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Abstract 33 

The use of plastic materials in agriculture involves several benefits but it results in huge 34 

quantities of agricultural plastic waste to be disposed of. Input and output data on the use of plastics 35 

in agriculture are often difficult to obtain and poor waste management schemes have been 36 

developed. The present research aims to estimate and map agricultural plastic waste by using 37 

satellite images. Waste was evaluated by means of the indexes relating waste production to crop 38 

type and plastic application as defined by the land use map realized by classifying the Landsat8 39 

image. The image classification was carried out using the Support Vector Machines (SVMs), the 40 

accuracy assessment showed that the overall accuracy was 94.54% and the Kappa coefficient equal 41 

to 0.934. Data on the plastic waste obtained by the satellite land use map were compared with the 42 

data obtained by using the institutional land use map; a difference of 1.75 % was pointed out on the 43 

overall quantity of waste. 44 

 45 
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 48 

1. Introduction 49 

Plastics are nowadays indispensable in modern agriculture, they are used for crop protection and 50 

shading, soil mulching, irrigation pipes, silage covering, harvesting and post-harvesting operations, 51 

pots, trays and seedling containers, packaging containers and sacks (Markarian, 2005; Vox et al., 52 

2010; Picuno, 2014).  53 

The use of plastic materials in agriculture, known as plasticulture, involve benefits in terms of 54 

light weight and good mechanical resistance, easy installation, use and management, lower cost in 55 

relation to other materials. Plastic covering films and nets protect crop from adverse weather 56 

conditions and from birds and aphids, extend the harvest season and improve crop quality and yield 57 

by realizing favourable growing climatic conditions for the plants. Plastic films for soil mulching 58 

decrease the use of chemicals for weed control, reduce water consumption and preserve plants and 59 

edible products both from the soil diseases and from the dirt, thus improving the plants health and 60 

the yield quality (Briassoulis and Schettini, 2003; Mistriotis and Castellano, 2012; Picuno et al., 61 

2012; Briassoulis et al., 2013). All these properties explain the widespread use of plastics in 62 

agriculture that are mainly based on low density polyethylene (LDPE), ethylene vinyl acetate 63 

(EVA), high density polyethylene (HDPE), polypropylene (PP), polyvinyl chloride (PVC) 64 

(Markarian, 2005; Castellano et al., 2008; Hopewell et al., 2009; Scarascia-Mugnozza et al., 2011; 65 

Briassoulis et al., 2013; Simboli et al., 2015).  66 

The yearly consumption of agricultural plastics in the world amounts to 6.5 million tons that 67 

result in huge quantities of Agricultural Plastic Waste (APW) to be disposed of by reason of the 68 

frequent substitution of the plastic products.  69 
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The sustainable management on the land of APW is part of the wider issue of the land 70 

conservation (Picuno et al. , 2011; Díaz-Palacios-Sisternes et al., 2014, Vox et al., 2016a, Scarascia-71 

Mugnozza et al., 2016).   72 

At the end of their useful life, only a small percentage of APW is recycled: in EU the amount of 73 

agricultural plastic materials used in 2011 was more than 1.3 million tonnes, the recovery rate of 74 

agricultural plastics has been only 46% and the mechanical recycling rate has been about 23% 75 

(PasticsEurope, 2013; González-Sánchez et al., 2014). 76 

Unlike in urban areas APW in rural land must be collected over wide areas and so it requires a 77 

suitable system of waste management in order to optimize the localization of the first collection 78 

centres. Poor and inefficient APW management schemes have been developed in Europe so far, 79 

input and output data on the use of plastics in agriculture are often difficult to obtain (Briassoulis et 80 

al., 2013). APW is seasonally dependent, so its quantity varies both with the time and with the 81 

localization depending on the crop type. Plastic waste must be estimated every few months in order 82 

to optimize the collection procedure. One way to estimate APW on the land is to use information 83 

about the cultivated crop; land use maps realized by institutions can be used for this purpose but 84 

unfortunately they are often updated with a low temporal resolution and lack information on the 85 

presence of plastic covering (film or nets) for crop protection (Sica et al., 2015; Scarascia- 86 

Mugnozza et al., 2016; Vox et al., 2016b). Satellite images with a higher temporal resolution can be 87 

used in order to estimate APW, the Landsat satellites, for example, cross every point on Earth once 88 

every 16 days.  89 

Remote sensing of plastic coverings is a particular field of application of the automatic mapping 90 

techniques of land use due to several peculiarities; it strongly depends on the spatial, temporal and 91 

spectral characteristics of the considered objects and of the sensor due to: the similarity of plastic 92 

agricultural equipments with other buildings, the plastics spectral signal changing with the 93 
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underlying vegetation reflectance properties; the seasonally dependent use of plastic covering films 94 

(Levin et al., 2007; Aguilar et al., 2014; Loisi et al., 2015). 95 

Automated object recognition from remote sensing images, compared to manual digitizing, saves 96 

time and avoids the use of skilled technicians delegated to visual recognition. It can be carried out 97 

according to two different analysis approaches: the pixel-based approach and the object-based 98 

approach. These analysis approaches aim to define a biunivocal relation between the pixels 99 

constituting an image and the classes of information set as goal of the detection. The pixel-based 100 

approach operates on single pixels and takes into account only their spectral characteristics. The 101 

object-based approach focuses on regions, on objects made of several pixels that correspond the 102 

objects on the site; the object-based approach takes into account both spectral and spatial data. The 103 

pixel-based image analysis employs the unsupervised and the supervised learning techniques. The 104 

unsupervised technique, also called image clustering, requires the pixels to be firstly classified in 105 

groupings according to numerical information by means of clustering algorithms; then to be 106 

associated to information classes by an operator. The supervised technique instead requires that the 107 

information classes are defined previously by the operator which identifies a certain number of 108 

Areas Of Interest (AOI) in an image, i.e. the training sites. The AOI are used in order to elaborate 109 

the spectral signature of each information class. The whole of all the spectral signatures are the 110 

basis on which suitable algorithms operate for detecting areas in the image having spectral 111 

similarities with the AOI. The object-based approach is based on the use of specific algorithms that 112 

carry on the image classification according to two different methods: the recognition of pixel-113 

intensity discontinuity, the recognition of pixel-intensity similarity (Arcidiacono et al., 2010a; Weih 114 

and Riggan, 2010; Duro et al., 2012).  115 

Low-Medium resolution satellite data, such as MODIS (low) and Landsat (medium) images that 116 

are free online available data, are characterized by a large pixel size and large ground sample 117 

distance (GSD). The recent availability of very high-resolution (VHR) data, provided by 118 
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commercial satellites such as IKONOS and QuickBird, and then of better performing satellites such 119 

as GeoEye-1 (GE-1) and WorldView-2 (WV-2), has led to further developments in the urban and 120 

rural planning sector (Levin et al., 2007; Tarantino and Figorito, 2012; Aguilar et al., 2014; Novelli 121 

and Tarantino, 2015). VHR data have proved to be very suitable for plastic coverings mapping, 122 

nevertheless also Landsat images can be useful in detecting plastic coverings depending on the area 123 

size of the studied objects (Levin et al., 2007; Novelli and Tarantino, 2015) and even in identifying 124 

the greenhouse horticultural crops (Aguilar et al., 2015). 125 

Levin et al. (2007) found good results in detecting plastic coverings in agricultural landscapes by 126 

means of the hyperspectral technology. Using AISA-ES, an airborne imaging spectrometer, which 127 

provides hyperspectral data, they achieved a detection accuracy of above 90% for bright sheets and 128 

nets and of only 70% for the black nets from an AISA-ES image having a spatial resolution of 1m. 129 

Arcidiacono and Porto (2010b) compared the object-based image analysis (OBIA) technique and 130 

the pixel-based analysis, both supervised and unsupervised, in detecting crop-shelter coverage by 131 

aerial RGB digital images; they assessed that the object-oriented method reduced the computational 132 

time and produced more detailed results. Arcidiacono and Porto (2010a) proposed a model to 133 

manage crop-shelter spatial development by means of automatic image analyses based on OBIA 134 

technique, geographical information system (GIS) processing and the definition of Driving force-135 

Pressure-State-Impact-Response spatial indicators. 136 

Tarantino and Figorito (2012) applied the OBIA to Very High Spatial Resolution true colour 137 

aerial data, with a GSD of 0.20 m, in order to detect land use and to map in detail vineyards plastic 138 

coverings on eight test areas. The classes detected were bare soil, orchard, vegetables, plastic sheet 139 

vineyard, hail net vineyard and uncovered vineyard. A preliminary segmentation process was 140 

applied to the images; the classification process was carried on exploiting the Feature Space 141 

Optimization (FSO), an algorithm applied in eCognition software, to define optimal combination of 142 

features to improve the classification performance by selecting the set of features that produces the 143 
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best class separable distances (Chutia et al., 2014). The output result is the mapping of areas with 144 

prevalent plastic covered vineyards directly in polygonal form and with an overall accuracy of 145 

90.25%. 146 

Tasdemir and Koc-San (2014) applied an unsupervised learning approach to plastic and glass 147 

greenhouses extraction. They used WV-2 images in order to extract the spectral properties of the 148 

greenhouses using the image bands and their spatial characteristics using Gabor textural features. 149 

The two series of features were merged and clustered by an approximate spectral clustering based 150 

on local density similarity. The resulting overall accuracy was 87.30% and the kappa coefficient 151 

was 0.81, which were obtained with limited input data provided by the user. 152 

Aguilar et al. (2014) exploited 3D information from VHR stereo pairs satellite images in order to 153 

better delineate objects with relevant height. They compared the greenhouse classification from GE-154 

1 and WV-2 by using data sets constituted by spectral information from panchromatic and pan-155 

sharpened multiangle orthoimages and single-source stereo-photogrammetrically derived heights; 156 

they applied an OBIA approach, using the non-parametric supervised nearest neighbor classifier, 157 

and reached similar overall accuracies from GE-1 and WW-2 tests. 158 

In order to test the usefulness of medium-resolution sensor data, Picuno et al. (2011) carried out 159 

an analysis on the use of land by means of crops protected with plastics using Landsat images. The 160 

analysis was developed with the application of a supervised parallelepiped classification to 161 

multitemporal Landsat TM images, image processing, vectorialization and GIS utilities; it led to the 162 

generation of multi-temporal thematic maps areas covered with plastic films and to the possibility 163 

of creating a routine in IDL and ENVI software for automatically detecting the plastic coverings. 164 

Landsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) data suitability 165 

for plasticulture detection were also successfully tested by means of four normalized difference 166 

indices, namely the green Normalized Difference Vegetation Index, the rescaled brightness 167 

temperature, the Plastic Surface Index and the Normalized Difference Sandy Index (Novelli and 168 
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Tarantino, 2015). The resulting maximum overall accuracy was higher than 80%, the joint use of 169 

such indexes enhanced the contrast between the studied object and the other.  170 

MODIS time series proved to be useful data to be analyzed with a threshold model, a one-class 171 

classification method, for the detection of plastic-mulched land-cover on large geographic areas; the 172 

resulting maps were found equivalent to maps produced using Landsat ETM+ and OLI images and 173 

the maximum likelihood classification (MLC) method (Lu et al., 2015). 174 

The Support Vector Machines (SVMs) are supervised automatic algorithms based on machine 175 

learning theory (Zhu and Blumberg, 2002). They are non parametric classifiers that have a great 176 

ability in optimizing classification issues, through the minimization of the empirical classification 177 

errors and the maximization of the class separations (Nolè et al., 2015). Koc-San (2013) compared 178 

the performance of random forests, maximum likelihood and SVM classifiers for glass greenhouse 179 

and plastic greenhouse detection using WV-2 data. The greenhouses were identified from WV-2 180 

satellite imagery with high overall accuracy for three methods, but the highest overall accuracy 181 

resulted from SVM (93.88%), followed by the random forests one (91.73%).  182 

Huang et al. (2002) detected land cover applying the SVM classification to spatially degraded 183 

Landsat Thematic Mapper (TM) data; the application of the maximum likelihood algorithm and of 184 

the decision tree algorithm generated a lower level of accuracy. The SVM classification technique 185 

has been applied to a tropical coastal zone and has been compared with the MLC and Artificial 186 

Neural Network techniques; the SVM algorithm performed better in separating human 187 

infrastructures with spectral signatures similar to natural landscape components (Szuster et al., 188 

2011). The SVM gave better results in terms of accuracy in comparison to MLC when applied to 189 

ASTER imagery of the northwestern India for the automated lithological classification (Yu et al., 190 

2012). Yousefi et al. (2011) carried out a comprehensive study on the comparison of the nine 191 

supervised classification algorithms (SVM, Neural network, Mahalanobis distance, Maximum 192 

likelihood, Minimum distance, Spectral angle mapper, Spectral information divergence, 193 
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parallelepiped and binary code) as tools for land use mapping starting from Landsat ETM+ images; 194 

they asserted the superiority of the SVM algorithm which showed the best results, that is a kappa 195 

coefficient of 0.9503 and an overall accuracy of 90.94 %. Several studies report on the application 196 

of the SVM algorithm for pattern recognition: greater accuracy has been achieved by SVM in 197 

comparison to MLC and artificial neural network (NN) (Deilmai et al., 2014). 198 

The present paper proposes a method for identifying, localizing and quantifying APW, based on 199 

the application of the SVM classification technique to OLI images. The aim is to study the 200 

convenience of using free online available satellite data in evaluating APW by comparing them with 201 

the waste data obtained from less frequent higher resolution maps.  The method was tested in the 202 

Apulia Region (Southern Italy), over an area characterized by a widespread use of the “tendone” 203 

technique that is a traditional grape cultivation system; this technique is realized with a supporting 204 

structure that may be covered with plastic film or net so generating huge quantities of plastic wastes 205 

(Picuno et al., 2011; Vox et al., 2012; Sica et al., 2015).  206 

2. Study area 207 

The study area is located in the Apulia Region, Southern Italy, between the municipalities of 208 

Noicattaro and Mola di Bari (Fig. 1); the area, which has  an extension of 15 km
2 

(3x5 km), is 209 

centered on the WGS84 geographic coordinates of 41.046°N  and 17.029 ° E  (WGS 84 UTM: zone 210 

33 N, 670550 E, 4545870 N).   211 
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 212 

Figure 1: The study area located in Southern Italy. 213 

 214 

The area is characterised by intensive agriculture and huge quantities of APW dealing with 215 

several applications are generated: irrigation pipes, agro-chemicals containers, bags for fertilizers, 216 

films for mulching and films and nets for crop protection. A huge amount of waste is originated 217 

from films and nets as the agriculture is mainly dedicated to table grape cultivation protected with 218 

plastic film or net. Plastic films are generally mounted over the crop from February to July in order 219 

to advance the harvesting or from August to December to delay it; nets are mounted in the same 220 

periods, but they are often kept mounted throughout the year. Plastic films are made with LDPE or 221 

EVA, nets mostly with HDPE. 222 
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 223 

3.  Methodology 224 

Two methods for the evaluation of APW in the land were used: one was based on the land use 225 

map available on the Apulia region website, the other one on the land use map obtained from the 226 

satellite image. Both the maps were related to the indexes quantifying plastic waste generation for 227 

each crop type and plastic application in order to obtain the waste quantities on the land. The results 228 

obtained with the two methodologies were compared. 229 

 230 

3.1 Waste evaluation from the Regional map 231 

The crop type was evaluated by means of the land use map of the Apulia Region, realized in 232 

2006 and updated in 2011, at a scale of 1:5,000: it derives from an orthophoto having 50 cm pixel; 233 

the legend complies with the European CORINE Land Cover Changes Database with an extension 234 

to the fourth level. The map is available on the website of the Apulia Region 235 

(http://www.sit.puglia.it) and can be downloaded in the different shape files associated to the 236 

different portions of the territory forming the study area. The different shape files were merged in 237 

order to have a unique shape file that was subjected to a clip operation on the study area; the shape 238 

file was placed in the WGS 84 / UTM zone 33N reference system. 239 

  240 

http://www.sit.puglia.it/
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 241 

Table 1: Plastic Waste Index (PWI) per Crop Type (CT) and  

Plastic Application (PA) 

CT PA PWI (kg ha
-1

 yr
-1

) 

vineyard  

plastic film   613.80  

anti-hail net  159.03 

irrigation pipe  83.33 

fertilizer bag  1.60 

agrochemicals container  4.00 

olive grove 

irrigation pipe  50.00 

fertilizer bag  0.50 

agrochemicals container  0.63 

orchard 

irrigation pipe  62.50 

fertilizer bag  2.20 

agrochemicals container  1.80 

vegetable  

irrigation pipe  69.44 

fertilizer bag  2.50 

agrochemical container  1.70 

 242 

The following plastic wastes were considered: irrigation pipes, agro-chemicals containers, bags 243 

for fertilizers, films and nets for crop protection.  244 

The regional land use map provides information on the spatial distribution of the different crops 245 

(vineyard, olive grove etc.), but the information about the presence and the type of the vineyards 246 

protection, i.e. net or film, is missing because it is an information highly variable on a monthly 247 
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basis. The data on the presence of plastic films and nets were obtained by the photo-interpretation 248 

of an image dated May 18, 2013 provided by the web-mapping tool Google Maps. Thence the 249 

corrected land use map was produced and the APW on the land was calculated on the basis of the 250 

crop type and of the indexes shown in table 1 that estimate the waste generation for each crop type 251 

and plastic application; the indexes were obtained by means of questionnaire delivered to several 252 

growers of the area (AWARD project, 2016).  253 

The waste for each Plastic Application (PA) of the i-th parcel, which is characterized by its Crop 254 

Type (CT), was calculated by: 255 

          (1) 256 

where Si is the surface of the i-th parcel, PWICT,PA is the plastic waste index for the CT of the i-th 257 

parcel and for the specific PA. 258 

The total waste for each i-th parcel, including all the applications, was calculated by: 259 

         (2) 260 

 261 

where N is the number of PAs for the crop type present in the i-th parcel.  262 

3.2  Waste evaluation from the satellite image 263 

The application of a system with a higher temporal resolution for evaluating APW was carried 264 

out by means of satellite data.  265 

Satellite image interpretation could be difficult in some areas especially in presence of covering 266 

plastic film or net; in order to have a clear basis for the definition of the spectral fingerprints and the 267 

subsequent creation of a suitable training set for the satellite image interpretation, two specific 268 

shape files were created, based on the above mentioned regional map; each shape file included 10 269 

sample areas regarding vineyards covered with nets and vineyard covered with plastic film, 270 
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respectively. After the definition of the spectral fingerprints a land use map, based on the satellite 271 

data, was created. Finally, the values of the APW were calculated by means of the indexes that 272 

estimate the plastic waste generation for each crop type and plastic application as above described 273 

for the regional map; in this case the parcel corresponds to the pixel of the satellite image. 274 

3.2.1 Data 275 

A Landsat8 OLI-TIRS image provided by the USGS EROS Center (USGS, 2015) was used; its 276 

acquisition date is May 19, 2013 (Fig. 2). The OLI and TIRS are sensors onboard the Landsat 8 277 

satellite, which was launched in February 2013. Landsat8 collects images with a 16-day repeat 278 

cycle in a repetitive, near polar, sun-synchronous and circular orbit at 705 km of altitude. 279 

The OLI sensor includes 9 spectral bands (table 2) with a spatial resolution of 30 m for Band 1 to 280 

Band 7 and Band 9. The resolution for Band 8 (panchromatic) is 15 m. Compared to previous 281 

Landsat mission (Landsat7) there are two new bands: band 1 (ultra-blue) is useful for coastal and 282 

aerosol studies and band 9 is useful for cirrus cloud detection.  283 

The TIRS provides two thermal bands (bands 10 and 11) useful in providing more accurate 284 

surface temperatures which are collected at 100 meters but resampled to 30 meter in delivered data 285 

product. 286 

Landsat8 images provide improved signal-to-noise (SNR) radiometric performance quantized 287 

over a 12-bit dynamic range. This translates into 4096 potential grey levels in an image compared 288 

with only 256 grey levels in previous 8-bit instruments. Improved signal to noise performance 289 

enable better characterization of land cover state and condition. Products are delivered as 16-bit 290 

images (scaled to 55,000 grey levels). 291 

 292 

http://landsat.usgs.gov/ldcm_vs_previous.php
http://landsat.usgs.gov/ldcm_vs_previous.php
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 293 

Figure 2: Landsat8 OLI-TIRS image (May 19, 2013) - RGB: 432. Red box: study area. 294 

 295 

The study area is covered in scene path/row 188/31 with an approximate scene size of 170 km 296 

north-south by 183 km east-west. 297 

The images were subjected to geometric, radiometric and atmospheric correction.   298 

Standard Landsat8 data products consist of quantized and calibrated scaled Digital Numbers 299 

(DN) representing multispectral image data acquired by both the OLI and TIRS Sensors. The 300 

products are delivered in 16-bit unsigned integer format and were rescaled to the Top Of 301 

Atmosphere (TOA) reflectance and radiance using radiometric rescaling coefficients provided in 302 

the product metadata file (MTL file). The MTL file also contains the thermal constants needed to 303 

convert TIRS data to the at-satellite brightness temperature. 304 

OLI and TIRS band data were converted to TOA spectral radiance using the following radiance 305 

rescaling factors provided in the metadata file: 306 

Lλ = MLQcal + AL            (3) 307 
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where:                308 

Lλ = TOA spectral radiance (Wm
-2

srad
-1

μm
-1

) 309 

ML = Band-specific multiplicative rescaling factor from the metadata 310 

(RADIANCE_MULT_BAND_x, where x is the band number) 311 

AL = Band-specific additive rescaling factor from the metadata (RADIANCE_ADD_BAND_x, 312 

where x is the band number) 313 

Qcal = Quantized and calibrated standard product pixel values (DN)           314 

The following equation is used to convert DN values to TOA reflectance for OLI data as follows: 315 

ρλ
'
 = MρQcal + Aρ            (4) 316 

where:   317 

ρλ
'
  = TOA planetary reflectance, without correction for solar angle.   318 

Mρ = Band-specific multiplicative rescaling factor from the metadata 319 

(REFLECTANCE_MULT_BAND_x, where x is the band number) 320 

Aρ = Band-specific additive rescaling factor from the metadata (REFLECTANCE_ADD_BAND_x, 321 

where x is the band number) 322 

TOA reflectance with a correction for the sun angle is then: 323 

 324 

              (5) 325 

 326 

where: 327 

ρλ = TOA planetary reflectance 328 

θSE = Local sun elevation angle. The scene center sun elevation angle in degrees is provided in the 329 

metadata (SUN_ELEVATION).  330 

θSZ = Local solar zenith angle;  θSZ = 90°- θSE 331 

 332 
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In this work we didn't use TIRS bands and, therefore, we didn't converted bands 10 and 11 from 333 

spectral radiance to brightness temperature. 334 

 335 

Table 2: Landsat 8 Operational Land Imager (OLI) and 

Thermal Infrared Sensor (TIRS) - launched February 11, 2013 

Band 

Wavelength 

(m) 

Resolution 

(m) 

Band 1 - Coastal aerosol 0.43 - 0.45 30 

Band 2 - Blue 0.45 - 0.51 30 

Band 3 - Green 0.53 - 0.59 30 

Band 4 - Red 0.64 - 0.67 30 

Band 5 - Near Infrared (NIR) 0.85 - 0.88 30 

Band 6 - SWIR 1 1.57 - 1.65 30 

Band 7 - SWIR 2 2.11 - 2.29 30 

Band 8 - Panchromatic 0.50 - 0.68 15 

Band 9 - Cirrus 1.36 - 1.38 30 

Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30) 

Band 11 - Thermal Infrared (TIRS) 2  11.50 - 12.51 100 * (30) 

 336 

 337 

 338 

3.2.2  Image Classification 339 

The Landsat image was classified using the Support Vector Machines (SVMs), namely those 340 

supervised automatic algorithms based on machine learning theory (Zhu and Blumberg, 2002). 341 

SVMs are non parametric classifiers which proved very able at solving problems related to 342 
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classifications due to the ability of maximizing the class separations minimizing the classification 343 

errors (Nolè et al., 2015); SVM algorithms and models use the supervised learning approach 344 

(machine learning) for data analysis (Dixon and Candade, 2008). 345 

We adopted SVMs in this study as this approach has shown remarkable potential for data 346 

classification also in satellite data processing (Mountrakis et al., 2011). 347 

According to Mountrakis et al. (2011), the use of SVM in remote sensing can successfully 348 

manage small training data sets and perform better than other more traditional classifiers. 349 

Like all non-parametric classifiers, also SVMs are used without the prior assumptions on the 350 

probability distribution function of the data. This characteristic makes SVMs very suitable in 351 

remote sensing applications since data acquired from remotely sensed imagery usually have 352 

unknown distributions (Mountrakis et al., 2011). 353 

Several studies demonstrated better performances of SVMs in terms of speed of training and 354 

accuracy classification than other parametric and non-parametric classifiers (Mountrakis et al., 355 

2011). 356 

SVM approaches, as for other supervised learning algorithms, require a training set, consisting of 357 

m training samples made up of n vectors of input, named features Xi of m dimension and labels of 358 

“correct answers” that we want the algorithm predicts. 359 

In the case of satellite images, the training sets are pixels (identified as training samples) 360 

described as vectors, whereas the labels are the given classes assigned for those pixels. 361 

In this study we applied the SVM classification using ENVI 4.7 software (ITT, 2009; Wu et al., 362 

2004; Hsu et al., 2007). ENVI's implementation of SVM uses the pairwise classification strategy for 363 

multiclass classification. SVM classification output is the decision values of each pixel for each 364 

class, which are used for probability estimates. The probability values, stored in ENVI as rule 365 

images, represent "true" probability in the sense that each probability falls in the range of 0 to 1, and 366 
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the sum of these values for each pixel equals 1. ENVI performs classification by selecting the 367 

highest probability. 368 

 369 

Accuracy assessment 370 

For the accuracy assessment we created the square contingency table matrix and evaluated the 371 

producer, user and overall accuracy and the k coefficient. 372 

The producer accuracy is a measure indicating the probability that the classifier has correctly 373 

labeled an image pixel into Class A given that the ground truth is Class A. For example if the Class 374 

A has a total of n ground truth pixels where m pixels are classified correctly, the producer accuracy 375 

is the ratio m/n. 376 

The user accuracy is a measure indicating the probability that a pixel is Class A given that the 377 

classifier has labelled the pixel into Class A. For example if the classifier has labeled x pixels as the 378 

Class A and a total of y pixels are classified correctly, the user accuracy is the ratio y / x. 379 

Overall accuracy was computed as the sum of the number of observations correctly classified 380 

(class1, as class 1, class 2 as class 2, etc.) divided by the total number of observations. This is 381 

equivalent to the “diagonal” of the square contingency table matrix divided by the total number of 382 

observations described in that contingency table (Congalton and Green, 1998). 383 

Kappa statistic measures the increase in classification accuracy over that of pure chance by 384 

accounting for omission and commission error (Congalton and Green, 1998).  385 

 386 

4. Results and Discussion 387 

The regional and the satellite land use map were the necessary basis for the following evaluation 388 

of the agricultural plastic waste on the land. The already available regional map was corrected in a 389 

few points by means of the photo-interpretation while the satellite land use map was built by means 390 

of the satellite image classification. 391 
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 392 

4.1 The land use map from the satellite image 393 

On the basis of the land use map and the Google Earth high resolution image (Fig. 3), both 394 

corresponding to the Landsat image acquisition period, we selected the region of interest (ROI) 395 

corresponding to the land use classes.  396 

 397 

 398 

 399 

Figure 3: Google Earth high resolution image (May 18, 2013). Red box: study area. 400 

 401 

 402 

Pixels belonging to each of the considered ROI were separated randomly into data training and 403 

data testing, used for the SVM classification and accuracy evaluation, respectively.  404 
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Figure 4 shows the land use map obtained for the investigated test area from the Landsat image. 405 

We reached the better results by using SVM classifiers with RBF kernel, Gamma=1 and Cost=1000 406 

applied on 6 Landsat bands (2-7). 407 

 408 

 409 

Figure 4: Land use map obtained from the Landsat8 image.  410 

 411 

Such map presents very high accuracy levels that were assessed by means of the square 412 

contingency table matrix (table 3) and by evaluating the producer, user and overall accuracy and the 413 

kappa coefficient. 414 

  415 
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 416 

 417 

The Film class has an error of just over 5%, then about 5% of the total ground truth pixels of this 418 

class is not classified correctly; such pixels in this case are in the Net Class (Table 3).  419 

Net class has an error of 2.38%. The pixels corresponding to this percentage in this case are in 420 

the Film Class (Table 3). 421 

Worse results were pointed out for olive groves, 77.78% of the total ground truth pixels of this 422 

class were correctly classified. 423 

  424 

Table 3: Square contingency table matrix 

 

 

Ground Truth (%) 

         Class 

 

Film Net Bare soil Vegetables Orchards Olive groves Urban Wood Bare soil with trees 

Film 

 

94.87 2.38 0.00 0.00 0.00 0.00 7.14 0.00 7.14 

Net 

 

5.13 97.62 0.00 0.00 0.00 22.22 0.00 0.00 7.14 

Bare soil  

 

0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 

Vegetable 

 

0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 

Orchard 

 

0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 

Olive grove 

 

0.00 0.00 0.00 0.00 0.00 77.78 0.00 0.00 7.14 

Urban    

 

0.00 0.00 0.00 0.00 0.00 0.00 92.86 0.00 0.00 

Wood  

 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 

Bare soil with trees   

 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 78.57 

 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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 425 

Table 4: Producer and User Accuracies for each class 

Class Producer Acc. (%) User Acc. (%) 

Film 94.87 96.10 

Net 97.62 82.00 

Bare soil  100.00 100.00 

Vegetable 100.00 100.00 

Orchard 100.00 100.00 

Olive grove 77.78 93.33 

Urban  92.86 100.00 

Wood  100.00 100.00 

Bare soil with trees  78.57 100.00 

 426 

 427 

Table 4 shows the Producer and User Accuracies for each class.  428 

The producer accuracy has the same values of the “diagonal” of the square contingency table 429 

matrix.  430 

The column of the User Accuracy indicates that the Film class has an error of less than 4%, 431 

corresponding to the percentage of pixels that the classifier has labelled in Film class but actually 432 

belong to other classes (Net, Urban and Bare soil with trees).  433 

More significant is the mistake of the User Accuracy in Net class (18%). In this case then SVM 434 

has labelled in Net class some pixels belonging to other classes, in particular to the Film class (8%), 435 

Olive Groves class (8%) and bare soil with trees class (2 %).    436 

The overall accuracy on the whole image was 94.54% with the Kappa coefficient equal to 0.934. 437 

 438 
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 439 

 440 

Figure 5: Spectral signatures of Film and Net. 441 

 442 

Finally SVM showed high ability to detect the vineyards coverings (Films and Nets) with errors 443 

due to limited mixing between Film and Net classes and Net and Olive Groves classes. 444 

The spectral signatures of Film and Net are shown in Figure 5. Also Jeffries-Matusita ROI 445 

separability test  (Swain and Davis, 1978) showed value greater than 1.9 (1.971) for Film and Net 446 

and this demonstrated that the classes are well separated. In general Jeffries-Matusita test shows 447 

that all nine classes have significant spectral separability with each other. 448 

Several authors have pointed out the higher classification accuracy generated by the Support 449 

Vector machines. Huang et al. (2002) implemented the SVM classification for a spatially degraded 450 

Landsat Thematic Mapper (TM) data. The SVM classification accuracy was superior to that 451 

obtained using a maximum likelihood algorithm and a decision tree algorithm. Yousefi et al. (2011) 452 

investigated the nine supervised classification algorithms (SVM, Neural network, Mahalanobis 453 

distance, Maximum likelihood, Minimum distance, Spectral angle mapper, Spectral information 454 

divergence, parallelepiped and binary code) in land use mapping in Mazandaran province, Iran and 455 
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used Landsat ETM+ images. Their results confirmed that the SVM classification, with a kappa 456 

coefficient of 0.9503 and an overall accuracy of 90.94 %, is better than the other methods. These 457 

results are compatible with those obtained in this study, demonstrating the reliability of SVM in 458 

land use mapping.  459 

The findings obtained in the classification of films and nets, also confirm the reliability of SVM 460 

in identifying artificial elements. For example Szuster et al. (2011) examined the performance of the 461 

SVM classification technique in the tropical coastal zone and compared this technique with the 462 

MLC and Artificial Neural Network techniques, concluding that the SVM is better classifier for 463 

challenges like separating human infrastructures, for instance buildings from rocks and sandy 464 

beaches as they possess similar spectral signatures. In the case of our study we have a similar 465 

situation with two artificial objects (film and net) very close from spectral point of view. Also Koc-466 

San (2013) has analyzed the accuracy of maximum likelihood, random forests and SVM classifiers 467 

for glass greenhouse and plastic greenhouse using WV-2 data. The results show that greenhouse can 468 

be identified from WV-2 imagery and all the accuracy for three methods are high, with the highest 469 

one from SVM, followed by random forests.  470 

Finally, although this study did not provide a comparative analysis of the performance of SVM 471 

against other classifiers, with good approximation we can to affirm that the results obtained can be 472 

the best possible, in relation to the used  sensor. To confirm this, we mentionYu et al. (2012) which 473 

have applied the support vector machine (SVM) algorithm for the automated lithological 474 

classification in a part of northwestern India using ASTER imagery. They have also showed that 475 

SVM gives higher accuracy in comparison to MLC. Furthermore the SVM algorithm has been used 476 

widely for pattern recognition applications and many researchers in this field have found that a 477 

higher level of accuracy can be achieved by SVM than other algorithm of classification like MLC 478 

(Oommen et al., 2008; Mondal et al., 2012), Artificial Neural Network (ANN) (Naguib et al., 479 

2009), MLC and Artificial Neural Network (ANN) (Pal and Mather, 2005). 480 
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 481 

4.2. The Agricultural Plastic Waste  482 

Both the regional map and the Landsat8 image map, together with the APW indexes (Tab.1), 483 

were used to calculate the agricultural plastic waste on the land. Table 5 summarizes, for all the 484 

parcels, the plastic waste as a function the crop type and of the plastic application.  Given that data 485 

obtained from the regional map (Regional base map in table 5) were assumed as true, the accuracy 486 

of the waste evaluation with Landsat8 image (Landsta8 satellite base map in table 5) was affected 487 

by the accuracy of land use classification carried out on the image. 488 

 489 

Table 5: Plastic wastes as a function the crop type and of the plastic application. 

Application plastic films 

 

anti-hail nets irrigation pipes fertilizer 

bags 

agrochemicals  

containers 

TOTAL 

Base map * Reg.
 

Sat.
 

Reg. Sat. Reg. Sat. Reg. Sat. Reg. Sat. Reg. Sat. 

Crop type      (t)       

vineyard  

with  film 

341.89 322.01   46.42 43.72 0.89 0.84 2.23 2.10 391.43 368.66 

vineyard with 

anti-hail net 

  28.15 34.88 14.75 18.28 0.28 0.35 0.71 0.88 43.89 54.39 

vegetable     0.26 2.19 0.01 0.08 0.01 0.05 0.28 2.32 

orchard     1.00 0.47 0.04 0.02 0.03 0.01 1.06 0.50 

olive grove     9.73 12.65 0.10 0.13 0.12 0.16 9.95 12.94 

Total 341.89 322.01 28.15 34.88 72.15 77.30 1.32 1.41 3.09 3.20 446.60 438.80 

Error (t)  -19.89  6.73  5.15  0.10  0.11  -7.80 

Error (%)  -5.82  23.92  7.14  7.28  3.51  -1.75 

 490 

*  : Reg.: regional; Sat.: Landsta8 satellite; 491 

 492 

 493 
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The highest value of plastic waste (341.9 tonnes), 76.6 % of the total APW (446.6 tonnes) 494 

evaluated with the regional map, was pointed out for the films; the value evaluated by the satellite 495 

map was 5.82 % lower than the value evaluated with the regional map, it corresponds to an error of 496 

19.85 waste tonnes.  497 

The error of detection of the plastic films is related to the low average size of the vineyard parcel 498 

areas that are sometimes comparable or even smaller than the pixels size of the Landsat8 images. 499 

The highest percentage error was recorded for the anti-hail nets even if anti-hail nets produced a 500 

lower quantity of waste tonnes. The higher percentage error for the nets (23.92%) can be explained 501 

with the difficulty of net detection caused by their low reflectivity due to the permeable structure. 502 

The evaluation of the waste by the satellite map showed a good accuracy for the irrigation pipes, the 503 

agro-chemical containers and the fertilizer bags, with a maximum percentage error of 7.28 % 504 

recorded for the fertilizer bags.  505 

 506 

5. Conclusions 507 

Waste management is a global issue that should be addressed in a sustainable way. Agricultural 508 

activities contribute to the generation of huge quantities of plastic wastes that must be correctly 509 

disposed of. One of the problems is that input and output data on the use of plastics in agriculture 510 

are often difficult to obtain; the proposed methodology uses satellite data for geo-referring 511 

agricultural plastic wastes in this way obtaining updated waste maps. Waste managers can easily 512 

use this information as basis of the waste management plan in order to define the position of the 513 

collections centers and the waste route maps. The advantage of the use of free satellite images is 514 

that they allow a high temporal resolution, comparable with the use of the plastic materials in the 515 

agricultural activities. Support Vector Machines SVMs used for image classification showed high 516 

ability to detect the different crops and the presence of plastic covering materials. The comparison 517 

of the data on the waste generation obtained from satellite images with the data from the regional 518 
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map, verified and updated with photo-interpretation, highlighted the effectiveness of the 519 

methodology.  520 

 521 
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Notation list  

AL  band-specific additive rescaling factor from the metadata (radiance) 

AOI areas of interest 

APW agricultural plastic waste 

Aρ  band-specific additive rescaling factor from the metadata (reflectance) 

CT crop type 

DN digital numbers 

EVA ethylen vinyl acetate 

FSO feature space optimization 

GE-1 GeoEye-1 

GIS geographical information system 
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GSD ground sample distance 

HDPE high density polyethylene 

Lλ  TOA spectral radiance (Wm
-2

srad
-1

μm
-1

) 

LDPE low density polyethylene 

ML Band-specific multiplicative rescaling factor from the metadata (radiance) 

Mρ Band-specific multiplicative rescaling factor from the metadata (reflectance) 

MLC maximum likelihood classification 

MTL material library  

NN neural network 

OBIA object-based image analysis 

OLI operational land imager 

PA plastic application 

PP polypropylene 

PWI plastic waste index 

Qcal quantized and calibrated standard product pixel values (DN) 

RBF radial basis function 

RGB red, green, and blue 

ROI region of interest 

PVC polyvinyl chloride 

SVMs support vector machine 

SNR signal-to-noise 

TIRS thermal infrared sensor 

TM thematic mapper 

TOA top of atmosphere 
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VHR very high-resolution 

WV-2 WorldView-2 

θSE local sun elevation angle (°) 

θSZ local solar zenith angle (°) 

ρλ TOA planetary reflectance 

ρλ
' 

TOA planetary reflectance, without correction for solar angle 
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Figure Captions 690 

Figure 1: The study area located in Southern Italy. 691 

Figure 2: Landsat8 OLI-TIRS image (May 19, 2013) - RGB: 432. Red box: study area. 692 

Figure 3: Google Earth high resolution image (May 18, 2013). Red box: study area. 693 
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Figure 4: Land use map obtained from the Landsat8 image.  694 

Figure 5: Spectral signatures of Film and Net. 695 
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