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Diagnosis of Gulf War Illness Using
Laser-Induced Spectra Acquired from
Blood Samples
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Abstract

Gulf War illness (GWI) is a chronic illness with no known validated biomarkers that affects the lives of hundreds of

thousands of people. As a result, there is an urgent need for the development of an untargeted and unbiased method to

distinguish GWI patients from non-GWI patients. We report on the application of laser-induced breakdown spectroscopy

(LIBS) to distinguish blood plasma samples from a group of subjects with GWI and from subjects with chronic low back

pain as controls. We initially obtained LIBS data from blood plasma samples of four GWI patients and four non-GWI

patients. We used an analytical method based on taking the difference between a mean LIBS spectrum obtained with those

of GWI patients from the mean LIBS spectrum of those of the control group, to generate a ‘‘difference’’ spectrum for our

classification model. This model was cross-validated using different numbers of differential LIBS emission peaks. A subset of

17 of the 82 atomic and ionic transitions that provided 70% of correct diagnosis was selected test in a blinded fashion using

10 additional samples and was found to yield 90% classification accuracy, 100% sensitivity, and 83.3% specificity. Of the 17

atomic and ionic transitions, eight could be assigned unambiguously to species of Na, K, and Fe.
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Introduction

Gulf War illness (GWI) is a chronic illness with multiple

symptoms spanning several domains in individual patients.1,2

First defined by the Centers for Disease Control and

Prevention (CDC) after the 1990–1991 Gulf War,3 estab-

lished medical diagnoses, laboratory tests, and hypothesis-

driven research have failed to explain its multifaceted symp-

tomatology.1,2,4 The etiology of GWI is still unknown and

hypotheses involving exposures to vaccines,5 medications,

pesticides, chemical munitions, inhalation of depleted uran-

ium dust and smoke from burn pits, and burning oil fields

have all been investigated.6 GWI is reflected in a multifa-

ceted syndrome with varied presentation in individual

patients comprising physical symptoms (fatigue,7 joint and

muscle pain8), gastrointestinal disorders,9 cognitive symp-

toms,10 co-morbid syndromes (chronic fatigue syndrome,

fibromyalgia, irritable bowel syndrome), and other clinical

aspects such as depression and anxiety. Impairment due to

GWI can include both cognitive and emotional/behavioral

symptoms.

According to the Research Advisory Committee on Gulf

War Veterans’ Illnesses,2 at least a quarter of the nearly
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Applied Spectroscopy

0(0) 1–7

! The Author(s) 2021

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/00037028211042049

journals.sagepub.com/home/asp

https://orcid.org/0000-0002-7878-8198
https://orcid.org/0000-0001-5392-9225
https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/00037028211042049
journals.sagepub.com/home/asp
http://crossmark.crossref.org/dialog/?doi=10.1177%2F00037028211042049&domain=pdf&date_stamp=2021-10-01


700 000 U.S. veterans who served in the 1990–1991 Gulf

War are affected by GWI.11–13 The health effects asso-

ciated with GWI have significant impact on quality of life.

There is no effective treatment and patients do not appear

to recover with time. This is a complex condition that is

not well understood, and its management may require indi-

vidualized health care plans.1

The broad spectrum of GWI significantly complicates

not only clinical assessment but also the likelihood of

effective treatment–intervention efficacy depends upon

clear diagnosis, patient follow up, and cooperation in the

treatment plan. An objective and widely deployable tool

to confirm GWI diagnosis could also improve disease

monitoring and treatment outcomes. Currently, there

are no established biomarkers or other lab tests for diag-

nosis of GWI or for prediction of the success rate of

treatment interventions in patients with GWI symptoms,

primarily due to our incomplete understanding of the dis-

ease etiology. Several previous studies have searched for

GWI diagnostic biomarkers with limited success so far in

terms of broader validation of the findings and applicability

into clinical practice.14–19 The complexity of GWI symp-

toms suggests implication of multiple pathways with con-

comitant dysfunction. Together, these aspects of GWI

suggest that a global, rather than targeted, approach in

diagnostic biomarkers is warranted. Concomitant markers

of multiple pathways inhere in intact human-derived bio-

logical specimens.

In this work, we report on the application of

laser-induced breakdown spectroscopy (LIBS) to compre-

hensively survey blood plasma from GWI patients and to

identify characteristics that distinguish them from non-GWI

patients who might share similar symptoms. LIBS is an ana-

lytical technique that relies on the generation and spectral

analysis of atomic, ionic, and molecular lines emitted by the

laser-induced plasma (LIP) plume induced by the interaction

of pulsed laser with a sample.20 This work is based on the

fact that LIBS can provide a uniquely comprehensive, ele-

mental-level assessment, which will reveal the presence of

key, concomitant components in biologic specimens, neces-

sary to correlate with the range of symptoms experienced

in GWI. As we recently reviewed,21 biomedical applications

of LIBS include imaging, guided laser surgery, pathogen

identification, medical diagnosis and the first demonstra-

tions of LIBS ‘‘liquid biopsy’’ for diagnosing asymptomatic

cancers, either with tagging approaches22,23 or with tag-free

untargeted methods.24–27 The latter are usually coupled

with machine learning that has been gaining increasing

attention in the LIBS community and in spectroscopy at

large.28–34

One of the main advantages of LIBS over other spectro-

scopic methods is that it can be used to interrogate tissues

without preparation protocols that select for or inadvert-

ently alter sample constituents or disrupt constituent inter-

actions, which may be important in the pathobiology of

GWI. This approach does not hypothesize the importance

of a single pathway but rather seeks to provide an unbiased

survey and assessment of the spectroscopic signatures of all

potential biological markers present, and their interactions,

in intact tissue.

Experimental

We analyzed two sets of samples: blood plasma samples

from a group of subjects with GWI (GWI pos) and from

subjects with chronic low back pain (cLBP) as controls

(GWI neg). Patients with cLBP were used as a comparison

group (disease control), as they also suffered from a

chronic illness and shared some symptoms with GWI

but lacked the GWI-associated exposures during deploy-

ment which are believed to play a causative role in GWI.

Below we describe how each set of samples was

collected.

Blood Sample Collection

The blood samples of the GWI group were drawn from

subjects enrolled to a Randomized Controlled Trial testing

the effectiveness of acupuncture.35 Volunteers were invited

in for screening into the study if they had (i) been deployed

to the ‘‘Gulf Theater of operations’’, (ii) at least two of the

following symptoms from the three CDC clusters of symp-

toms which lasted for more than six months, including

fatigue for 24 h or more after exertion, depression, anxiety,

irritability, difficulty in thinking or concentration, problems

finding words, sleep disturbances, and muscle or joint pain.3

Candidates for enrollment were recruited from the New

England area using advertisements in various media and

mailings to military personnel from the Federal

Manpower Database. The study was approved by the

New England School of Acupuncture Institutional Review

Board (IRB) (NEIRB #09-204).

The blood samples from the cLBP group were drawn

from enrolled patients for a pilot clinical trial ‘‘Structural

Integration for Chronic Low Back Pain’’.36 The study,

including the protocol for obtaining, processing, storing,

and analyzing blood samples (including consent for future

research activities), was approved by the Spaulding

Rehabilitation Hospital Institutional Review Board (#

2010p000014). Candidates for enrollment were recruited

in the Boston area by self-referral in response to posters

placed at Spaulding Outpatient Rehabilitation clinics, pres-

entations to their clinical staff, and emails broadcast to indi-

viduals who had registered their interest in clinical trials for

low back pain in a recruitment database maintained by

Partners Healthcare. Enrollment criteria included men

and women, aged 18–65 with low back pain of at least six

months duration not attributed to radiculopathy, infection,

neoplasm, fracture, or inflammatory rheumatic process.

The severity of pain was self-rated on average over the
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preceding six months, and only patients with pain score �3

on an 11-point ordinal scale were included.

Both studies were conducted approximately during the

same period (2010–2013) and the exact same protocol was

used for sample collection, processing, and storage in both

groups. Briefly, blood was drawn by venipuncture in a

heparinized tube. Plasma was separated by centrifugation

within 30 min of blood collection and stored for up to four

weeks at –20 �C followed by long-term storage at –80 �C.

All samples were previously thawed once on ice for making

aliquots.

For the present study, nine samples from the GWI group

(GWI pos) and nine samples from the cLBP group (GWI

neg) were analyzed.

LIBS Experimental Setup

The LIBS experimental setup and method used for this

work are described in a previous publication from our

group.37 Essentially, they consist of a focusing 7 ns neody-

mium-doped yttrium aluminum garnet (Nd:YAG) laser

(Surelite II, Continuum) pulses operating at 1064 nm on

samples using an air-spaced doublet lens with focal length

of 30 mm. The samples to be analyzed were loaded onto a

three-dimensional computer-controlled translation stage

located within a chamber (SciTrace, AtomTrace). The LIP

emission was collected at an angle of 45� with respect to

the laser beam by means of a 50 mm core-diameter optical

Eber, which was coupled to an Echelle spectrograph (Andor

Technology, ME 5000) and a thermoelectrically cooled iStar

intensiEed charge-coupled device camera (Andor

Technology, DH734-18 F-03). The time parameters used

for this work were: 1 ms gate delay, 5 ms gate width. The

focused laser spot diameter was about 100 mm, the repeti-

tion rate was 0.5 Hz, and the laser energy was 130� 2 mJ.

All measurements were carried out in air at atmospheric

pressure. We deposited 5 mL of each individual blood

plasma specimen on the unpolished side of pure Si

wafers, previously rinsed in 2-propanol, and dried the sam-

ples for 10 min with a tungsten infrared lamp. To make up

for possible inhomogeneity in the liquid distribution on the

substrate, we acquired 96 single-shot spectra for each

sample and ensured that each spectrum came from a

fresh spot on the surface of the dried plasma drop by dis-

placing the sample with the translation stage. Averages of

the 96 single-shot spectra were used for each sample, after

removing those with total emission intensity lying outside

the interval mean� 1 standard deviation.

Results and Discussion

The data analysis approach we adopted for this work is a

modified version of the difference spectrum method that

we developed in Gaudiuso et al.37 We started by generating

a classification model by using eight samples of known

status (four GWI pos, four GWI neg). We averaged the

LIBS spectra of the GWI pos samples, normalized over

the total emission intensity, and did the same for the con-

trols, to generate two mean spectra, one for each class. We

then subtracted the mean GWI neg spectrum from the

mean GWI pos one and obtained the difference spectrum

shown in Fig. 1. This was used to identify the atomic and

ionic transitions to include in the classification test, by

means of a two-step feature selection procedure.

The first step was to eliminate the possibility of spectral

interference from the substrate (pure silicon wafer), by

including in the analysis only the emission peaks that

either were completely absent in the spectra of clean sili-

con or that had intensity lower than 50% of the intensity in

the samples’ average spectra. This left us with 82 transitions

(from about the 200 peaks visible in the spectral range 200–

900 nm) that we used to validate our model.

For this, we employed a leave-one-out cross-validation

approach, i.e., we used seven of the eight known samples as

training set, built a model difference spectrum, and tested it

with the eighth, left-out sample. We then swapped the

training and testing subsets, until we built eight different

models and used each to obtain a GWI pos or GWI neg

diagnosis for each left-out sample.

As described in Gaudiuso et al.,37 this was done by

comparing the polarity of each transition in the test differ-

ence spectrum against those in the model. The polarities

were determined by simply subtracting the mean normal-

ized GWI neg spectrum from the analogous GWI pos one.

For some transitions, the polarity could not be immediately

established with this simple approach, because the differ-

ence peaks were asymmetric, most likely due to a slight

wavelength shift in the source spectra. Such spectrum-to-

spectrum wavelength shift, which corresponds to about

one to two pixels, is most likely due to electronic noise.

In such cases, we determined the intensity of the given

peaks in the mean normalized GWI neg spectrum and in

the analogous GWI pos by Lorentzian fitting, and we used

the difference between the resulting numerical values to

determine the polarity of the transition in the difference

spectrum. Transitions having the same polarity as the model

received a GWI pos label, while those with opposite polar-

ity received a GWI neg label. The diagnosis for each sample

was then obtained through a majority vote, i.e., based on

the number of GWI pos or GWI neg labels. While we did

not observe it in this work, it is possible that samples

receive an equal number of GWI pos/GWI neg labels. In

such cases, no diagnosis would be possible, and the status

of the samples would remain undetermined.

The second step of our feature selection procedure was

to identify the transitions that contribute the most to the

classification and rank them based on the percentage of

correct labels assigned by each transition to the samples.

To establish the number of spectral features providing opti-

mal classification, we repeated the test using various

Gaudiuso et al. 3



subsets of the 82 features, each corresponding to different

percentages of correct diagnoses. To do so, we checked the

labels assigned by each transition to each sample, and we

tallied the number of correct labels to determine the cor-

responding percentage of correct diagnoses. We then

ranked the transitions based on this percentage, and ran

separate tests using different thresholds, which results are

reported in Table I. In this table, for example, threshold

>70% indicates that the specific test was run using only

the transitions that provided more than 70% correct labels.

The results shown in Table I are expressed in terms of

the classification metrics typically used to predict true and

false positives and negatives.37

When using all the selected transitions, two of the con-

trol samples are misclassified as GWI pos (false positives)

but using a threshold of at least 70% correct diagnoses

(N¼ 17) brought the number of misclassified samples to

only one. Since changing the threshold to 80% correct diag-

noses (N¼ 3) did not improve the results, we selected 70%

as the optimal threshold for the blind test, so to minimize

the risk of overfitting the cross-validation data set.

These 17 top transitions are listed in Table II. Due to the

fact that some of these transitions are not listed in the

existing atomic spectra databases,38,39 several could not

be assigned with certainty and were therefore left blank.

While this can hinder establishing a possible causality link

between elemental dyshomeostasis and GWI physiopathol-

ogy, it does not affect the scope of the current work, i.e.,

investigating the feasibility of an atomic spectroscopy tech-

nique to distinguish between two groups of samples that

are characterized by the presence/absence of GWI.

Moreover, as Table II shows, some of the elements contri-

buting the most to the classification accuracy can be iden-

tified as alkaline metals (Na, K) and Fe.

Table II shows that different transitions from the same

emitter, Na(I), have a different contribution to the classifica-

tion accuracy. Two aspects could contribute to this. The first

is the experimental uncertainty associated to Lorentzian fit-

ting. Different transitions can be affected by a different fitting

error (e.g., associated to Lorentzian deconvolution of adja-

cent peaks), which can result in a slightly different contribu-

tion to the classification accuracy. The second is that, while

they belong to the same emitter, these two groups of lines

(589–590 nm, 818 nm) have different energies. In particular,

the 589 nm Na(I) lines are more likely to be affected by self-

absorption than the 818 nm ones. This can affect their con-

tribution to classification accuracy in two ways, i.e., (i) by

altering the line profile and thus increasing the fitting error

and the polarity of the difference peaks and (ii) by altering the

proportionality between the spectral intensity and the popu-

lation of the excited level. Moreover, we note that, while the

percentages appear significantly different (87.5% with Na(I)

818.33–818.49 nm and 75% with Na 589.00–589.56 nm), in

absolute numbers the actual difference is minimal (respect-

ively, seven/eight and six/eight correct diagnoses.) We

expect that with larger training sample sets, these differ-

ences would even out.

The blind test was carried out with 10 additional samples,

using the top transitions reported in Table II. The difference

spectra for the unknown samples were obtained by sub-

tracting the normalized mean spectrum of the four known

Table I. Results of cross-validation test with different subsets of transitions in the LIBS difference spectra.

Results with different subsets of transitionsa

Classification metrics (training set) N¼ 82 N¼ 32 N¼ 17 N¼ 3

Classification accuracy (%) 75 75 87.5 87.5

Sensitivity (%) 100 100 100 100

Specificity (%) 50 50 75 75

aAll transitions indicates results that were obtained using all the spectral features that were visible in the sample spectra, but absent in the

substrate (N¼ 82). The remaining columns in the table indicate three different thresholds used to select the most diagnostic features, i.e.,

results obtained using only the transitions providing at least 60% (N¼ 32), 70% (N¼ 17), and 80% (N¼ 3) of correct diagnoses.

Figure 1. Difference spectrum obtained by subtracting the

mean normalized GWI neg spectrum (obtained by averaging

together all the LIBS spectra of the four known GWI neg samples)

from the mean normalized GWI pos spectrum (obtained by

averaging together all the LIBS spectra of the four known GWI

pos samples).
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GWI neg specimens from the normalized spectra of each

unknown sample, and the resulting polarities compared to

those of the model difference spectrum comprised of all

eight known specimens. The results of the blind tests are

reported in Table III. As previously seen for the cross-valida-

tion set, also in this group of samples there was only one

misclassification, and it was a false positive.

Conclusion

This work is the first example of the application of an

optical spectroscopy technique, LIBS, to the diagnosis of

GWI in Veterans. No known biomarkers have so far been

validated for GWI, and as a result there is an urgent need

for the development of an untargeted and unbiased method

to distinguish GWI-positive patients. We adopted a liquid

biopsy approach, a minimally invasive procedure based on

analyzing microliter droplets of blood plasma specimens

from two groups, those with and without GWI, after deposit-

ing and drying the specimens on solid substrates. For this

work, we used the difference spectrum method, a home-

developed multivariate analysis approach. This method is

based on generating a model difference spectrum with

known samples and comparing the transitions’ polarities

with those of the unknown samples’ difference spectra to

obtain a diagnosis. In this work, we used eight known samples

(four GWI pos, four GWI neg) to cross-validate our method,

identify the most diagnostic transitions, and set a threshold

for the optimal number of spectral features to be used for the

blind test. In the cross-validation results, only one sample was

not correctly identified, and it was a false positive for GWI.

This may be explained by the fact that, while GWI is twice as

prevalent in deployed veterans, it has also been described in

15% of non-deployed veterans.13

To further test the validity of our approach, we per-

formed a blind test using 10 additional samples, whose

status was unknown to the researchers performing the

LIBS measurements and analysis. The results of the blind

tests yielded a classification accuracy 90.0%, sensitivity

100%, specificity 83.3%. While these results may not be con-

sidered conclusive, due to the small scale of this first study,

they nonetheless demonstrate that LIBS shows a clear

potential for minimally invasive GWI diagnosis. Additional

investigations are currently underway, using a larger

number of GWI patients and controls (disease controls

and healthy individuals) to further validate the diagnostic

accuracy of our LIBS-based test. We are also in the process

of evaluating spectral changes in GWI samples collected over

time and in response to acupuncture treatment.35
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Table II. Spectral assignation of the N¼ 17 top transitions,

ranked based on the percentage of correct diagnoses provided by

each.

Wavelength (nm) Emitter

% Correct diagnoses

(cross-validation)

606.97 – 87.5

818.33 Na(I) 87.5

819.48 Na(I) 87.5

276.43 – 75.0

275.63 Fe(I) 75.0

556.25 – 75.0

281.21 – 75.0

758.73 – 75.0

324.91 – 75.0

330.27 Na(I) 75.0

556.80 – 75.0

769.90 K(I) 75.0

589.00 Na(I) 75.0

380.98 – 75.0

379.80 – 75.0

244.77 Fe(I) 75.0

589.59 Na(I) 75.0

Note: Only those with more than 70% correct diagnoses are reported in

this table, as this threshold was chosen to carry out the blind test.

Table III. Results of blind test.

Classification metrics

(blind test)

Results with N¼ 17 top

transitions (threshold> 70%)a

Classification accuracy (%) 90.0

Sensitivity (%) 100

Specificity (%) 83.3

aThreshold> 70% indicates that the results were obtained using only the

N¼17 spectral features that provided at least 70% correct diagnoses in the

cross-validation test (reported in Table II).
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