
Journal of Computational and Applied Mathematics 349 (2019) 390–402

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

THB-splines multi-patch parameterization for
multiply-connected planar domains via Template
Segmentation
Antonella Falini a,*, Bert Jüttler b

a INdAM c/o University of Florence, Viale Morgagni 67/A, 50134, Firenze, Italy
b Institute of Applied Geometry, Johannes Kepler University of Linz, Altenberger Strasse 69, 4040 Linz, Austria

a r t i c l e i n f o

Article history:
Received 16 March 2018
Received in revised form 2 August 2018

Keywords:
Multi-patch
Parameterization
Isogeometric analysis
Segmentation
THB-splines

a b s t r a c t

Given a planar multiply-connected domain Ω , we provide a multi-patch parameterization
exploiting a segmentation algorithm and the construction of templates. The segmentation
is a fundamental step which allows to split the input domain into patches topologically
equivalent to quadrilaterals. Templates are prototypes of segmentation that will be chosen
according to the shape of the given domain.Wewill compute a bijective harmonicmapping
hdefined between the inputΩ and the chosen template Ω̂ . The segmentationwill be trans-
ferred from the prototype template to the input Ω by approximating the inverse mapping.
Templates are equipped with a multi-patch structure and each patch Ω̂ (i) is parametrized
individually by a geometry mapping Gi. The final multi-patch parameterization of Ω is
achieved exploiting the combination of each geometry mapping Gi and the inverse of the
mapping h obtained by projection into the THB-spline space.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Isogeometric analysis (IgA), introduced in 2005 by T. Hughes et al. in [1], is a new technique used in order to numerically
solve differential problems and based on the isoparametric concept; namely, it uses the same shape functions for both, the
solution space of the problemunknowns and for the description of the geometricmodel. In fact,most of the advantages of IgA
derive from the use of special spline functions, like NURBS or B-splines, which are the standard technology in CADmodeling.
CADmodels are usually given through their Boundary Representation (B-Rep), i.e., the solid object is described by the shape
of its surfaces and edge curves (see for instance [2]), but in order to perform numerical simulation, a parameterization of
the volume is needed. One way to address this problem is to provide segmentation techniques which aim at decomposing
the given geometric model into several ‘‘pieces’’, called patches, and providing parameterizationmethods for single ormulti-
patch geometries.

1.1. Isogeometric segmentation and parameterization

In order to obtain a multi-patch parameterization of the considered object, we provide an algorithmic procedure to
produce a segmentation into topological quadrilaterals, of multiply-connected planar shapes. Therefore, throughout this

* Corresponding author.
E-mail addresses: antonella.falini@unisi.it (A. Falini), bert.juettler@jku.at (B. Jüttler).

https://doi.org/10.1016/j.cam.2018.08.011
0377-0427/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cam.2018.08.011
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2018.08.011&domain=pdf
mailto:antonella.falini@unisi.it
mailto:bert.juettler@jku.at
https://doi.org/10.1016/j.cam.2018.08.011


A. Falini, B. Jüttler / Journal of Computational and Applied Mathematics 349 (2019) 390–402 391

work, the isogeometric segmentation concept refers to the following process: a relatively complex geometric model in 2D,
given by its B-Rep, is segmented into several patches topologically equivalent to quadrilaterals.

More precisely, the segmentation leads to a collection of quadrilateral patches Ω (i) such that the input domain Ω ⊂ R2

can be seen as their union,

Ω =

n−1⋃
i=0

Ω (i). (1)

Given an input planar multiply-connected domain we aim at applying a prototype of segmentation to it, and at getting it
segmented accordingly. More in detail, we are going to define and construct prototypes of segmentation. Then, in order to
apply the chosen segmentation to the input domainΩ , we construct an invertible harmonicmap betweenΩ and the chosen
prototype.

Our algorithm consists of the following main steps:

(1) Approximation of a bijective harmonic mapping h between the input domain Ω and an auxiliary domain Ω̂ via an
isogeometric boundary element method.

(2) Definition of prototypes of segmentations on the auxiliary domain Ω̂ to get templates.
(3) Approximation of the inverse of h to transfer the segmentation to the input Ω from the chosen template.

Once the input domain has been decomposed into several patches, each of them can be individually parametrized by a
geometric map q(i), defined over the unit square [0, 1]2 and expressed in terms of tensor-product spline functions as

q(i)(u, v) =

∑
j∈J

c(i)j N (i)
j (u, v), (2)

where J is the set of indices for the considered degrees of freedom, c(i)j ∈ R2 are the control points, N (i)
j (u, v) are the basis

functions spanning the space of tensor product splines of a certain degree d (in our case we always considered d = 2) and
the index i refers to the ith patch in Ω .

The geometric map q(i) must satisfy some important properties. It is essential to have an injective map, as we need a
parameterization free from self-intersections. It is also desirable to obtain iso-parametric elements as uniform as possible
and to have an iso-parametric structure as orthogonal as possible. The first requirement will be addressed constructing
a bijective harmonic mapping. The last two properties will be recovered using a specific uniformity functional that will
improve the quality of the final parameterization.

1.2. State of the art

The segmentation process has been investigated and explored in several situations. From isogeometric point of view,
the segmentation pipeline has been studied for simply connected solids without non-convex edges in [3,4], and for general
three-dimensional solids, segmented into simply connected ones in [5].

Several approaches have been investigated in IgA in order to construct good parameterizations. For instance, Coons
patches, described in [6], are a simple technique, but the resulting map may not be injective and is not suitable for singular
cases or complex shapes. An improvement is achieved by the springmodel (cf. [7]), that although is slightly more expensive,
provides a better quality parameterization. Other methods based on the mean-value coordinates are also investigated in [8]
and more generally, various techniques for mesh and surface parameterization can be found in [9,10] and references cited
therein.

A method based on domain decompositions achieved via skeleton computation is proposed in [11]. A patch-adjacency
graph technique which identifies the optimal multi-patch parameterization with respect to an objective function that
captures the parameterization quality has been introduced in [12]. In order to achieve a more uniform parameterization,
a method based on the specific quasi-conformal Teichmüller map is proposed in [13]. In [14] the authors propose a method
to segment in quads planar domains with high genus and construct an IgA-suitable parameterization of the input.

Also, in order to perform adaptive numerical simulation there is the need to use basis functions which allow for local
refinement. Some examples of parameterizations obtained with ‘‘non-standard’’ B-splines are: [15] where T-splines are
used, [16] with Powell–Sabin splines based parameterizations, [17] where THB-splines are employed.

1.3. Outline

The remainder of the paper is structured as follows. In Section 2 we review some fundamental results about harmonic
mappings. In particular the presented theorem provides a theoretical framework to the existence of a bijective harmonic
mapping between any multiply-connected domain and the punctured unit disk.

In Section 3 we present the boundary element method as an effective method to compute harmonic mappings. The
existence of a bijective harmonic mapping requires to provide the location of punctures (pinch points), suitably removed
from the unit disk. In fact, freely choosing the location of those points may lead to not bijective mappings; therefore,
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Fig. 1. (a) A doubly connected domain Ω with boundary curves Γ0 and Γ1 , expressed using the 1-periodic parameterizations b0 , b1 . (b) A multipatch
parameterization of the domain Ω obtained using THB-splines (see Section 7).

providing a suitable location is of fundamental importance. In Section 4 an optimization problemwill be formulated in order
to achieve this goal.

Section 5 explains the construction of templates. A template is constructed by segmenting the unit disk into patches,
topologically equivalent to quadrilaterals. This segmentation is then transferred to the input domain using the inverse
of the harmonic mapping. Results of the segmentation algorithm are presented in Section 6 where also some examples
of parameterizations obtained with THB-splines are shown. In Section 7 we explain how to construct a multi-patch
parameterization for a multiply-connected planar input suitably segmented.

2. Theoretical foundation

2.1. Problem formulation

The purpose of this study consists in finding a multi-patch parameterization of a multiply-connected planar domain
which is given in terms of its boundary components.

We define some notation. Let Ω ⊂ R2 be the input planar domain, which consists of simply closed curves Γi such that⋃n
i=0 Γi is the boundary ∂Ω .We introduce a 1-periodic parameterizationbi(u), u ∈ R for each boundary curveΓi (see Fig. 1a).

We propose an algorithmic procedure which aims at splitting Ω into patches topologically equivalent to quadrilaterals such
that we can construct a multi-patch parameterization of the input domain (see Fig. 1b).

2.2. Harmonic mapping to auxiliary domain: punctured disk

Given a multiply-connected planar domain Ω , we introduce an auxiliary domain Ω̂ , such that its topology matches the
one of Ω . We look for a bijective map h, such that h : Ω → Ω̂ .

For the simply connected case, the Riemann mapping theorem and the Radó – Kneser–Choquet theorem provide a
theoretical framework for the construction of a univalent harmonic mapping, see [17] for the details. In particular, the Radó
– Kneser–Choquet theorem asserts that the unit disk can always be harmonically mapped onto a convex domain, bounded
by a Jordan curve, provided a homeomorphic boundary correspondence.

In Duren and Hengartner [18] the authors prove an extension to the Radó – Kneser–Choquet theorem for the multiply-
connected case. We report the statement of the theorem using our notation.

Theorem 1 (Duren–Hengartner). Let Ω ⊂ R2 be a multiply-connected domain bounded by Jordan curves Γ0, Γ1, . . . , Γn, where
Γ0 is the outer boundary component. Let Ω̃ ⊂ R2 be a bounded convex domain and let f0 be an orientation-preserving continuous
and monotone map of Γ0 onto ∂Ω̃ . Then there exists a function h harmonic inΩ and continuous inΩ , which mapsΩ univalently
(i.e., one to one) onto Ω̃ with n points removed and with the prescribed boundary values: h(z) = f0(z) on Γ0.

According to the specifics required by Theorem 1, we define our auxiliary domain Ω̂ := Ω̃ \ {P̂1 . . . P̂n}, where the
set {P̂1 . . . P̂n} denotes n-points removed from the inside of Ω̃ . Using Theorem 1 and the fact that, by definition, harmonic
functions solve the Laplace equation, we can formulate the following Dirichlet problem: Find h such that⎧⎨⎩

∆h = 0 in Ω,

h(x) = f0(x) on Γ0,

h(x) = P̂i on Γi, i = 1, . . . , n.
(3)

where f0 : Γ0 → ∂Ω̂ is the given boundary correspondence, P̂i are the punctures in Ω̂ , Γ0 and Γi, i = 1, . . . , n as in
Theorem 1. We choose Ω as a planar domain, therefore, the map h will consist of two components h = (h1, h2). Hence, we
are going to solve the Laplace problem (3) twice (once for each component).

The computation of the map h is carried out with a boundary element method technique adapted to handle multiply-
connected domains. Further details follow in the subsequent section.
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3. Computing harmonic mappings by isogeometric BEM

The boundary element method (BEM) is a numerical method widely used to solve PDEs (cf. [19,20]). The main idea is to
reduce the dimension of the problem by one using a boundary integral equation (BIE) where the unknown is defined only on
the boundary of the computational domain, so that no mesh or parameterization of the interior is needed.

3.1. BIE for the Laplace problem

In order to transform the PDE into an integral equation we need to provide the fundamental solution for the differential
operator of the PDE. For the Laplace operator in 2D, the fundamental solution coincides with the Green function

G(x, y) = −
1
2π

ln(|x − y|). (4)

Then, we can express the solution h of (3) through the representation formula (5), in terms of Dirichlet data hDi = h|Γi
and

Neumann data hNi =
∂h
∂n |Γi

αh(y) =

n∑
i=0

[∫
Γi

G(x, y)hNi dΓi −

∫
Γi

hDi (x)
∂G(x, y)

∂n
dΓi

]
(5)

where

α =

⎧⎪⎪⎨⎪⎪⎩
1 if y ∈ Ω,
1
2

if y ∈ ∂Ω,

0 otherwise,

and ∂G(x,y)
∂n is the normal derivative of G with respect to the first argument, i.e.,

∂G(x, y)
∂n

=
d
dτ

G(x + τnx, y)|τ=0.

If both, the Dirichlet data and the Neumann data, are known Eq. (5) can be applied with α = 1, in order to evaluate h at any
point in the interior of Ω . Otherwise, if one of the boundary data is missing, the representation formula can be used as a BIE
in order to compute the unknown value.

In our case we solve a BIE for the unknown flux hN , with α = 1/2 and y ∈ ∂Ω .
We introduce the following notation:

• We denote by f0 the boundary correspondence of problem (3) such that hD0 = h|Γ0
= f0 : Γ0 → ∂Ω̂ ,

• The given punctures P̂i are expressed through functions {fi}ni=1 such that hDi = h|Γi
= fi : Γi → P̂i,

• The flux of the solution h relative to the boundary component Γi is denoted by gi = hNi .

For a given multiply-connected domain Ω , with boundary curves {Γi}
n
i=0, we derive the following BIE,

1
2
fℓ(y) =

n∑
i=0

[∫
Γi

G(x, y)gi(x) dΓi −

∫
Γi

fi(x)
∂G(x, y)

∂n
dΓi

]
∀y ∈ Γℓ , ∀ℓ = 0, . . . , n. (6)

The outer boundaryΓ0 is counterclockwise oriented, therefore, the normal vector n is outward pointing. For i = 1, . . . , n,
each Γi is clockwise oriented, hence n is inward pointing.

3.2. Isogeometric discretization

As described in Section 2.1, the input domain Ω is given in terms of its boundary components {Γi}
n
i=0, that are expressed

through 1-periodic parameterizations bi(u), u ∈ R. Consequently, we can express:

• The flux of h in terms of bi, i = 0 . . . , n:

ĝi(u) = gi ◦ bi(u).

• Each boundary function fi as:

f̂i(u) = fi ◦ bi(u) ∀i = 0, . . . , n.
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We can now transform the integrals of Eq. (6) to the unit interval [0, 1]:

1
2
f̂ℓ(v) =

n∑
i=0

[∫ 1

0
G(bi(u), bℓ(v))ĝi(u)∥ḃi(u)∥ du −

∫ 1

0
f̂i(u)

∂G(bi(u), bℓ(v))
∂n

∥ḃi(u)∥ du
]

∀ℓ, ∀v. (7)

Eq. (7) needs to be discretized and then solved for the unknown flux ĝi which will be expressed in terms of spline functions
Ni ,j and unknown control points ci ,j (the subscript i refers to the ith boundary component) as,

ĝi(u) =

mi∑
j=1

ci ,jNi ,j(u), u ∈ [0, 1]. (8)

The unknowns ci ,j can be computed by the collocation method (see for instance [21]), i.e. by requiring Eq. (7) to hold at
specific values that we choose to be the Greville abscissas (vℓ

k ), k = 0, . . . ,mℓ, ℓ = 0, . . . , n.

1
2
f̂ℓ(vℓ

k ) =

n∑
i=0

⎡⎣∫ 1

0
G(bi(u), bℓ(vℓ

k ))
mi∑
j=1

ci ,jNi ,j(u)∥ḃi(u)∥ du −

∫ 1

0
f̂i(u)

∂G(bi(u), bℓ(vℓ
k ))

∂n
∥ḃi(u)∥ du

]
∀ℓ, ∀k. (9)

We can rearrange Eq. (9) as follows:
n∑

i=0

mi∑
j=0

ci ,j
∫ 1

0
G(bi(u), bℓ(vℓ

k ))Ni ,j(u)∥ḃi(u)∥ du =
1
2
f̂ℓ(vℓ

k ) +

n∑
i=0

∫ 1

0
f̂i(u)

∂G(bi(u), bℓ(vℓ
k ))

∂n
∥ḃi(u)∥ du∀ℓ, ∀k. (10)

More precisely, we arrive at a linear system Ac = B, with thematrix A = (a(l,k)(i,j)) and right hand side B = (b(l,k)i). The entries
of the matrix are given by the term on the left hand side of Eq. (10):

a(l,k)(i,j) =

∫ 1

0
G(bi(u), bℓ(vℓ

k ))Ni ,j(u)∥ḃi(u)∥ du.

The unknowns are the control points ci ,j and the entries of the vector B are:

b(l,k)i =
1
2
f̂ℓ(vℓ

k ) +

∫ 1

0
f̂i(u)

∂G(bi(u), bℓ(vℓ
k ))

∂n
∥ḃi(u)∥ du.

The solution of the linear system allows us to compute the flux hN . Then, using the representation formula (5) with α = 1,
we can evaluate the map h at any point y in Ω .

One of the main issue about BEM regards the evaluation of singular integrals. From the definition of the Green function
G (Eq. (4)), it is clear that as the integration point x approaches the collocation point y, the value of G and the value of
its normal derivative get indeterminate and the integrals in Eq. (10) become singular. In order to tackle this problem
several techniques have been developed such as, singularity subtraction schemes [22], generalizedGaussian quadrature [23],
singular weighted quadrature rules [24,25] or even a combination of those techniques used together in order to improve
efficiency and accuracy.

4. Punctures determination

The hypothesis expressed in Theorem 1 requires to remove suitably placed punctures from the auxiliary domain Ω̂ .
Indeed, freely choosing the location of the Dirichlet boundary conditions P̂i may lead to not injective harmonic mappings
as it is shown in the following example. Let us consider the doubly connected domain of Fig. 1a with the auxiliary domain
Ω̂ depicted in Fig. 2c. We solve the Laplace problem (11), imposing the Dirichlet condition on the boundary Γ1 equal to the
point P̂1 = (−0.1, −0.1):⎧⎨⎩

∆h = 0 in Ω,

h(x) = f0(x) on Γ0,

h(x) = P̂1 on Γ1.

(11)

In order to display the harmonicmappingh solution of the problem (11), we generate a gridmesh inside the input domain
Ω Fig. 2a, and wemap this structure to Ω̂ , Fig. 2b. We notice the occurrence of overlappings and foldings in a neighborhood
of the point P̂1 (see Fig. 2b) which implies a not bijective mapping h. Therefore, providing suitably located P̂i is essential
to guarantee injectivity. To this end, we formulate an optimization problem, noticing that the presence of overlappings and
foldings increases the computed value for the area of Ω̂ , through the parameterization provided byh. Therefore, one possible
way to find an injective map is to try to minimize the value of the parametrized area A(P̂) of Ω̂ , where with P̂we denote the
set of P̂i.
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Fig. 2. (a) A grid mesh is generated inside Ω . (b) The image of the mesh through the map h shows overlappings and foldings in the neighborhood of the
point P̂1 . (c) The auxiliary domain Ω̂ is chosen as a B-spline approximation of the unit circle with one point P̂1 = (−0.1, −0.1) removed. The location of P̂1
is arbitrarily chosen.

4.1. Formulation of an optimization problem

We formulate the following optimization problem,

Find P̂ ∈ Ω̂ such that A(P̂) is minimal. (12)

The objective function is defined as:

A(P̂) :=

∫
Ω

|det Jh| dΩ (13)

where Jh is the Jacobian matrix of the harmonic mapping h, therefore, A(P̂) will be the computed area through the
parameterization provided by h. The minimization problem (12) can now be stated as follows:

Find P̂ ∈ Ω̂ such that P̂ = arg min A. (14)

If the input domain Ω has connectivity n + 1, we need to find the location of n points P̂i in Ω̂ solving a minimization
problem with 2n unknowns, where n is the number of holes in Ω .

We choose to find the minimum of A using a derivative-free method [26,27]. This kind of strategy tries to provide a set
of good directions (i.e. directions were the objective function decreases its value) and it operates using also a line-search
technique, which can increase the convergence speed, providing a big step once a good direction has been detected. We
adopted the third algorithm proposed in [27], modifying the stop criterion as follows.

Firstly, we computed the area of the auxiliary domain Ω̂ using the following:
Given a parameterization r = (x(t), y(t)) t ∈ [a, b] of ∂Ω̂ , the area Â bounded by the curve spanned by r can be computed

by:

Â = −

∫ b

a
y(t)ẋ(t) dt. (15)

Secondly, the value of Â is chosen as optimal minimum. Nevertheless, reaching this value cannot be adopted as a stop
criterion. In fact, the grid structure generated in Ω is not perfectly covering the inside of the considered domain. As
a consequence, the grid obtained in Ω̂ , in practice, covers a smaller area than the effective one. Therefore, the chosen
derivative-free algorithm is iterated until the value of A(P̂) is less than Â. We also approximate the integral in (13) through
a Riemann sum. Although more advanced techniques exist in order to tackle this computation (see for example [28,29]), in
our case the numerical approximation of the integral (13) provided a sufficiently accurate solution.

Solving (12)–(13) will optimize the location of the punctures in P̂ in such a way to produce an area A(P̂) which is as close
as possible to the optimal value Â. Unfortunately localminima cannot be avoided by the proposed technique. If the algorithm
gets stuck in a local minimum, the process is restarted with a different initial configuration.

We verified that for all the proposed examples the resulting P̂ provides an orientation preserving mapping h, where
folding and overlapping result removed.

4.2. Example

The Fig. 3a shows the resulting mapping h, with Dirichlet condition on Γ1 given by the solution of the optimization
problem (14). The optimization history can be found in Table 1 and the path of the point P̂1 is shown in Fig. 3b.
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Fig. 3. (a) The solution of the optimization problem (14) provides the location of the puncture P̂1 such that the computed mapping h is injective. (b) The
picture shows the path of the point P̂1 according to the data of Table 1.

Table 1
Steps of the optimization algorithm for the example shown in Fig. 3, with K iterations starting from the point P̂1,0 = (−0.1, −0.1).

K 0 1 2 3 4 5
P̂1,K (−0.1, −0.1) (0.05, 0.123) (0.0987, 0.235) (0.125, 0.389) (0.3245, 0.56) (0.4, 0.7)
A(P̂) 3.78 3.65 3.49 3.37 3.34 3.28

5. Template selection

In this section we describe how to construct a template according to the shape of the input domain Ω . More precisely,
the chosen auxiliary domain Ω̂ must match the topology of Ω and hence, it will have as many punctures as the number of
holes of Ω . Additionally, it will be equipped with a segmentation first, and then with a multi-patch structure. These last two
steps will lead to the define a prototype that we will refer to as template.

Also, we require extraordinary vertices (EVs) in order to achieve a quadrilateral segmentation in the input domain and
we distinguish between EVs on the boundary and EVs in the interior.

The templates are collected in an (incomplete) catalog, and they are classified by the number of punctures (singular
points) and valencies (µj) of the inner EVs. More in detail, to any configuration is associated a deficit d (see for instance [30])
computed as:

d =

inner
vertices∑
j=1

(µj − 4).

The deficit is used to construct different templates for any case (2-connected, 3-connected, 4-connected case, and so on).
The catalog could be preliminarily generated, and even though it is not exhaustive, any segmentation for a specific case is
identified by the same deficit. Hence, once the location of the punctures has been identified, one can choose a specific item
from the catalog. The segmentation structure changes according to the location of the punctures. Nevertheless, we can still
provide some general guidelines:

• Identification of the punctures P̂i, i = 1, . . . , n,
• Construction of circles centered at the punctures,
• Star-connections between the punctures and the circles,
• Creation of inner EVs with different valencies,
• Connections with the outer boundary ∂Ω̂ .

In the following example we present two possible templates (Fig. 4a and c) for the doubly connected case. The deficit
associated to any of these configurations is d = 0. The template in Fig. 4a is more suitable if the input domain Ω possesses
one hole located in a rather central position; while the template in Fig. 4c is recommended when the hole is located close to
the boundary. The resulting segmentations in Ω , shown in Fig. 4b and d, highlight how the template (c) can handle better
the shape of the input domain.

6. Segmentation results

In this section we present some examples of segmentation for multiply-connected domains. The choice of the right
template is strongly dependent on the shape of the input domain, as every suggested segmentation produces a different
output on Ω .

Additionally, we can classify a segmentation on the base of its complexity. In general the simplest segmentations
have only EVs with valency 5, as they create nice quadrilaterals, and do not involve many splitting curves inside Ω̂ . The
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Fig. 4. (a) The template Ω̂ has the simplest structure with no EVs. The dashed curves represent optional splitting. (b) The domainΩ is segmented according
to the template (a) where we also used some additional optional splitting to improve the final segmentation. (c) This segmentation is achieved using two
EVs with valency 5 in red and two EVs with valency 3 in blue. (d) The input Ω segmented according to template (c). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

segmentations which use also EVs with valency 6 havemedium complexity, whereas the segmentations with EVs of valency
3 are classified as the most complex ones, as the presence of such EVs creates distorted quadrilaterals and increases a lot the
number of the final patches.

Example 1. In this example we present a 3-connected domain Ω depicted in Fig. 5a. In Fig. 5b we see the behavior of the
harmonic mapping h, with Dirichlet boundary conditions provided by the solution of the optimization problem (12).

In Fig. 5c and f we present two possible templates for the 3-connected case. The associated deficit is d = 4. The pictures
5d and 5g show the input Ω segmented according to the aforementioned templates. In this case, both templates provide a
reasonable segmentation. The choice of one segmentation rather than the other one, besides depending on the shape of the
input domain, is at the user’s discretion. For instance, the segmentation shown in Fig. 5d is rather simple and provides 16
quadrilateral patches. The segmentation shown in Fig. 5g, although is rather complex (i.e., it consists of 25 patches and EVs
with valency 7 and 3), is able to provide more splitting in the upper region of Ω .

In Fig. 5e we also show a multi-patch parameterization of Ω previously segmented as in Fig. 5d. The parameterization
is obtained using THB-splines. We display the hierarchical meshes for the patches 0, 10, 12 over the parameter domain in
Fig. 6.

Example 2. The input domain Ω is 4-connected (see Fig. 7a). The Dirichlet boundary conditions for the problem (3) are
computed solving the optimization problem (12) and the behavior of the resulting harmonic mapping h is shown in Fig. 7b.
The suggested templates for this case are shown in Fig. 7c and f. The computed deficit is d = 8. This example remarks the
importance of choosing the right template: the segmentation shown in Fig. 7g presents very distorted quads, therefore is
very far from being a suitable one, whereas the segmentation obtained in Fig. 7d provides nice quadrilaterals. A multi-patch
parameterization of the input Ω is shown in Fig. 7e. In Fig. 8 we show the hierarchical meshes for patches 0, 3, 5.

7. Multi-patch parameterization

This section is devoted to explain how to achieve a multi-patch parameterization for any multiply-connected planar
domain, provided a suitable segmentation of it.

First of all it is required to create a multi-patch structure of the template geometry (Section 7.1). Subsequently, we can
use the inverse mapping h−1 and a least-squares fitting technique to solve a suitable minimization problem (Section 7.2).
Finally, we perform adaptive refinement using truncated hierarchical B-splines (THB-splines) in order to obtain the desired
parameterization of the given input domain Ω .
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Fig. 5. (a) A 3-connected domain Ω . (b) The result of the optimization problem (12). In this case the algorithm provides the location of two punctures. The
picture shows the behavior of the harmonicmapping h, computed by BEM. (c) One possible template for the 3-connected case. The suggested segmentation
is obtained exploiting EVs of valency 5 (red spots). (d) The input domainΩ is suitably segmentedwith the template c. (e) The domainΩ is parametrizedwith
THB-splines. (f) A second possible template for the 3-connected case. The EVs with valency 3 (blue spot), 5 (red spots) and 7 (yellow spot) are highlighted.
(g) The domain Ω segmented according to template f. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

7.1. Template creation: last step

Once themost suitable template has been chosen from the catalog,we create amulti-patch structure usingGordon–Coons
technique (cf. [6]), where singular patches happen in the vicinity of the punctures. The curves defining the segmentation of
the template are quadratic B-spline functions. They are constructed in such a way that the number of control points and the
number of knots are equal for each of them.

The outer boundary of Ω̂ is split at the intersection points with the segmentation curves applying the knot insertion
algorithm (see for example [31], Chapter 5). At this point, each patch, regular or singular, is parametrized applying Coons
technique. Using this strategy we get a multi-patch parameterization of the template with unit squares as parametric
domains. The resulting patches are finally joined with C0 smoothness.
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Fig. 6. (a) The segmented input Ω where each patch is labeled with a number. The multi-patch parameterization shown in Fig. 5e is obtained with 5
adaptive refinement iterations. The hierarchical meshes for the patch 0 (b), patch 10 (c) and patch 12 (d) are displayed over the parameter domains.

7.2. A fitting problem

The multi-patch parameterization of the template provides a geometric map Gi for each patch i, defined over the unit
square [0, 1]2. The solution of the problem (3) with the suitable boundary conditions provides a bijective harmonic mapping
h : Ω → Ω̂ . We aim at constructing a multi-patch parameterization of the given Ω using THB-splines and exploiting the
combination of h−1 with Gi for every patch Ω (i) (see Fig. 9).

Let qi denote the unknown parameterization of each patch Ω (i) of Ω , we formulate the following fitting problem,

∥qi − h−1
◦ Gi∥

2
L2 → min ∀ patch Ω (i) (16)

which gives the least-square approximation of qi. Discretizing (16) gives,∑
i

∑
j

(qi(uj, vj) − h−1
◦ Gi(uj, vj))2 → min ∀ patch Ω (i). (17)

We solve (17) through the following steps:

(1) We sample points (uj, vj) in [0, 1]2,
(2) We map the sampling points to the template Ω̂ , patch-wise, using the corresponding Gi,
(3) We approximate h−1,
(4) We use adaptive refinement.

Step (1) and (2) are achieved as follows. The unit square is sampled with uniform grid points. These samples are then
mapped through Gi to the patch i of the template. The grid points in the unit square provide parameter values for any fitting
technique one wants to adopt in order to solve (16). The physical values used for the fitting are provided evaluating the
inverse of h at the template’s samples.

The process just described is done patch-wise. If the patch in Ω̂ happens to be a singular one, one of the edges of the
corresponding patch in Ω will be a part of the boundary curve of the corresponding hole. In this case, the parameter values
are obtained sampling the edge of the unit box corresponding to the singular point, but the physical values (in patch Ω (i))
are computed through the orthogonal projection to the boundary curve defining the hole taken into account.

Regarding step (3), the approximation of the inverse mapping h−1 can be done using a predictor–corrector technique
if we are only interested in tracing the segmentation curves, see Section 4 in [32] where this method is referred to as
tracing algorithm. On the other hand, in order to achieve also a parameterization of the given Ω , the inverse mapping h−1

is projected into the THB-spline space. We refer to [17] for the explanation of the steps involved in this procedure. Finally,
about the evaluation of the inverse ofh on the outer boundary, we exploit the Dirichlet boundary condition expressed as f0 in
problem (3).

The step (4) highlights the use of the adaptive refinement procedure. In fact, the desired parameterization qi is expressed
through THB-splines basis functions as

qi(u, v) =

L∑
ℓ=1

Kℓ∑
k=1

cℓ
kτ

ℓ
k (u, v), (u, v) ∈ [0, 1]2, ∀ patch Ω (i), (18)

where ℓ identifies the level, L is the number of all levels in the hierarchy and K ℓ is the number of THB-splines τ ℓ
k at level ℓ.
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Fig. 7. (a) The input domain Ω is 4-connected. (b) The behavior of the harmonic mapping h. The picture exhibits three singular points and no
overlappings. (c) A possible template with a segmentation given by EVs of valency 5. (d) The input Ω segmented according to template c. (e) A multi-patch
parameterization of Ω , obtained with THB-splines. (f) A second template for the 4-connected case. (g) The final segmentation of the input Ω according to
template f.

Fig. 8. (a) The input domain is segmented according to template in Fig. 7d. The patches are numbered from 0 to 25. The hierarchical meshes are obtained
after 6 levels of adaptive refinement. The meshes refer to patch 1 (b), patch 2 (c) and patch 20 (d).
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Fig. 9. The unit square is given as the parameter domain. The geometric map Gi provides a parameterization for each patch of the template Ω̂ . The solution
of the problem (3) gives a mapping h defined from Ω to Ω̂ . The desired parameterization qi for each patch Ω (i) , is obtained exploiting the combination of
the geometric map Gi and the inverse mapping h−1 .

The solution of the minimization problem (17) provides the unknown coefficients cℓ
k ∈ R2 for all k = 1, . . . , K ℓ and all

ℓ = 1 . . . L.
We start from an initial tensor-product spline space which is then enlarged by performing adaptive refinement. This

procedure is carried out with an error estimator which is based on the computation of the Euclidean distance between the
expected value of qi at the parameter points and the effective result provided by the solution of (17).

This methodology is well-known and widely used in the isogeometric-parameterization context. Further details and
additional error estimators can be found in [33]. For a general overview about THB-splines and their applications we refer
to [17,34,35].

Remark 1. In practice, theminimization problem (17) is solvedwith the additional use of some functionalQ(c) and a specific
weight λ ∈ R,∫

[0,1]2
∥qi − h−1

◦ Gi∥
2
+ λQ(c) → min

c
∀ patch Ω (i), (19)

where, to simplify the notation, by c = (. . . , cℓ
k, . . .) ∈ R2,n we denote the matrix of control points cℓ

k. More precisely, we
use the following uniformity functional,

Q(c) =

∫
[0,1]2

(∥qi,uu∥
2
+ 2∥qi,uv∥

2
+ ∥qi,vv∥

2) du dv. (20)

The value for the parameter λ in (19) cannot be determined a-priori. In fact, its value regularizes the effect of the
functional Q over the resulting parameterization, therefore a good choice for λ is based on a trade-off between accuracy
and parameterization quality (further investigation on this topic and applications can be found in [17,33,36] and references
cited therein).

8. Conclusions

Given a planar multiply-connected domain, we provide a multi-patch parameterization using a THB-spline least square
fitting technique. We first describe a segmentation algorithm to split the input Ω into patches topologically equivalent
to quadrilaterals. The proposed method is based on the construction of templates, i.e. prototypes for segmentations. This
construction is not trivial and requires to solve a minimization problem in order to achieve an injective harmonic mapping
h defined between the input domain Ω and the chosen template Ω̂ . Every template patch Ω̂ (i) is parametrized using Coons
technique. The finalmulti-patch parameterization ofΩ is achieved exploiting the combination of the inverse of the harmonic
mapping h, obtained via projection onto the THB-splines space, and every geometry mapping Gi defined for patches Ω̂ (i).
Our method provides good quality parameterizations, but it is still not a fully automatic procedure. In fact, the selection of
the most suitable template should be decided by the user according to the location of the holes in the input Ω . Also, the
output of some segmentations cannot be predicted a priori: the inverse of the harmonic mapping does not preserve angles
between the mapped segmentation curves.

Future work will be devoted to investigate the 3D case, as there are no theoretical guarantees for the existence
of a bijective harmonic mapping h. Another interesting aspect could be studying the enumeration of all the possible
quadrangulations for a given planar shape, in order to achieve a larger or even an exhaustive catalog of prototypes.
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