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Abstract: Diabetes and its major risk factor, obesity, have become a world-wide epidemic 

and cause of suffering for millions of people. There is still no drug of cure for diabetes and 

the currently available drugs suffer from a number of limitations either due to side effects 

and/or loss of efficacy during prolonged use. Rutin is one of the most abundant polyphenolic 

compounds belonging to the flavonoid class. In the present communication, its therapeutic 

potential for diabetes is critically analysed by reviewing its effect on the various targets of 

diabetes. The multifunctional nature of rutin including action via antioxidant, anti-

inflammatory, organoprotection, etc., mechanisms is outlined through review of evidences 

from in vitro and in vivo studies. 
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INTRODUCTION 

 

Hyperglycaemia associated to the metabolic disorder, diabetes (diabetes mellitus), 

results from either deficiency in insulin secretion and/or resistance to insulin. In type-1 

diabetes (T1D), the underlying insulin deficiency is caused by autoimmune-mediated 

destruction of pancreatic β-cells while type-2 diabetes (T2D) mainly results from insulin 

resistance that may also be associated with impaired insulin secretion and β-cell death. The 

worldwide diabetics figure is now estimated to be 347 million of which about 90% are of 

T2D [1]. With the incidence of the disease currently increasing at alarming epidemic 

proportion, the projected worldwide diabetics case by the year 2030 is about 552 million [2]. 

It still remains the case that there is no drug of cure for diabetes and the currently available 

medications have serious drawbacks either due to side effects and/or loss of efficacy during 

prolonged use. There is therefore a growing urgent need to discover new drugs including 

those from natural sources that are commonly available in fruits and vegetables and/or those 

considered relatively safe [3]. 

Quercetin-3-O-rutinoside, commonly known as rutin, is a flavonoid glycoside with a 

structural composition of a quercetin aglycone and rutinose sugar units (Fig. 1). Numerous 

plant serials, leaves, fruits and other parts are known to contain rutin in abundance. Due to 

the phenolic hydroxyl groups and particularly the catecholic functional moiety, rutin 

possesses potent antioxidant activity that is often utilized as a reference standard in bioassay 

studies [4].  Rutin has also shown to display numerous pharmacological activities including 

anti-inflammatory [5-7], anti-alzheimer’s [8, 9], anti-obesity [10], cytotoxicity in cancer cells 

[11], hepatoprotective [12] and neuroprotective [13-15] effects. Owing to its reputed health 

benefits, rutin tablets and many other formulations are now widely available to the public as 
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health supplements. In this communication, the antidiabetic potential of rutin is reviewed 

through appraisal of recent literature in the field. 
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Fig. (1). Structure of Rutin. Notice the rutinose sugar is attached at position-3 of the 

quercetin flavonoid skeleton through O-glycosidic linkage. 

EVIDENCE FROM IN VIVO STUDIES 

Streptozotocin (STZ) is toxic to insulin-secreting pancreatic  cells and hence 

routinely used as an experimental agent to induce the onset of diabetes in animals. A single 

dose  injection (e.g. intra peritoneal) of 45-100 mg/kg dose of STZ in adult mice or rats 

results in pancreas swelling leading to degeneration of Langerhans islet  cells coupled with 

characteristic metabolic abnormalities of diabetes mellitus in 2–4 days. Using this model, the 

antidiabetic potential of drugs is often assessed by introducing the drugs and measurement of 

glucose level along with other metabolic parameters.  Daily oral administration of 2 and 4 

mg/kg of rutin for 15 days in rats have been shown to normalize blood glucose levels and 

serum biochemical parameters in STZ-induced diabetes [16]. In a seven day trial experiment, 

Rauter et al. [17] have also shown that rutin lowers the blood glucose level of diabetic 

animals along with improvement in glucose tolerance and protection of the liver and kidneys 

against STZ-induced damage. Oral administration of a larger dose (100 mg/kg) for 45 days 

http://www.ncbi.nlm.nih.gov/pubmed?term=Rauter%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=20309949
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has also protected the STZ-induced kidney damage as normalisation of the hydroxyproline 

and collagen content, activity of matrix metalloproteinases and tissue inhibitors of 

metalloproteinases in the kidney were observed [18]. Similar experiments by others [19-21] 

not only shown rutin to decrease plasma glucose but also to increase insulin levels along with 

the restoration of glycogen content and the activities of carbohydrate metabolic enzymes. 

Expansion of the islets, decreased fatty infiltrate of the islets and glycosylated haemoglobin, 

increased insulin C-peptide, haemoglobin and protein levels, decreased thiobarbituric acid 

reactive substances and lipid hydroperoxides, and increased non-enzymic antioxidants were 

also observed. In a 12 week study using 100 and 300 mg/kg oral doses of rutin, attenuated 

serum triglycerides and cholesterol levels were also observed [22]. Increased levels of plasma 

high-density lipoproteins-cholesterol and reduced level of low-density lipoproteins (LDLs) 

and very low-density lipoproteins-cholesterol coupled with reduced activity of 3-hydroxy-3-

methylglutaryl-coenzyme A (HMG CoA) reductase and increased activity of plasma 

lipoprotein lipase and lecithin:cholesterol acyltransferase were observed. Decreased 

glycoproteins in plasma, liver and kidney were also reported [19]. Other data have shown 

similar results where improvement in the lipid profile and augmentation of alanine 

aminotransferase, aspartate aminotransferase and lactate dehydrogenase activities were 

significantly augmented in serum, liver and heart [23].  The study by Hao et al [24] was also 

in agreement with these findings as decreased levels of fasting blood glucose, creatinine, 

blood urea nitrogen, urine protein, the intensity of oxidative stress and Phospho-Smad 7 were 

observed. Inhibition of the expression of advanced glycation end products (AGEs), collagen 

IV and laminin, transforming growth factor-β(1), Phospho-Smad 2/3 and connective tissue 

growth factor was also reported. Furthermore, inhibition of proliferation of mesangial cells 

and decreased thickness of glomerular basement membrane were observed following 

treatment by rutin [24].    The rutin-mediated decrease of non-fasting blood glucose and 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hao%20HH%5BAuthor%5D&cauthor=true&cauthor_uid=23000098
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normoglycaemic effect in the oral glucose tolerance test has also been reported by other 

authors [25, 26]. 

 

EVIDENCE FROM IN VITRO STUDIES 

Carbohydrate digestion 

One of the crucial factors governing the blood level of glucose is carbohydrate intake and 

inevitably, key carbohydrate digestive enzymes such as α-glucosidase, are major targets for 

diabetes therapy. A number of flavonoids including the rutin aglycone, quercetin, have shown 

α-glucosidase inhibitory activity in micro-molar range by their own and also through 

synergism with others [27].  In some studies using yeast α-glucosidase, however, rutin failed 

to show activity up to 100 M [27] while other studies reported activity at higher (millimolar 

and submillimolar) concentrations [28, 29]. In some enzyme preparations, however, there are 

also reports where rutin has shown to display potent α-glucosidase inhibitory activity (e.g. 

IC50 ca. 3 µM by Pham et al. [30]). Although the in vitro studies have not brought up 

conclusive evidence on the direct carbohydrate digestive enzymes inhibitory activity of rutin, 

an in vivo effect is likely as rutin’s hydrolysis product (quercetin) possess enzyme inhibitory 

activity [27,31].  

Glucose transport and storage 

One of the most prominent roles of insulin is to stimulate glucose uptake in fat, 

skeletal muscle and kidney cells via expression of the glucose transporter isoform 4 

(GLUT4). The induction of GLUT4 translocation by insulin is mediated through  activation 

of the insulin receptor substrates (IRS) and several kinase activities including the 

phosphatidylinositol 3-kinase (PI3K) and two serine/threonine kinases (Akt and the atypical 
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protein kinase C zeta/lambda downstream of PI3K [3].  Interestingly, the insulin-dependent 

GLUT4 translocation in muscle myotubes under diabetes condition has been shown to be 

improved by rutin in vitro via potentiating the insulin receptor kinase activity [25]. 

Stimulation of glucose uptake in skeletal muscles have also been reported for rutin through 

mechanisms including increased calcium uptake through voltage-dependent calcium channels 

as well as mitogen-activated kinase and protein kinase A signalling pathways [32]. These in 

vitro data also revealed rutin’s effect on increasing the activity of extracellular calcium and 

calcium-calmodulin-dependent protein kinase II [32]. Further studies by the same authors 

also reported the involvement of PI3K, atypical protein kinase C and mitogen-activated 

protein kinase pathways associated with rutin’s effect on increased glucose uptake in isolated 

muscle cells [33]. In contrast to GLUT4, the absorption of glucose in other sites such as the 

liver is mediated via GLUT2 which is insulin-independent. Likewise, increased glucose 

uptakes in isolated hepatocytes in vitro have been shown to be induced by rutin [34].  Hand in 

hand with this activity, an effect of rutin in promoting Akt phosphorylation and preventing 

degradation caused by high-glucose induction in hepatocytes culture were demonstrated [34]. 

In addition to insulin, the translocation of GLUT4 in skeletal muscles is also modulated by 

oxidative stress and/or reactive oxygen species (ROS) and shown to be upregulated by rutin   

[35]. Since stimulation of glucose uptake is a validated antidiabetic mechanism shared by 

classical drugs like metformin [34], the reported effect for rutin on various cell types is a 

good indication of its antidiabetic therapeutic potential. 

Pancreatic  cells viability and function 

In rat pancreatic  cells, Cai and Lin [36] have reported that rutin preserves the insulin 

secretory machinery and stimulates insulin receptor substrate 2 signalling, possibly through 

activation of AMP-activated protein kinase signalling, inhibition of lipogenic enzymes 

http://www.ncbi.nlm.nih.gov/pubmed?term=Cai%20EP%5BAuthor%5D&cauthor=true&cauthor_uid=19803520
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activities and amelioration of mitochondrial function. Through stimulation of Ca(2+) uptake 

in rat pancreatic islets, rutin can also potentiate insulin secretion both in vitro and in vivo  [32, 

33].  Detailed mechanistic study by the same authors have shown that rutin modulates Ca(2+) 

uptake in pancreatic islets by opening L-type voltage-dependent Ca(2+) channels, and alters 

intracellular Ca(2+), PLC and PKC signalling pathways. Since the role of ROS in β cell loss 

has been established beyond any doubt [35, 36], the prominent antioxidant effect of rutin is 

likely to make it a beneficial therapeutic agent in prolonging the life span of pancreatic β 

cells. By activating AMPK signalling to inhibit the activities of lipogenic enzymes and 

ameliorating mitochondrial function, rutin has also shown to suppress glucotoxicity in 

pancreatic β cells [36]. Partly due to direct scavenging action on free-radicals and chelation 

of metal ions, rutin also inhibits post-Amadori formation thereby suppressing AGEs in the 

eye [39], lipoproteins [40] and matrix proteins such as collagens [41]. 

Lipid metabolism 

The association between diabetes and the other major global epidemic, obesity, have 

been well understood in recent years and current estimates suggest that over 80% of people 

with T2D are obese while obesity and/or excess lipid accumulation is proven to lead to 

impairment of insulin function [42]. Rutin has been reported to suppress adipogenesis 

through inhibition of glycerol-3-phosphate dehydrogenase (GPDH) activity, expression of 

peroxisome proliferator-activated receptor (PPARγ), CCAAT/enhancer binding protein-α and 

leptin, and up-regulation of expression of adiponectin at the protein level [43]. As PPARγ is 

predominantly expressed in adipocytes and acts as an insulin sensitizer, it is a validated target 

for treating obesity [44].  In hepatocyte cells, rutin has also shown to attenuate lipid 

accumulation by decreasing lipogenesis and oxidative stress. These effects have also been 

shown to be coupled with rutin’s action to inhibit the transcriptions of HMG-CoA reductase, 
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glycerol-3-phosphate acyltransferase, fatty acid synthase, and acetyl-coenzyme carboxylase 

[45]. This means that by inhibiting the rate limiting enzyme for cholesterol (HMG-CoA) and 

fatty acids synthesis, rutin interferes with fat metabolism.  Furthermore, a correlation between 

the antioxidative effect of rutin and expression of PPAR-α and antioxidative enzymes have 

been established [45]. All these data suggest that rutin not only offers antidiabetic effect but 

also has potential to tackle one of its major risk factor, obesity. 

 

EVIDENCE FROM ABSORPTION AND PHARMACOKINETIC STUDIES  

Evidence from in vitro studies using Caco-2 cells suggested that rutin is transported 

across the apical membrane by P-glycoprotein and multidrug-resistant proteins 2 and 3 in 

metabolic enzymes-dependent fashion [46]. The absorption of rutin, though to the lesser 

extent than quercetin, was also established through in vivo experiments using rat small 

intestine [47]. Using the model of luminally administered rutin in an isolated preparation of 

luminally and vascularly perfused rat small intestine, Andlauer et al.  [48] have shown that 

about 10% of the administered rutin appeared at the vascular side, chiefly as free rutin 

(5.6%),  but also in the form of rutin sulfate (2.5%) and glucuronide (2.0%). While these data 

suggest that rutin in its intact form can induce pharmacological effects after oral 

administration, evidence suggests that its aglycones quercetin is readily detected in plasma 

[49] and hence may serve as the pharmacologically active principle. The antidiabetic activity 

of quercetin has also been validated through a number of in vivo drug-induced experimental 

diabetes models in rats [50, 51] and in vitro systems including insulin-stimulated glucose 

uptake studies [52]. Hence, the antidiabetic effect of rutin could be orchestrated both through 

its direct effect and its aglycone metabolite, quercetin.  

 

THE MULTIFUNCTIONAL NATURE OF RUTIN’S ACTION   

http://www.ncbi.nlm.nih.gov/pubmed?term=Andlauer%20W%5BAuthor%5D&cauthor=true&cauthor_uid=11434911


10 

 

A growing body of evidence suggests that inflammation is closely correlated with the 

pathogenesis of diabetes. For example, the two major products of activated macrophages and 

adipocytes, tumour necrosis factor α and interleukin-6 are implicated with insulin resistance 

in diabetes [53-55]. The anti-inflammatory activity of rutin both in vivo and in vitro has been 

well documented [56] and one expects a beneficial effect for treating inflammatory 

conditions associated with diabetes. Since rutin has been shown to offer beneficial effects in 

experimentally-induced nephrotoxicity and renal dysfunction induced by oxonate [57], 

glucose [58], hexachlorobutadiene [59], ischemia/reperfusion [60], potassium bromide [61], 

STZ [24], its role in diabetes end-stage diseases such as nephropathy could not be 

underestimated. The other major pathologies associated with diabetes are those related to the 

cardiovascular system such as hypertension and heart diseases. Rutin has been shown to exert 

a vasodilator effect on arteries through the nitric oxide-endothelial nitric oxide synthase 

activation pathways [62]. The beneficial effect of rutin to the cardiovascular system under 

high-carbohydrate and high-fat diet-fed rats has also been documented [63]. 

 

CONCLUDING REMARKS 

Although clinical evidence is required to confirm the true antidiabetic therapeutic 

potential of rutin, all the available scientific data today suggest that it has beneficial effect for 

diabetes and associated diseases. Given the pathological role of ROS and associated oxidative 

stress in diabetes has been well established, some of the beneficial effects of rutin and its 

metabolites could inevitably be mediated through antioxidant actions. The major advantage 

of rutin-based drugs would be their multifunctional effects as antioxidant, antidiabetic, 

antiobesity, anti-inflammatory, organoprotective, and etc agents. The combined effect of rutin 

at the various targets would allow the regulation of glucose level under diabetes condition 

and normalisation of major organ dysfunctions. 
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ABBREVIATIONS 

 

GLUT  =  Glucose transporter  

HMG CoA  = 3-hydroxy-3-methylglutaryl-coenzyme A  

PI3K   = Phosphatidylinositol 3-kinase  

PPAR   =  Peroxisome proliferator-activated receptor   

ROS   =  Reactive oxygen species 

STZ  = Streptozotocin 

T1D  = type-1 diabetes  

T2D  = type-2 diabetes 
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