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Abstract We focus on the problem of link prediction in Knowledge Graphs,
with the goal of discovering new facts. To this purpose, Energy-Based Models
for Knowledge Graphs that embed entities and relations in continuous vector
spaces have been largely used. The main limitation in their applicability lies
in the parameter learning phase, which may require a large amount of time for
converging to optimal solutions. In this article, we first propose an unified view
on different Energy-Based Embedding Models. Hence, for improving the model
training phase, we propose the adoption of adaptive learning rates. We show
that, by adopting adaptive learning rates during training, we can improve the
efficiency of the parameter learning process by an order of magnitude, while
leading to more accurate link prediction models in a significantly lower number
of iterations. We extensively evaluate the proposed learning procedure on a
variety of new models: our results show a significant improvement over state-
of-the-art link prediction methods on two large Knowledge Graphs, namely
WordNet and Freebase.

1 Introduction

Knowledge Graphs (KGs) are graph-structured knowledge bases, where fac-
tual knowledge is represented in the form of relationships between entities.
We focus on KGs that adopt Resource Description Framework (RDF)1 as
their representation, since they constitute a powerful instrument for search,
analytics, recommendations, and data integration. Indeed, RDF is the Web
standard for expressing information about resources.
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A resource (hereafter also called entity) can be anything, including doc-
uments, people, physical objects, and abstract concepts. An RDF knowledge
base (also called RDF graph as a KG) is a set of RDF triples of the form
〈s, p, o〉, where s, p and o denote the subject, the predicate (i.e. a relation
type) and the object of the triple, respectively. Each triple 〈s, p, o〉 describes a
statement, which can be interpreted as: A relationship of type p holds between
entities s and o. The following example shows a set of RDF triples2 describing
the writer William Shakespeare3:

Example 1 (RDF Fragment)

〈W. Shakespeare, influencedBy, G. Chaucer〉
〈W. Shakespeare, religion, Church of England〉
〈W. Shakespeare, author, Hamlet〉
〈Hamlet, genre, Tragedy〉
〈Hamlet, character, Ophelia〉 ut

Several RDF KGs are publicly available through the Linked Open Data
(LOD) cloud, a collection of interlinked KGs such as Freebase [4], DBpedia [3]
and YAGO [21]. As of April 2014, the LOD cloud is composed of 1,091 in-
terlinked KGs, globally describing more than 8 × 106 entities, and 188 × 106

relationships holding between them4. However, KGs are often largely incom-
plete. For instance, 71% of the persons described in Freebase5 have no known
place of birth and 75% of them have no known nationality [14].

For this reason, in this work, we focus on the problem of predicting missing
links in large KGs, so as to discover new facts about a domain of interest. In
the literature, this problem is referred to as link prediction, or knowledge base
completion. The aim of this work is to provide an efficient and accurate model
for predicting missing RDF triples in large RDF KGs (in a link prediction
setting), without requiring extra background knowledge.

The link prediction task is well known in Statistical Relational Learning
(SRL) [16] which aims at modeling data from multi-relational domains, such as
social networks, citation networks, protein interaction networks and knowledge
graphs, and detecting missing links in such domains. Two main categories
of models can be ascribed to SRL: Probabilistic latent variable models and
embedding models (also frequently called Energy-based models). A detailed
analysis of these two classes of models is reported in Sect. sec:related.

While appearing promising in terms of link prediction results, Probabilistic
latent variable models showed limitations on scaling on large KG because of the
complexity of the probabilistic inference and learning, which is intractable in
general [19]. Differently from them, embedding models have shown interesting

2 This description is taken from the Freebase KG [4]
3 For readability reasons, we describe entities and relations using an intuitive way of

writing down triples as text rather than using the pure RDF syntax.
4 State of the LOD Cloud 2014: http://lod-cloud.net/
5 Available at https://developers.google.com/freebase/data

http://lod-cloud.net/
https://developers.google.com/freebase/data


3

ability to scale on large KG while maintaining comparative performance in
terms of predictive accuracy [5].

We focus specifically on a class of embedding models for KGs, named as
Energy-Based Embedding Models (EBEMs), where entities and relations are
embedded in continuous vector spaces, referred to as embedding spaces. In
such models, the probability of an RDF triple to encode a true statement
is expressed in terms of energy of the triple: this is an unnormalized score
that is inversely proportional to such a probability value, and is computed
as a function of the embedding vectors of the subject, the predicate and the
object of the triple. The reason why we focus on this class of models, such as
Translating Embedding (TransE) [8] and other related ones [7,9,28], is because
it has been experimentally proved that they achieve state-of-the-art predictive
accuracy results on link prediction tasks, while being able to scale to large and
Web-scale KGs [5, 8, 14]. However, a major limiting factor for EBEMs lies in
the parameter learning algorithm, which may require a long time (even days)
to converge on large KGs [11].

In order to overcome such a limitation, we propose a method for reducing
the learning time in EBEMs by an order of magnitude, while leading to more
accurate link prediction models. Furthermore, we employ the proposed learn-
ing method for evaluating a family of novel EBEMs with useful properties.
We experimentally tested our methods on two large and commonly used KGs:
namely WordNet and Freebase, following the same evaluation protocol
used in [8]. Our results show a significant improvement over the state-of-the-
art embedding models.

The rest of the paper is organized as follows. In Sect. sec:basics, we in-
troduce basics on Energy-Based Models. In Sect. sec:models we propose: a) a
framework for characterizing state-of-the-art EBEMs, b) a family of novel en-
ergy functions with useful properties, c) a method for improving the efficiency
of the learning process in such models. In Sect. sec:related the main related
works falling in the Probabilistic latent variable models and Embedding Models
categories are analyzed, while in Sect. sec:evaluation we empirically evaluate
the proposed learning methods and energy functions. In Sect. sec:conclusion
we summarize our work and outline future research directions.

2 Basics on Energy-Based Models

Energy-Based Models [20] are a versatile and flexible framework for modeling
dependencies between variables. The key component is a scalar-valued energy
function E(·), which associates a scalar energy with a configuration of vari-
ables. The energy of a configuration of variables is inversely proportional to
the probability of such a configuration. Precisely, more likely configurations
correspond to lower energy values, while less likely configurations correspond
to higher energy values. Two main steps can be recognized in energy-based
models: the inference step and the learning step.
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The inference step consists in finding the most likely configuration of the
variables of interest, that is the one that minimizes the energy function E(·).
Given X and Y random variables, with values in X and Y, an example of the
exploitation of the inference in energy-based models is given in the following.

Example 2 (Energy-Based Inference) Assuming that X describes the pixels of
an image, while Y describes a discrete label associated with the image (such
as “car” or “tree”), let E : X × Y 7→ R be an energy function defined on the
configurations of X and Y . The most likely label y∗ ∈ Y for an image x ∈ X
can be inferred by finding the label in Y that, given x, minimizes the energy
function E(·):

y∗ = arg min
y∈Y

E(x, y).

Learning in energy-based models consists in finding the most appropriate
energy function within a family F = {Eθ | θ ∈ Θ}, indexed by parameters θ,
that is in finding the function that is actually able to associate lower energy
states with likely configurations of the variables of interests, and higher energy
states to unlikely configurations of such variables. In practice, this corresponds
to finding the energy function E∗θ ∈ F that minimizes a given loss functional
L, which measures the quality of the energy function on the data D:

E∗θ = arg min
Eθ∈F

L(Eθ,D).

A normalized probability distribution can be derived from an energy-based
model. Specifically, given an energy function E : X 7→ R defined on the possible
configurations of a random variable X, it is possible to derive a corresponding
probability distribution through the Gibbs distribution:

P (X = x) =
1

Z(β)
e−βE(x)

where β is an arbitrary positive constant, and Z(β) =
∑
x̃∈X e

−βE(x̃) is a
normalizing factor 6 referred to as the partition function.

3 A Framework for Energy-Based Embedding Models

Energy-based models can be used for modeling the uncertainty in RDF KGs,
in both statistical inference and learning tasks.

An RDF graph G can be viewed as a labeled directed multigraph, where
entities are vertices, and each RDF triple is represented by a directed edge
whose label is a predicate, and emanating from its source vertex to its object
vertex. We denote with EG the set of all entities occurring as subjects or objects
in G, formally:

EG = {s | ∃〈s, p, o〉 ∈ G} ∪ {o | ∃〈s, p, o〉 ∈ G}
6 If X is a continuous random variable, then Z(β) =

∫
x̃∈X e

−βE(x̃).
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and we denote with RG the set of all relations appearing as predicates in G,
formally:

RG = {p | ∃〈s, p, o〉 ∈ G}.
Let SG = EG×RG×EG be the space of possible triples of G, with G ⊆ SG,

and let Eθ : SG → R (with parameters θ) be an energy function that defines
an energy distribution over the set of possible triples SG.

The inference step consists in finding the most likely configuration of the
variables of interest, i.e. the one that minimizes the energy function E(·). For
instance, assume we need to know the most likely object o∗ to appear in a triple
with subject s (e.g. W. Shakespeare) and predicate p (e.g. nationality).
It can be inferred by finding the object o that minimizes the function E(·), as
follows:

o∗ = arg min
o∈EG

Eθ(〈s, p, o〉).

Similar inference tasks can be performed with respect to the subject s, the
predicate p, or a subset of such variables.

Learning consists in finding an energy function E∗θ ∈ F , within a paramet-
ric family of energy functions F = {Eθ | θ ∈ Θ} indexed by parameters θ, that
minimizes a given loss functional L defined on the RDF graph G, that is:

E∗θ = arg min
E∗θ∈F

L(Eθ, G).

Since the energy value for a triple expresses a quantity that is inversely
proportional to the probability of the triple itself (see Sect. sec:basics), in a
link prediction setting, the energy function E∗θ (·) can be exploited for assessing
a ranking of the so called unobserved triples, that are the triples in SG \G. As
such, triples associated with lower energy values (higher probabilities) will be
more likely to be considered for a completion of the graph G, differently from
triples associated with the higher energy values (lower probabilities).

On this point, it is important to note that Open World Assumption holds
in RDF, which means that when a triple is missing in G, this does not have to
be interpreted as that the corresponding statement is false (like for the case
of the Closed World Assumption typically made in database settings), but
rather that its truth value is missing/unknown, since it cannot be observed in
the KG. We will refer to all triples in G as visible triples, and to all triples in
SG \G as unobserved triples, which might encode true statements.

Within energy-based models, we particularly focus on Energy-Based Em-
bedding Models (EBEMs) which are a specific class of models where each entity
x ∈ EG is mapped to a unique low-dimensional continuous vector ex ∈ Rk,
that is referred to as the embedding vector of x, and each predicate p ∈ RG
corresponds to an operation in the embedding vector space. As already pointed
out in Sect. sec:introduction, the reason for such a choice is that EBEMs, such
as Translating Embedding (TransE) [8] and related models [7, 9, 28], achieve
state-of-the-art results in link prediction tasks, while being able to scale on
very large (Web-scale) Knowledge Graphs [6].

In the following sections:



6

Table 1: Energy-Based Embedding Models for knowledge graphs proposed in
the literature, with their energy functions, shared and embedding parameters.

Model Energy function E(〈s, p, o〉) Shared Embedding

Unstructured [7] ‖es − eo‖1 es, eo ∈ Rk
TransE [8] ‖(es + ep)− eo‖1/2 es, ep, eo ∈ Rk

SE [9] ‖Rp,1es −Rp,2eo‖1 es, eo ∈ Rk,Rp,· ∈ Rn×k
RESCAL [24] eTs Rpeo es, eo ∈ Rk,Rp ∈ Rk×k
SME lin. [7] (R1es + R2ep)T (R3eo + R4ep) R· ∈ Rn×k es, ep, eo ∈ Rk
SME bil. [7] [(R1es)×3 (R2ep)]T [(R3eo)×3 (R4ep)] R· ∈ Rn×k es, ep, eo ∈ Rk

NTN [28] uTp tanh
(
eTs Tpeo + Rp,1es + Rp,2eo

) es, eo ∈ Rk,up ∈ Rn,
Tp ∈ Rk×k×n,Rp,· ∈ Rn×k

(a) We present a unified general framework for formalizing EBEMs for KGs
and we show that EBEMs proposed in the literature so far can be charac-
terized with respect to their energy function. Additionally, we propose novel
formulations of the energy functions with useful properties (see Sect. sec:inference).

(b) We then focus on the EBEM learning phase, by proposing a method for im-
proving the efficiency of the parameters learning step (see Sect. sec:learning).

3.1 Energy Function Characterization and New Energy Functions

The energy function Eθ : SG → R considered in the state-of-the art EBEMs
for KG can be defined by using two types of parameters:

– Shared Parameters: used for computing the energy of all triples in the
space of the possible triples SG of G.

– Embedding Parameters: used for computing the energy of triples con-
taining a specific entity or relation x ∈ EG ∪ RG. We denote such param-
eters by adding a subscript with the name of the entity or relation they
are associated with. For instance, in the Translating Embeddings model,
es denotes the embedding vector representing a subject s, and ep denotes
the translation vector representing a predicate p.

Both shared parameters and embedding parameters are learned from data.
In particular, EBEMs for KGs associate each entity x ∈ EG with a k-dimensional
embedding vector ex ∈ Rk, and each relation p ∈ RG with a set of embedding
parameters Sp. Tab. tab:models summarizes the energy functions that have
been used by the state-of-the-art EBEMs for link prediction in KGs, and high-
lights the distinction between the two different kinds of parameters reported
above. Please note that, in the table, the subscript for the parameters stand
for the entity/predicate to which they refer to, e.g. the subscript p is added to
the parameters associated with a particular predicate p.

The energy functions can be seen as sharing a common structure: given a
RDF triple 〈s, p, o〉, its energy E(〈s, p, o〉) is computed by the following two-
step process, also depicted in Fig. fig:energystruct:

1. The embedding vectors es, eo ∈ Rk respectively of the subject s and the
object o of the triple, and the embedding parameters Sp associated with
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the predicate p of the triple are used to obtain two new vectors e′s, e
′
o ∈ Rk′

by means of two model-dependent functions fs(·) and fo(·):

e′s = fs(es,Sp), e′o = fo(eo,Sp).

2. The energy of a triple 〈s, p, o〉 is computed by a model-dependent function
g(·), with g : Rk′ × Rk′ 7→ R, applied to the vectors e′s, e

′
o ∈ Rk′ resulting

from the previous step:

E(〈s, p, o〉) = g(e′s, e
′
o) = g(fs(es,Sp), fo(eo,Sp)). (1)

Please note that here, the proposed unifying framework is intended for
describing EBEMs for KG: the choice for the functions fs(·), fo(·) and g(·) is
model-dependent, and different models might correspond to different choices
of such functions. As an example, in the following we show how the energy
function adopted by the Translating Embeddings model (TransE) [8], a state
of the art EBEM for performing link prediction in KG, can be expressed by the
use of the formalization presented above. TransE is particularly interesting:
while its number of parameters grows linearly with the number of entities
and relations in the KG, it yields state-of-the-art link prediction results on
WordNet and Freebase KGs (see the empirical comparison with other link
prediction methods in Sect. sec:adaptive).

es Sp eo

e′s = fs(es,Sp) e′o = fo(eo,Sp)

E(〈s, p, o〉) = g(e′s, e
′
o)

Fig. 1: Structure of the energy function in Energy-Based Embedding Models
for KGs: es, Sp and eo are the embedding parameters of s, p and o.

Example 3 (Energy Function in TransE) In the formulation for the energy
function of TransE [8] (see also Tab.tab:models), each entity x ∈ EG in an
RDF graph G corresponds to a k-dimensional embedding vector ex ∈ Rk, while
each predicate p ∈ RG corresponds to a translation operation, represented by
a k-dimensional vector ep ∈ Rk, in the embedding vector space. As from
Tab. tab:models, the energy function can be formulated by using the L1 or
the L2 distance of the (translated) subject and object embedding vectors. In
the case of L1 formulation, the energy of an RDF triple 〈s, p, o〉 is given by
the L1 distance of (es + ep), corresponding to es translated by ep, and eo:

E(〈s, p, o〉) = ‖ (es + ep)− eo‖1.
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This corresponds to the following choice of the functions fs(·), fo(·) and g(·):

fs(es, {ep}) = es + ep, fo(eo, {ep}) = eo, g(e′s, e
′
o) = ‖e′s − e′o‖1. ut

Besides proposing a general framework for expressing an energy function
to be used by EBEMs, we also investigate whether the choice of other affine
transformations for the functions fs(·) and fo(·), such as scaling, or compo-
sition of translation and scaling, leads to more accurate models than those
generated by TransE (using the energy function reported in Tab. tab:models),
while still having a number of parameters that scales linearly in the number
of entities and relations in the KG. Specifically, we investigate the choices for
the following fs(·) and fo(·) functions:

Translation: f(ex, {ep}) = ex + ep,
Scaling: f(ex, {ep}) = ex � ep,
Scaling ◦Translation: f(ex, {ep,1, ep,2}) = (ex � ep,1) + ep,2,

where ◦ denotes the composition operation between functions, and � denotes
the Hadamard product, also referred to as element-wise product. The results
of such a study are reported and discussed in Sect. sec:adaptive.

In addition, we also evaluate the effect of enforcing the embedding vector
of all entities to lie on the Euclidean unit (k − 1)-sphere, that is Sk−1 = {x ∈
Rk | ‖x‖2 = 1}. This is motivated by the fact that, in TransE [8] and related-
models, the L2 norm of all entity embedding vectors is enforced to be 1: hence,
we take into account the effect of normalizing the results of the functions fs(·)
and fo(·), so that the resulting projections also lie on the Euclidean unit sphere
(together with all entity embedding vectors).

In the next section, we discuss the learning step of EBEMs, which consists
in finding the most appropriate energy function to be used during the infer-
ence step (see Sect. sec:basics), and propose a method for improving both the
efficiency of the learning process and the predictive accuracy of the learned
model.

3.2 Learning the Parameters of the Energy Function

As discussed in Sect. sec:basics, learning in EBEMs for KGs corresponds to
finding an energy function E∗θ , within a family of functions F = {Eθ | θ ∈ Θ}
indexed by parameters θ, that minimizes a given loss functional L measuring
the compatibility of an energy function with respect to the RDF graph G:

E∗θ = arg min
Eθ∈F

L(Eθ, G). (2)

In the following, the definition for the loss functional L is given. In agree-
ment with the formalization presented in Sect. sec:inference, a key point for
learning the (best) energy function in EBEMs consists in learning the shared
and embedding parameters to be used for computing the energy function. As
for [7–9], shared and embedding parameters are learned by using a corruption
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Algorithm 1 Learning in EBEMs via Stochastic Gradient Descent [8]

Input: Learning rate η, batch size n
Output: Optimal model parameters θ∗

1: Initialize model parameters θ0
2: for t ∈ 〈1, . . . , τ〉 do
3: ex ← ex/‖ex‖, ∀x ∈ EG {Normalize all entity embeddings}
4: T ← SampleBatch(G,n) {Sample observed and corrupted triples}
5: gt ← ∇

∑
(x,x̃)∈T [γ + Eθ(x)− Eθ(x̃)]+ {Evaluate the gradient of L w.r.t. θ}

6: ∆t ← −ηgt {Calculate the update to model parameters θ}
7: θt ← θt−1 +∆t {Update the model parameters θ}
8: end for
9: return θτ

process Q(x̃ | x) that, given a RDF triple x ∈ G, produces a corrupted RDF
triple x̃, uniformly sampled from the set of corrupted triples Cx. Formally,
given an RDF triple 〈s, p, o〉 from G, the set of corrupted triples for it is given
by

C〈s,p,o〉 = {〈s̃, p, o〉 | s̃ ∈ EG} ∪ {〈s, p, õ〉 | õ ∈ EG}
that is the set obtained by replacing either the subject or the object of the
triple with another entity from the set of entities EG.

The corruption process is applied to positive training RDF triples in order
to generate negative examples that are actually missing in a KG. By corrupt-
ing the subject and the object of triples in the KG, the Local Closed World
Assumption (LCWA) [14] is implicitly followed. In the LCWA, the idea is
to consider the knowledge about a specific property p (e.g. nationality) of
a resource s (e.g. W. Shakespeare) to be locally complete if a value for p
is already specified for the resource s. For instance, knowing that the triple
〈W. Shakespeare,nationality,English〉 is true (because observed in the
KG), allows to assume that 〈W. Shakespeare,nationality,American〉 -
i.e. a triple obtained by corrupting the object - is very likely to be false.

Since the final goal is to learn an energy function which associates lowest
energy values (highest score) with observed triples, and highest energy values
(lowest score) with unobserved triples, the corruption process Q(x̃ | x) is used
for defining the following margin-based stochastic ranking criterion over the
triples in G:

L(Eθ, G) =
∑
x∈G

∑
x̃∼Q(x̃|x)

[γ + Eθ(x)− Eθ(x̃)]+ , (3)

where [x]+ = max{0, x}, γ > 0 is a hyperparameter referred to as margin, and
the embedding vector of each entity is enforced to have an unitary norm, i.e.
∀x ∈ EG : ‖ex‖ = 1. Actually, the loss functional in Eq. eq:lossmarginenforcestheenergyofobservedtriplestobelowerthanthescoreofunobservedtriples :
theunitarynormconstraintsintheoptimizationproblempreventthetrainingprocesstotriviallysolveitbyincreasingtheentityembeddingnorms
1001[8].

The minimization problem in Eq. eq:minloss can be solved by using pro-
jected Stochastic Gradient Descent (SGD) in mini-batch mode, as also pro-
posed in [7–9] and summarized in Alg. alg:sgd. The training algorithm works
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as follows: given an RDF graph G, at each iteration, it samples a batch of
triples from G. Similarly to [8], each batch is obtained by first randomly
permuting all triples in G, then partitioning them into nb batches of simi-
lar size, and iterating over them. A single pass over all triples in G is called
an epoch. For each triple in the batch, the algorithm generates a corrupted
triple by means of the corruption process Q(x̃ | x): this leads to a set T
of observed and corrupted pairs of triples. Hence, the observed/corrupted
triple pairs in T are used to evaluate the gradient of the loss functional L
in Eq. eq:lossmarginwithrespecttothecurrentmodelparametersθ. Finally, θ is
updated in the steepest descent direction of the loss functional L by a fixed
learning rate η. This procedure is repeated until convergence (in [8] the learn-
ing procedure was limited to 1000 epochs).

The main drawback of SGD is that it requires an initial, careful tuning
of the learning rate η, that is also used across all parameters, without adapt-
ing to the characteristics of each parameter. However, if some entities are
infrequent, the corresponding embedding vectors will tend to be updated less
frequently during the learning process, and will require a longer time to be
properly learned. For such a reason, the task of learning the model parameters
in EBEMs by using SGD may require even days to terminate [11].

In order overcome such a limitation, we propose the adoption of adaptive
per-parameter learning rates as a solution for reducing the learning time in
EBEMs. The underlying idea consists in associating smaller learning rates to
parameters updated more often (such as the embedding vectors of entities
appearing more frequently) and larger learning rates to parameters updated
less often. Specifically, while the SGD algorithm in Alg. alg:sgd uses a global,
fixed learning rate η, we propose relying on methods that estimate the opti-
mal learning rate for each parameter while still being tractable for learning
large models. In particular, we consider the following criteria for selecting
the optimal learning rates: the Momentum method [26], AdaGrad [15] and
AdaDelta [31]. Each of these methods can be implemented in Alg. alg:sgd, by
replacing the update to model parameters on line line:update as specified in
the following.

Momentum Method The basic idea of this method is accelerating the
progress along dimensions where the sign of the gradient does not change,
while slowing the progress along dimensions where the sign of the gradient
continues to change. This is done by keeping track of previous parameter
updates with an exponential decay. The update step on line line:update of
Alg. alg:sgd, in the Momentum method is given by:

∆t ← ρ∆t−1 − ηgt,

where ρ is a hyperparameter controlling the decay of previous parameter up-
dates.
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AdaGrad The underlying idea in this method is that per parameter learning
rates should grow with the inverse of gradient magnitudes: large gradients
should have smaller learning rates, while small gradients should have larger
learning rates, so that the progress along each dimension evens out over time.
The update step on line line:update of Alg. alg:sgd, in AdaGrad is given by:

∆t ← −
η√∑t
j=1 g

2
j

gt,

where η is a global scaling hyperparameter. AdaGrad has been used on large
scale learning tasks in a distributed environment [12].

AdaDelta This method uses an exponentially decaying average of squared
gradients E[g2] and squared updates E[∆2], controlled by a decay term ρ, to
give more importance to more recent gradients and updates. The update step
on line line:update of Alg. alg:sgd, in AdaDelta is given by:

∆t ← −
RMS[∆]t−1

RMS[g]t
gt,

where E[x]t = ρE[x]t−1 + (1 − ρ)xt calculates the exponentially decaying
average, RMS[x]t =

√
E[x2]t + ε, and ε is an offset hyperparameter.

All these methods leverage each parameter’s previous gradients for adap-
tively selecting the optimal learning rate. The additional space complexity
provided by each of these methods is an additional accumulator for each pa-
rameter, containing its gradient history. We did not experience any sensible
difference in runtimes in comparison with plain SGD.

4 Related Works

In this section we survey the most representative related works in the cate-
gories of Probabilistic latent variable models and Embedding Models, by jointly
highlighting their main peculiarities and drawbacks.

Probabilistic Latent Variable Models Models in this class explain rela-
tions between entities by associating each entity to a set of intrinsic latent
attributes. The term latent refers to the fact that the attributes are not di-
rectly observable in the data. Specifically, this class of models conditions the
probability distribution of the relations between two entities on the latent at-
tributes of such entities, and all relations are considered conditionally indepen-
dent given the latent attributes. Similarly to Hidden Markov Models [19, 30],
this allows the information to propagate through the network of interconnected
latent variables.

An early model in this family is the Stochastic Block Model (SB) [29],
which associates a latent class variable with each entity. In Fig. fig:latent
(see left side), a simple SB for a social network is depicted. Here, each user
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u ∈ U is associated with a latent class variable Zu which conditions both
its attributes Au, and its relations Ri with other users. The Infinite (Hidden)
Relational Model [18,30] extends the SB by using Bayesian nonparametrics, so
to automatically infer the optimal number of latent classes. The Infinite Hidden
Semantic Model [25] further extends such model, to make use of constraints
expressed in First Order Logic during the learning process, while the Mixed
Membership Stochastic Block Model [1] extends the SB to allow entities to
have mixed cluster-memberships. More recent works associate a set of latent
features with each entity, instead of a single latent class. The Nonparametric
Latent Feature Relational Model [23] is a latent feature model, which relies on
Bayesian nonparametrics to automatically infer the optimal number of latent
features during learning. Other approaches, such as [13], focus on the problem
of inducing probabilistic logic programs. While showing interesting results in
terms of predictive accuracy, a detailed analysis on the scalability issue, with
particular reference to real-world large KGs is missing.

The main limitation of probabilistic latent variable models lies in the com-
plexity of probabilistic inference and learning, which is intractable in gen-
eral [19]. As a consequence, these models do not result to be fully appropriate
for modeling large KGs.

Embedding Models Similarly to probabilistic latent feature models, in Em-
bedding Models each entity in the KG is represented by means of a continuous
k-dimensional embedding vector ex ∈ Rk, encoding its intrinsic latent features
within the KG. Nevertheless, models in this class do not necessarily rely on
probabilistic inference for learning the optimal embedding vectors and this
allows avoiding the issues related to the proper normalization of probability
distributions, that may lead to intractable problems.

In RESCAL [24], the problem of learning the embedding vector represen-
tations of all entities and predicates is cast as a tensor factorization problem:
by relying on a bilinear model, and by using a squared reconstruction loss, an
efficient learning algorithm, based on regularized Alternating Least Squares,

Zui

Aui Rij Auj

Zuj

∀uj ∈ U∀ui ∈ U

eui ∈ Rk er ∈ Rk′ euj ∈ Rk

. . . E(〈ui, r, uj〉) . . .

Fig. 2: Left – A simple SB for a social network: each user u ∈ U is associated
with a latent class variable Zu which conditions both its attributes Au, and its
relations with other users. Right – An example of EBEM: the k-dimensional
embedding vector eu ∈ Rk of an entity u (e.g. an user in a social network) is
used for computing the energy of all RDF triples in which u appears in.
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is proposed. However, the number of parameters grows super-linearly with
the number of predicates in the KG: for such a reason, RESCAL can hardly
scale to highly-relational KGs [17]. In EBEMs (depicted on the right side of
Fig. fig:latent), the energy of each RDF triple 〈s, p, o〉 is defined as a func-
tion of the embedding vectors es and eo, associated with the subject s and
the object o of the triple (as already detailed in Sect. sec:models). The major
limitation in EBEMs is the learning time, i.e. the time required for learning
the parameters of the energy function. Several options have been proposed for
the choice of both the energy function and the loss functional for learning the
embedding vectors representation [7–9,17,28]. These methods have been used
to achieve state-of-the-art link prediction results while scaling on large KGs.

We outperform such methods both in terms of efficiency (by reducing the
learning time by an order of magnitude) and effectiveness (by obtaining a
more accurate model) - as shown by the empirical evaluations provided in
Sect. sec:evaluation.

5 Empirical Evaluation

In this section, we present the empirical evaluation for our proposed solution.
Particularly, we aim at answering the following questions:

Q1: Can adaptive learning rates, as proposed in Sect. sec:learning, be used for
improving the efficiency of parameters learning with respect to the current
state-of-the-art EBEMs?

Q2: Do the energy functions proposed in Sect. sec:inference lead to more
accurate link prediction models for KG completion?

In Sect. sec:adaptive, we answer Q1 by empirically evaluating the efficiency
of the proposed learning procedure and the accuracy of the learned models. In
Sect. sec:functions, we answer Q2 by evaluating the accuracy of models using
the proposed energy functions in link prediction tasks.

In the following, we describe the KGs used for the evaluation, jointly with
the adopted metrics.

Knowledge Graphs As KGs, WordNet [22] and Freebase (FB15k) [4]
have been adopted:

– WordNet is a lexical ontology for the English language. It is composed
of over 151 × 103 triples, describing 40943 entities and their relations by
means of 18 predicate names.

– Freebase (FB15k) is a large collaborative knowledge base that is com-
posed of over 592×103 triples, describing 14951 entities and their relations
by means of 1345 predicate names.

As for the experiments, for comparison purpose, we use the very same train-
ing, validation and test sets adopted in [8]. Specifically, as regards WordNet,
given the whole KG, 5000 triples were used for validation and 5000 were used
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for testing. As regards FB15k, 50000 triples were used for validation while
59071 were used for testing (the interested reader may refer to [8] for more
informations about the creation of such datasets).

Evaluation Metrics As for [8], the following metrics have been used:

– averaged rank (denoted as Mean Rank)
– proportion of ranks not larger than 10 (denoted as Hits@10).

They have been computed as follows. For each test triple 〈s, p, o〉, the object
o is replaced by each entity õ ∈ EG in G thus generating a corrupted triple
〈s, p, õ〉. The energy values of corrupted triples are computed by the model,
and successively sorted in ascending order. The rank of the correct triple is
finally stored. Similarly, this procedure is repeated by corrupting the subject
s of each test triple 〈s, p, o〉. Aggregated over all test triples, this procedure
leads to the two metrics: the averaged rank (denoted as Mean Rank) that
measures the average position of the true test triple in the ranking, and the
proportion of ranks not larger than 10 (denoted as Hits@10) that measures
the number of times the true test triple is ranked among the most likely 10
triples. This setting is referred to as the Raw setting.

Please note that, if a generated corrupted triple already exists in the KG,
ranking it before the original triple 〈s, p, o〉 is not wrong. For such a reason, an
alternative setting, referred to as Filtered setting (abbreviated with Filt.) is
also considered. In this setting, corrupted triples that exist in either training,
validation or test set are removed, before computing the rank of each triple.

In both Raw and Filtered settings, it would be desirable to have lower
Mean Rank and higher Hits@10.

5.1 Evaluation of Adaptive Learning Rates

In order to reply to question Q1, that is, for assessing whether Momentum,
AdaGrad and AdaDelta are more efficient than SGD in minimizing the loss
functional in Eq. eq:lossmargin,weempiricallyevaluatedthesemethodsonthetaskoflearningtheparametersinTransEonWordNetandFreebase(FB15k)KGs, usingtheoptimalsettingsdescribedin
1001[8]thatis :

k = 20, γ = 2, d = L1 for WordNet
k = 50, γ = 1, d = L1 for FB15k.

Following the empirical comparison of optimization methods in [27], we
compared SGD, Momentum, AdaGrad and AdaDelta using an extensive grid
of hyperparameters. Specifically, given Gη = {10−6, 10−5, . . . , 101}, Gρ = {1−
10−4, 1 − 10−3, . . . , 1 − 10−1, 0.5} and Gε = {10−6, 10−3}, the grids of hyper-
parameters for each of the optimization methods were defined as follows:

– SGD and AdaGrad: rate η ∈ Gη.
– Momentum: rate η ∈ Gη, decay rate ρ ∈ Gρ.
– AdaDelta: decay rate ρ ∈ Gρ, offset ε ∈ Gε.
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Fig. 3: Average loss across 10 TransE parameters learning tasks on WordNet
(top) and Freebase FB15k (bottom) knowledge graphs, using the optimal
settings in [8]. For each of the optimization methods, the hyperparameters
settings that after 100 epochs achieve the lowest average loss are reported.

For each possible combination of optimization method and hyperparameter
values, we performed an evaluation consisting in 10 learning tasks, each time
using a different random seed for initializing the model parameters in TransE.
The same 10 random seeds were used for each of the evaluation tasks.

Fig. fig:loss shows the behavior of the loss function for each of the opti-
mization methods, for the best hyperparameter settings after 100 epochs, over
the training set. It is immediate to see that, for both WordNet and FB15k,
AdaGrad (with η = 0.1) and AdaDelta (with (1−ρ) = 10−3 and ε = 106) pro-
vide sensibly lower values of the loss functional L than SGD and Momentum,
even after a low number of iterations (< 10 epochs), and that AdaGrad and
AdaDelta, in their optimal hyperparameter settings, provide very similar loss
values. Since AdaGrad has only one hyperparameter η and a lower complex-
ity (it only requires one per parameter accumulator and a rescaling operation
at each iteration) than AdaDelta, we select AdaGrad (with η = 0.1) as the
optimization method of choice. Specifically, as a successive step, we needed to
assess whether AdaGrad (with η = 0.1) leads to more accurate models, i.e.
with lower Mean Rank and higher Hits@10, than SGD. For the purpose,
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Table 2: Link Prediction Results: Test performance of several state-of-
the-art Link Prediction methods on the WordNet and Freebase (FB15k)
KGs. Results show the Mean Rank (the lower, the better) and Hits@10 (the
higher, the better) for both the Raw and the Filtered settings [8].

Knowledge Graph WordNet Freebase (FB15k)

Metric
Mean Rank Hits@10 (%) Mean Rank Hits@10 (%)
Raw Filt. Raw Filt. Raw Filt. Raw Filt.

Unstructured [7] 315 304 35.3 38.2 1074 979 4.5 6.3
RESCAL [24] 1180 1163 37.2 52.8 828 683 28.4 44.1

SE [9] 1011 985 68.5 80.5 273 162 28.8 39.8
SME linear [7] 545 533 65.1 74.1 274 154 30.7 40.8

SME bilinear [7] 526 509 54.7 61.3 284 158 31.3 41.3
LFM [17] 469 456 71.4 81.6 283 164 26.0 33.1
TransE [8] 263 251 75.4 89.2 243 125 34.9 47.1

TransE (AdaGrad) 169 158 80.5 93.5 189 73 44.0 60.1

we trained TransE by using AdaGrad (with η = 0.1) for 100 epochs on a link
prediction task on WordNet and FB15k, under the same evaluation set-
ting used in [8]. Hyperparameters were selected according to the performance
on the validation set using the same grid of hyperparameters adopted in [8].
Specifically, we chose the margin γ ∈ {1, 2, 10}, the embedding vector dimen-
sion k ∈ {20, 50}, and the dissimilarity d ∈ {L1, L2}. Tab. tab:TransEa shows
the results obtained by TransE trained using AdaGrad (with η = 0.1) for 100
epochs, in comparison with state-of-the-art results as reported in [8].

From Tab. tab:TransEa can be noted that, despite of the sensibly lower
number of training epochs (100, compared to 1000 used for training TransE
with SGD, as reported by [8]), TransE trained using AdaGrad provides more
accurate link prediction models (i.e. lower Mean Rank and higher Hits@10
values) than every other model in the comparison. A possible explanation for
this phenomenon is the following. AdaGrad uses each parameter’s previous
gradients for rescaling its learning rate: for such a reason, entities and predi-
cates occurring less (resp. more) frequently will be associated with an higher
(resp. lower) learning rate. As a result, the learning process for each parameter
evens out over time, and all embedding parameters are learned at the same
pace.

The results showed in this section largely prove that our solution is able to
give a positive answer to Q1. Specifically, besides of experimentally proving
that the adaptive learning rates proposed in Sect. 3.2 are able to improve the
efficiency of parameters learning with respect to the current state-of-the-art
EBEMs, we have also proved that the final learned model is able to outperform
current state-of-the-art models in terms of Mean Rank and Hits@10.
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5.2 Evaluation of the Proposed Energy Functions

In this section, we evaluate the energy functions proposed in Sect. sec:inference
in the definition of an EBEM, with the final goal of replying to question Q2,
that is to assess whether the proposed energy functions lead to more accurate
link prediction models for KGs completion than models at the state-of-the-art.

As from (eq:energy), the energy function of an EBEM can be rewritten as:

E(〈s, p, o〉) = g(fs(es,Sp), fo(eo,Sp))

where es and eo denote the embedding vectors of the subject s and the object o
of the triple, and Sp denotes the set of embedding parameters associated with
the predicate p. In Sect. sec:inference we proposed alternative choices for func-
tions fs(·) and fo(·), that allow defining models whose number of parameters
grows linearly with the number of entities and relations in the KG. Specifi-
cally, we proposed using translation, scaling, composition, and projection on
the Euclidean unit sphere n(x) = x/‖x‖. For each of the considered choices,
we trained the corresponding EBEM on WordNet and FB15k. Hyperparam-
eters were selected on the basis of the model performance on the validation
set: we selected the embedding vector dimension k ∈ {20, 50, 100}, the margin
γ ∈ {2, 5, 10}, and the g(·) function g(x,y) ∈ {‖x − y‖1, ‖x − y‖2,−xTy},
corresponding to the L1 and L2 distances, and the negative dot product. Fol-
lowing the results from Sect. sec:adaptive, model parameters were learned
using AdaGrad (with η = 0.1) for 100 training epochs.

Tab. tab:results shows the test results obtained with different choices of
fs(·) and fo(·) function. Note that we used the notation ep,1 and ep,2 for refer-
ring to two distinct predicate embedding vectors, one used in the formulation
of fs(·) and the other in fo(·), for avoiding name clashing. For the purposes of
comparison, Tab. tab:results also shows the results obtained, on the same link
prediction tasks, by TransE (as reported in [8]) that is the best performing
model in the literature.

From the table, it is interesting to note that, especially for highly multi-
relational KGs such as Freebase (FB15k), simpler models for fs(·) and fo(·)
provide better results than their more complex variants. A possible explanation
is that many predicates in FB15k only occur in a limited number of triples
(only 736 predicates out of 1345 occur in more than 20 triples) and in cases like
this more expressive models are less likely to generalize correctly than simpler
models. Given fo(eo, {ep}) = eo, the best performing models, in terms of
Hits@10, are:

– fs(es, {ep}) = es +ep, representing the predicate-dependent translation of
the subject’s embedding vector

– fs(es, {ep}) = es � ep, representing the predicate-dependent scaling.

This indicates that, despite the very different geometric interpretations, rely-
ing on simpler models improves link prediction results, especially in highly-
relational KGs. This is probably due to the fact that, especially for the case
of real-world KGs (which, by nature, tend to be very sparse), simpler models
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Table 3: Link Prediction Results: Test performances of several EBEMs (on
different choices of the fs(·) and fo(·) functions) in comparison with TransE [8]
on WordNet and Freebase (FB15k). Results show the Mean Rank (the
lower, the better) and Hits@10 (the higher, the better) in the Raw and
Filtered settings.

Knowledge Graph WordNet Freebase (FB15k)

Metric
Mean Rank Hits@10 (%) Mean Rank Hits@10 (%)
Raw Filt. Raw Filt. Raw Filt. Raw Filt.

TransE [8] 263 251 75.4 89.2 243 125 34.9 47.1

fs = es + ep
fo = eo

}
161 150 80.5 93.5 189 65 47.9 67.6

fs = es � ep
fo = eo

}
229 215 81.4 93.5 207 81 46.5 65.3

fs = (es � ep,1) + ep,2
fo = eo

}
168 155 81.3 93.2 214 88 41.8 57.3

fs = es + ep,1
fo = eo + ep,2

}
171 159 79.6 92.6 196 78 44.9 62.4

fs = es � ep,1
fo = eo � ep,2

}
337 325 83.0 95.2 202 75 44.9 62.9

fs = (es � ep,1) + ep,2
fo = eo � ep,3

}
279 266 82.4 94.3 210 88 42.3 59.1

fs = (es � ep,1) + ep,2
fo = (eo � ep,3) + ep,4

}
320 308 81.6 93.6 211 87 40.0 54.9

fs = n(es + ep)
fo = eo

}
211 200 75.7 88.7 237 115 39.5 55.4

fs = n(es � ep)
fo = eo

}
226 213 77.6 89.2 262 132 42.0 59.9

fs = n((es � ep,1) + ep,2)
fo = eo

}
160 148 77.7 88.7 239 103 42.8 59.1

fs = n(es + ep,1)
fo = n(eo + ep,2)

}
262 251 79.3 91.6 206 86 47.5 66.5

fs = n(es � ep,1)
fo = n(eo � ep,2)

}
761 750 73.4 83.5 249 120 42.0 61.0

fs = n(es � ep,1 + ep,2)
fo = n(eo � ep,3 + ep,4)

}
624 613 74.7 83.6 238 114 42.7 60.4

tend to generalize better and are less prone to over-fitting than more complex
models. This characteristic can be very advantageous in real-world scenarios:
relying on simpler models such as TransE (where the number of parameters
scales linearly with the number of entities and predicates) can sensibly improve
the training time, making learning from large and Web-scale KGs feasible.

We can conclude that, constraining the expressiveness of the models while
using adaptive learning rates, yields a significant improvement over state-of-
the-art methods discussed in [8].

Source code and datasets for reproducing the experiments presented in this
paper are available on-line7.

7 https://github.com/pminervini/ebemkg/

https://github.com/pminervini/ebemkg/
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6 Conclusions and Future Works

We focused on Energy-Based Embedding Models, a novel class of link predic-
tion models for knowledge graph completion where each entity in the graph
is represented by a continuous embedding vector. Models in this class, like the
Translating Embedding model [8], have been used to achieve performance that
is comparable with the main state-of-the-art methods while scaling on very
large knowledge graphs.

In this work, we proposed: (i) a general framework for describing state-of-
the-art Energy-Based Embedding Models, (ii) a family of novel energy func-
tions, with useful properties, (iii) a method for improving the efficiency of the
learning process by an order of magnitude, while leading to more accurate
link prediction models. We empirically evaluated the adoption of the proposed
adaptive learning rates in the context of Energy-Based Embedding Models by
showing that they provide more accurate link prediction models while reducing
the learning time by an order of magnitude in comparison with state-of-the-art
learning algorithms. We also empirically evaluated the newly proposed energy
functions (with a number of parameters) that scales linearly with the number
of entities and relations in the knowledge graph. Our results showed a signif-
icant improvement over state-of-the-art link prediction methods on the very
same considered large KGs, which are WordNet and Freebase.

For the future we plan to investigate on the formalization of Energy-Based
Embedding Models that are able to take into account the available background
knowledge. Other research directions include dynamically controlling the com-
plexity of learned models, and further optimizing the learning process.
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