion. However, the presence of water 

jeopardized significantly the compressive strength of bswFRC after water storage. The type of 

fracture was clearly different between the two groups; bswFRC showed a brutal fracture, whilst 

bFRC demonstrated a shear fracture. The bswFRC demonstrated higher pore volume density than 

bFRC. In conclusion, bswFRC is characterized by greater compressive strength compared to bFRC 

in dry conditions, but water-aging can significantly decrease the mechanical properties of such an 

innovative FRC. Therefore, both the novel bidirectional spiral winding reinforced fiber composites 

(bswFRC) and the bidirectional fiber reinforced composites (bFRC) might represent suitable 

materials for the production of post-and-core systems via CAD/CAM technology. These findings 

suggest that both FRC materials have the potential to strengthen the endodontically treated teeth. 
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1. Introduction 

A successful endodontic treatment relies on several technical factors such as good 

shaping, proper irrigation, and optimal tridimensional filling of the root canal system [1–

3]. Furthermore, a clinician must be able to choose the most adequate restorative approach 

to restore endodontically treated teeth (ETT), as these latter become more vulnerable to 

fracture than vital teeth [4]. Indeed, during endodontic treatments, a great amount of 

dental tissue may be removed, especially due to the preparation and disinfection steps; 

this may represent the key cause for the tooth structure to become weak [5,6]. 

Different types of restorative approaches have been advocated to reconstruct and 

reinforce ETT. For instance, crowns are often used when the coronal structure is sufficient 

to provide enough retention. Conversely, fiber or metal posts can be employed to increase 

the retention of crown to the root canal. Post-and-core systems can adapt very well to root 

canal morphology, and these are also used to achieve greater aesthetic results in anterior 

teeth [7–10]. On the other hand, the purpose of endo-crown restorations is to allow the 

reconstruction of the root canal system, to replace missing dental tissues, restore coronal 

morphology and tooth function, as well as to provide the necessary strength to prevent 

tooth fracture during mastication [11]. Different criteria play an important role in the 

clinical success rate of restorations, such as the amount of residual coronal structure, the 

restorative technique, and the materials employed during the treatment [12,13]. 

Among all the materials that can be used in this field, prefabricated posts do not seem 

to be properly adapted to residual dental structure, and therefore these cannot be adapted 

to the size and shape of the root canal properly [9]. Teeth restored using this latter approach 

are often characterized by voids within the adhesive interface and by a considerable amount 

of cement required to fill such a lack of adaptation between the post and the root canal walls 

[9,14]. Unfortunately, a thick layer of the cement may lead to loss of retention, with 

consequent detachment and failure of the post [15]. Moreover, due to their different moduli 

of elasticity, post and coronal restoration causes an inhomogeneous distribution of the intra-

oral torque forces to the root dentin, with a consequent increase in the risk of fracture [16,17]. 

The post-and-core (PaC) is a “one-piece” system generated using specific technology 

such as CAD/CAM in order to obtain a custom-made product, which can adapt well to 

the morphology of the root canal walls [18,19]. The presence of less cement thickness and 

voids represent the main advantages of this technique [20]. 

Several materials can be used to construct PaC systems, such as metal, ceramic or 

fiberglass [11,19,21,22]. The choice is based on the strength and aesthetic 

recommendations, and it also depends on the tooth and its location in oral cavity (e.g., 

posterior or anterior teeth). However, some of these materials, such as metal or ceramic, 

may increase the risk of fracture in the remaining tooth structure due to their high 

modulus of elasticity, and they may produce gray discoloration of the crown [18]. 

Conversely, fiberglass post-and-core systems present a modulus of elasticity similar to 

that of dentin, which may provide favorable results in terms of biomechanical and 

aesthetic properties [5,23]. PaC systems can be manufactured in different angulations, 

sizes, and shapes with high precision and efficiency using CAD/CAM technology [23]. 

Different structures of fiber-reinforced composites are introduced in the dental market 

[24]. 

Recently, bidirectional spiral winding glass fiber reinforced composites have been 

introduced [25] in dental practice, but there is no study in the literature about such novel 

materials. 

Therefore, the aim of the present study was to evaluate the compressive strength and 

porosity level of two fiber reinforced composite systems known as bidirectional fiber 

reinforced composite, “bFRC”, and bidirectional spiral winding fiber reinforced 

composite, “bswFRC”. The hypothesis of this study was that there would be significant 

differences between the tested systems. 
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2. Materials and Methods 

2.1. Materials 

Bidirectional fiber reinforced composite “bFRC” and bidirectional spiral winding 

fiber reinforced composite “bswFRC” (Bio Composants Médicaux, Auvergne-Rhône-

Alpes, France) were used in the present study. All specimens were prepared using 

CAD/CAM equipment “INDEX 35I Pro” (imes-icore GmbH, Eiterfeld, Germany) with 

WORKNC software (Hexagon, Charnay-les-Mâcon, France) in order to obtain 20 

cylinders (4 mm in diameter and 4.5 mm in height) for each group. 

2.2. X-ray Tomography 

The internal structure of the specimens created with bFRC and bswFRC was 

inspected in 3D by means of micro-computed X-ray tomography (µCT) (EasyTom 160 

from RX Solutions, Chavanod, France). Imaging was conducted at a voltage of 45 kV and 

a current of 160 mA, using a micro-focused tube equipped with a tungsten filament. The 

source-to-detector distance (SDD) and the source-to-object distance (SOD) were adjusted 

in such a way to obtain a voxel size of around 2.3 µm. The volume reconstruction was 

executed through the software Xact64 (RX Solutions) after applying treatments such as 

geometrical corrections and ring artefact attenuation. The image treatment was performed 

with Avizo software (ThermoFisher, Waltham, MA, USA) that enabled us to (i) de-noise 

the images with a median filter, (ii) segmentate the image intensity to reveal the objects of 

interest (here the pores), (iii) remove insignificant small objects (below a size of 10 pixels) 

from the segmented 3D data, and (iv) determine the 3D geometrical aspects of the objects 

of interest (volume and equivalent diameter) [26]. 

2.3. Compressive Strength Test 

The specimens (n = 15) were submitted to a compressive strength test. Three different 

periods (0 h “dry conditions”, 1 month, and 3 months) of storage in distilled water at 37 

°C were evaluated (5 specimens each period). The specimens were tested using a universal 

testing machine (Instron Machine 5969, High Wycombe, UK) equipped with a 50 kN load 

cell, which recorded the load applied to the specimens at a crosshead speed of 0.5 

mm/min. The specimens were placed between two steel plates and the compression tests 

were performed until failure. The values were recorded for the maximum force applied 

at fracture. The compressive strength was calculated in megapascals (MPa) according to 

the formula: 

σc = 4P/πD2  

where P is the recorded load during the test and D is the initial sample diameter. 

2.4. Scanning Electron Microscopy Observation (SEM) for Fracture Types 

After fracture, the specimens were ultrasonically cleaned for 3 min, immersed in 

100% ethanol for 2 min, air dried, mounted on metal stubs, and then sputter-coated with 

a gold–palladium alloy (20/80 wt.%) using a Hummer JR sputtering device (Technics, San 

Jose, CA, USA). These were analyzed using a Quanta 250 FEG (field emission gun) 

scanning electron microscope “SEM” (FEI Company, Eindhoven, The Netherlands), with 

an electron acceleration voltage of 10 kV and a working distance of 10 mm [27] to 

determine the type of fracture and to observe the direction of the fracture into the fibers. 

2.5. Statistical Analysis 

Data were analyzed with SigmaPlot release 11.2 (Systat Software, Inc., San Jose, CA, 

USA). Two Way Analysis of Variance including multiple comparison procedures (Holm-

Sidak method) was used to determine whether significant differences existed in the 

compressive strength values. A statistical significance level was set at α = 0.05. 
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3. Results 

A significantly lower compressive strength was obtained for bFRC compared to 

bswFRC in dry conditions (p < 0.05). Moreover, the same tendency was observed at 1 

month of immersion in water at 37 °C, where the compressive strength of bFRC was 

significantly lower than that of the specimens created with bswFRC (p < 0.05). In contrast, 

at 3 months of immersion in water, no statistically significant difference was found 

between the compressive strength of the two tested groups (p > 0.05) (Figure 1 and Table 

1). Concerning bswFRC, the compressive strength significantly decreased over time (p < 

0.05), whilst the compressive strength of bFRC presented no significant difference over 

the different periods of water storage (p > 0.05) (Figure 1 and Table 1). 

 

Figure 1. Compressive strength values (mean and standard deviations “MPa”) for bFRC and 

bswFRC at three aging periods in water at 37 °C (T = 0 “dry conditions”, T = 1 month, T = 3 months). 

* p < 0.05. 

Table 1. Evolution of compressive strength (mean ± standard deviations “MPa”) for bFRC and 

bswFRC in dry conditions, and after immersion in water at 37 °C for 1 month and 3 months. p < 0.05. 

Group Dry 1 Month 3 Months 
Statistical Analysis 

(p < 0.05) 

bFRC 338 ± 19 311 ± 18 321 ± 23 No 

bswFRC 684 ± 92 484 ± 21 378 ± 36 Yes 

Statistical analysis (p < 0.05) Yes Yes No  

Subsequent to the compressive strength test, all the specimens were observed using 

SEM in order to investigate the type of fracture and the propagation of the fracture in the 

different composites. The most common fracture observed in the specimens created with 

bswFRC was an oblique fracture (Figure 2). Conversely, the specimens created with the 

bFRC presented prevalently a shear fracture in the middle of the bulk material with the 

exposed fibers (Figure 2, black arrow). 
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Figure 2. Representative scanning electron microscopy photos of bFRC and bswFRC fractures at 

different magnifications (×31, ×500 and ×1000). Black arrows indicate a shear fracture in bFRC 

sample. 

The X-ray tomography analysis showed that bswFRC material had higher pore 

volume density than bFRC (Table 2 and Figure 3). In the 3D observations, the resin and 

fiber layers could be detected and distinguished for bFRC (Figure 3, 3D observation); in 

contrast, in the specimens created with bswFRC, it was impossible to clearly discriminate 

such different layers. 

 

Figure 3. Volume rendering of the segmented pores (blue color) in bFRC and bswFRC, obtained by 

X-ray tomography analysis. The scale bar corresponds to 0.5 mm in all images. 

Table 2. Pore volume density (%) of bFRC and bswFRC as calculated from X-ray tomography 

imaging. 

Group Pore Volume Density (%) 

bFRC 0.60 

bswFRC 1.23 
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4. Discussion 

Restoration of endodontically-treated teeth with optimal crown retention is still a 

challenge due to the important loss of dental hard tissues that endodontists usually have 

to face in seriously caries-compromised teeth [6]. Besides fiber or metallic posts, post-and-

core systems (PaC) may represent a suitable restorative solution in such a clinical scenario; 

they have the advantage of being better adapted to the root canal morphology [11]. 

Indeed, PaC can be designed and fabricated using different approaches (e.g., CAD/CAM) 

and materials such as resin with glass fibers (composite), with elastic modulus similar to 

that of dentin [23]. 

In the current study, two different types of innovative PaC materials (bidirectional, 

and bidirectional spiral winding, fiber reinforced composites) were characterized by 

evaluating their compressive strength and the overall bulk porosity through X-ray 

tomography. It was interesting to observe the presence of significant differences between 

both materials, thus, the hypothesis tested in this study must be accepted. 

The tested materials were tested in dry conditions and after two different storage 

periods (1 and 3 months) in distilled water at 37 °C. This aging protocol was used 

exclusively to stress hydrolytically the tested materials and evaluate their mechanical 

properties. In clinical situations, these materials are not exposed to saliva or water in the 

oral cavity, thus, the aging protocol used in the present study may not be a relevant 

criterion for a clinical scenario. Moreover, the post-and-core part must be protected by the 

crown and by cement in the root canal; therefore, the presence of water is typically quite 

rare. 

According to the manufacturer, both materials tested in this study have the same 

percentage of resin (41 wt.%) and glass fiber (59 wt.%) [25]. Therefore, the results of 

compressive strength could be related to the different arrangement of fiber within the 

resin matrix of both materials. Indeed, the 3D observation demonstrated no clear resin 

layer between the glass fiber layers in bswFRC (spiral winding) (Figure 3). In contrast, 

bFRC showed a net interface between resin and glass fiber layers (Figure 3). A stable fiber–

resin interface allows a smooth stress transfer between the material phases (fiber and 

matrix). Hence, when the stress is uniformly distributed within the material, the material’s 

strength reaches high and stable values. Conversely, after the water-aging, the stress is 

not homogenously distributed within the material. We hypothesize that the reason the 

water-aging affects bswFRC more than bFRC is probably due to the higher porosity of the 

bswFRC material. This porosity, as well as the water-aging, create zones where stress is 

more concentrated and the mechanical properties are altered. 

As mentioned previously (Figure 1), water had no effect in the specimens in the bFRC 

group (p > 0.05) up to 1 month of storage, while bswFRC demonstrated a decrease in the 

compressive strength over time in water (p < 0.05). No significant difference was found 

between the compressive strength of both materials after 3 months of immersion in water 

(p > 0.05). 

In order to understand these results, X-ray tomography was performed on the 

specimens of both groups (Figure 3), and it was interesting to observe a higher porosity 

in bswFRC compared to bFRC. We can hypothesize that the higher porosity of bswFRC 

could be responsible for greater water uptake within the internal structure of the 

materials, which in turn jeopardized the mechanical properties. Indeed, as these materials 

consist principally of resin (urethane dimethacrylate) and glass fiber, it may be possible 

that the water could have affected the integrity of the interface resin–fiber due to 

hydrolytic degradation [28,29]. Moreover, Paturel et al. [30] demonstrated that water 

sorption could affect the properties of similar materials (glass–fiber/resin composite). 

Water can induce degradation of the resin network and the interface between fiber and 

resin increases [31]. 

Regarding the fracture mode, the type of fracture was different in bswFRC compared 

to bFRC. A typical out of plane compression fracture was observed in the specimens 

created with bswFRC. A brittle longitudinal fracture (45°), without layer displacement in 
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the middle of the cylinders (Figure 2), was reported for bswFRC. For this material, the 

fibers were probably subjected to a high shear stress due to the characteristic structure in 

the interweave zone of the composite (Figure 4) [32]. In addition, such fibers may have 

undergone an unexpected extension due to the Poisson effect [32]. Once the fiber bundles 

were subject to a tensile or shear failure (Figure 4), the resin in and around the fiber 

bundles also developed cracks [32]. 

 

Figure 4. Illustration of out-of-plane compression failure mechanism of woven fibre composite. Red 

→ arrow and blue ← arrow: local normal forces transferred to fibre due to Poisson effect.  Double 

red arrow: Forces in fiber bundles zone which is a combination of shear, tensile and compression 

forces. ↓ Black arrow: compression-loading force. Dash red line: Failure target. For bswFRC, the 

mechanical stress concentration is in interweave zone (bundle zone). Thus, the failure target across 

this bundle zone. 

For bFRC, the crack occurred in the resin layer between the glass–fiber layers. Thus, 

a shear force between the different layers is observed (slippage between the layers). The 

crack propagated in the resin layer (more delicate) and a horizontal fracture finally 

occurred (Figure 2). In addition, the SEM images showed exposed fibers in the middle of 

the cylinders. As well as for bswFRC, the fibers of bFRC were subjected to tensile–shear 

loading, but we speculate that the presence of a thick resin layer between fiber-woven 

layers in the bFRC group may have prevented a proper stress distribution during the 

compression test, so that the stress concentrated at the resin layer where the fracture 

occurred. 

These findings suggest that in clinical practice, CAD/CAM indirect fiber post-and-

cores could be considered as the favorite choice and as clinically promising to restore ETT, 

due their high fracture strength with less risk of nonrepairable tooth fracture [33]. This 

technology could be an option for dentists to use digital technology [34] with a CAD/CAM 

system and materials such as bFRC and bswFRC, which can strengthen ETT. The 

adaptation of this technology to tooth structure plays an important role in the longevity 

of tooth restoration, which provides clinical success [35]. Accompanying the evolution of 

CAD/CAM technology, materials companies continue in the development of stable, 

esthetic and higher resistance materials in order to attain an optimal restoration using 

CAD/CAM technology in an oral environment. 

Manufacturing post-and-cores via CAD/CAM technology and using bswFRC 

material is an innovative idea under development for the dental market. Our experimental 

setup has helped to determine the compressive strength before and after water aging in 

both materials. Indeed, the values obtained showed a constant load resistance for the 

bFRC group, and a considerable decrease for the bswFRC group due to water aging. 

5. Conclusions 

The bswFRC presented superior results in compressive strength compared to bFRC 

in dry conditions, but water-aging can significantly decrease the mechanical properties of 
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such an innovative FRC. Therefore, both the novel bswFRC and bFRC may represent 

suitable materials for the production of PaC systems via CAD/CAM technology. 

However, further studies are recommended to test these materials in teeth, and under 

different conditions and different thermo-mechanical and hydration aging. 
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