
CLASSIFICATION OF MINERAL INCLUSIONS IN ANCIENT CERAMICS: COMPARING DIFFERENT MODAL 

ANALYSES STRATEGIES 

 

ABSTRACT 

Digital image analysis has recently emerged as a powerful tool for the analysis of the ceramic thin sections. By 

producing quantitative data, it increases the usefulness of ceramic petrography to address archaeological questions. 

Despite several works considering digital image analysis to study archaeological ceramic materials, so far no work has 

been proposed to evaluate the possibilities of optical microscopy (OM) image analysis for classification and modal 

analysis, knowing its advantages and drawbacks, as compared to scanning electron microscopy (SEM) image 

processing. In this work we propose an algorithm to count the mineral inclusions correctly classified by OM image 

analysis with respect to SEM images. The proposed algorithm is based on a matching mechanism applied to the regions 

of interest (ROIs) detected in the OM images according to the corresponding ROIs as detected in the SEM images. 

Moreover, a comparison with point counting on the same OM images is also provided to evaluate the pros and cons of 

each method. Two Holocene potsherds (8900-4200 BP) are considered as case study for modal analysis to identify and 

classify quartz, feldspars and carbonate aggregates as mineral inclusions. 

 

KEYWORDS: ceramics, optical microscopy, image processing, scanning electron microscopy , point counting, thin 

sections, classification of mineral inclusions. 

 

1. INTRODUCTION 

Point-counter and visual estimation charts have been usually used in petrography to perform quantitative investigations 

via thin section that is to provide modal estimation and identification of mineralogical phases as well as semi-

quantification of their morphometry and texture (Chayes, 1954; Powers, 1963; Van der Plas and Tobi, 1965; DeHoff 

and Rhines, 1968; Howarth, 1998). Since these practices may be subjective and time-consuming, digital image analysis 

techniques were proposed to automatize the work. In this way a set of parameters (like grain-size and shape descriptors) 

can be easily measured by using a digital image of the interested sample as acquired by sediment or rock thin sections 

(Perring et al., 2004; Smith and Beermann, 2007; Holden et al., 2009). 
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To perform image analysis, both optical and high-resolution images captured respectively by optical microscopy (OM) 

and by scanning electron microscopy (SEM) are typically used for petrography purposes. However, the definition of 

standardized procedures for image segmentation may be sometimes a challenging task in case of images captured by 

OM because of similar optical properties shared by some minerals. Actually, ad-hoc strategies have to be defined in 

order to properly isolate the mineralogical phases of interest ((Starkey and Samantaray, 1993; Fueten, 1997; 

Heilbronner, 2000; Wilson et al., 2007; Izadi et al., 2015). Conversely, high-resolution images acquired by SEM, like 

backscattered electrons ones (BSE), especially when coupled with X-ray chemical maps, generally may provide a 

clearer contrast between some minerals or phases, providing thus for a straightforward identification also as it concerns 

finer grains or minerals sharing similar chemical composition (Stutzman, 2004; Prakongkep et al. 2010; Prêt et al. 

2010). On the other hand, the analysis of optical images provides a lot of advantages with respect to SEM. Firstly, it 

may provide a wider array of discriminant features about mineralogical phases of interest (e.g. identify polymorphs, 

distinguish crystals in monomineralic rock fragments, etc). Secondly, the image acquisition phase in OM is a low-cost 

approach both in terms of sample preparation time and instrumentation used. Lastly, its flexibility may grow if an image 

analysis freeware software is coupled with. Thin section petrography is also widely used to study ceramic 

archaeological materials as one of the routine analytical techniques of ceramic petrography aimed to describe and 

classify pottery fabric namely the mineralogical composition, percentage, shape, grain-size and orientation of 

argillaceous minerals, non-plastic inclusions and pores (Shepard, 1956; Rice, 1987; Reedy, 2008; Peterson, 2009). As 

ceramic petrography moved towards a more quantitative approach for textural analysis (Stoltman, 1989) and along with 

the contemporary diffusion and improvement of digital devices, image analysis emerged as a powerful tool also for the 

analysis of ceramic thin sections (Reedy, 2006). Pilot studies in the field are the ones by Middleton et al. (1985) and 

Whitbread (1991) who respectively evaluated different strategies to perform point counting and to automatize its 

procedures adopting the earliest proofs of digitalized images of ceramic thin sections. Later, Livingood and Cordell 

(2009) evaluated and compared the accuracy and feasibility of digital image techniques against point counting using 

digital images acquired by scanner. More recently, Reedy et al. (2014) presented an experimental work aimed to test the 

consistency and reproducibility of image analysis in order to manage even more complex archaeological samples. They 

finally stated that image analysis, by producing quantitative data, increases the usefulness of ceramic petrography to 

address archaeological questions. Actually, the pieces of information that can be collected, especially about grain-size 

and morphometry of mineral inclusions and their identification, allow to define raw material sources and provenance 

and to reconstruct technological processes of production (Maggetti, 1982; Tite, 2008). In the last years, even more 

works considered routinely digital image analysis to study archeological ceramic materials (e.g. Knappett et al., 2011; 

Aprile et al., 2014; Dal Sasso et al., 2014; Eramo et al. 2014; Lopez et al., 2015; Thér, 2016). However, to our 
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knowledge, at present no work is known in the field which is aimed to evaluate the possibilities of OM image analysis 

for classification and modal analysis, knowing its advantages and drawbacks, as compared to SEM image processing. 

To such a purpose, in this worka classification strategy was developed to count the mineral inclusions correctly 

classified by OM image analysis. Each class (e.g. one type of mineral inclusion) and the corresponding mineral 

inclusions detected as regions of interest (ROIs) by segmentation of the OM images were compared with the ROIs 

segmented in the corresponding SEM images, to evaluate the accuracy of the classification obtained with the OM image 

analysis. To do this,ad-hoc image segmentation procedures were firstly assessed for both OM and SEM images in order 

to isolate and recognize the considered mineral inclusions. Then,  an algorithm was proposed to classify automatically 

the ROIs detected in the OM images according to the corresponding ROIs as detected in the SEM images. Moreover, a 

comparison with point counting on the same OM images is also provided. The paper is organized as follows. In section 

1 the state of the art and the adopted workflow are summarized, as seen. In section 2  the image acquisition phase 

(section 2.1) is described and the image segmentation strategy (section 2.3) adopted for both OM and SEM images and 

eventually the rectification phase required after image segmentation (section 2.4). The algorithm developed to classify 

the ROIs detected in the OM images according to the corresponding ROIs as detected in the SEM images is then 

formalized (section 2.5). Modal analysis as performed by point counting is also described here (section 2.2). 

Classification performance observed is hence evaluated and discussed in sections 3 and 4. 

 

2. Materials and Methods 

carbonateAccording to the aim of the work, the selected techniques for modal analysis were applied to two Late Acacus 

potsherds (8900-4900 BP) which were chosen as case study according to their simpler mineral composition that is 

prevalent quartz, feldspars and carbonate aggregates as mineral inclusions (Figure 1). These samples are a part of a 

larger selection of representative potsherds belonging to the Takarkori rock-shelter archaeological site (Libyan Sahara), 

as described in Eramo et alii (2014). According to this study, the selected samples may be thus considered reliable for 

the estimation of the real mineral composition of such ceramics.  

In this work, two types of images particularly were manipulated: 

1) OM images composed by pairs of plane (P) and cross (XP) polarized light images (used for both optical image 

analysis and point counting); 

2) X-ray elemental maps produced by SEM/EDS. 

In the following the acquisition of these images is described. 
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2.1. Image Acquisition 

Image acquisition of optical images considered four pairs of P and XP images in RGB digital format (resolution of 

1920x2560 pixel size) acquired in transmitted light for each thin section at a magnification of 2.5x (1.315 mm/pixel) as 

shown in Figure 2. The four different areas maintain a distance of 1 cm between the center of each frame by the 

successive one and moving lengthwise on the thin section. A ZEISS Axioskop 40 Pol optical microscope for 

petrography, equipped with a Nikon DS-5MC digital camera with 2/3” CCD (Peltier cooling system), was used to such 

a purpose. 

By using SEM, backscattered (BSE) images (resolution of 4096x3328 pixel size) and the associated set of elemental X-

ray maps of Al, Ca, Fe, Si, K, Mg, P, Na and Ti (resolution of 2046x1664 pixel size) corresponding to the same areas 

considered for optical microscopy acquisition were acquired from each sample at a magnification of 65x (Figure 3). A 

ZEISS LEO 50XVP scanning electron microscope, operated at 15 kV, equipped with a X-MaxN80mm2 SDD detector 

and Aztec software (Oxford Instruments) for X-ray maps was used. 

 

2.2. Point Counting 

 To perform modal analysis via point counting (PC),   the point counter tool of the freeware software JMicroVision 

(Roduit, 2017) has been adopted, which allows the operator to obtain automatic statistics (i.e. frequency and volume) of 

phases of interest recognized during the eye-naked identification step. A total of 1200 points per thin section (300 per 

area) were counted using the four pairs of P-XP images acquired by OM. Particularly, only the considered mineral 

inclusions of quartz, feldspars and carbonate aggregates were counted, in order to normalize the tallies among areas and 

make a sound comparison with the same corresponding inclusions as segmented by OM and SEM images (see section 

2.3). The accuracy of the percentages obtained by point counting was calculated after Howarth (1998). 

 

2.3. Image Segmentation 

The segmentation phase was devoted to isolate ROIs of the three considered types of mineral inclusions by 

manipulating the acquired OM and SEM images to produce corresponding binary images. To such a purpose, different 

segmentation procedures for the two types of images were developed, as described in the following. 
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2.3.1. Optical Microscopy  

For quartz and carbonate aggregates we adopted the image segmentation procedure based on mathematical operators as 

described in Aprile et al. (2014). To succeeded in feldspars segmentation (i.e. to separate individual grains), it has been 

primarily considered that, according to their optical similarity, the twinning phenomena may be useful to distinguish 

between quartz and feldspars (Edwards, 2008). In these samples it has been particularly observed that twinned regions 

were characterized by different texture with respect to quartz because of their altered nature.To such a purpose, the P 

images were manipulated in order to define an ad-hoc segmentation strategy because they showed more clearly the 

outlines of interested regions (Aprile et al., 2014) . Particularly, the K-means clustering algorithm (Jain and Dubes, 

1988) implemented in ImageJ (Ferreira and Rasband, 2010-2012) was applied to P images. As described in Aprile et al. 

(2014) for the other procedures adopted, corresponding binary images of quartz and carbonate aggregates were inverted 

and filtered using the Gaussian Blur, the Median and the Maximum filters in order to guarantee a better overlap of the 

edges with the P image in the next steps. Actually, these images were subtracted by the P image previously processed. 

Then, in order to obtain the binary image containing ROIs of the class of feldspars, we finally applied the Isodata 

thresholding method and the median filter Despeckle to reduce noise. Both methods are implemented in ImageJ. Figure 

4 summarizes the segmentation procedure adopted for quartz, carbonate aggregates and feldspars in the case of OM 

images, showing an example of the corresponding binary images produced. 

 

2.3.2. Scanning Electron Microscopy  

To perform segmentation the elemental maps of Si, Ca, Na and K were selected because they are considered more 

informative, on the base of their chemical composition, to identify our mineralogical phases of interest. Then,  each map 

was assigned to a channel in the visible band (i.e. Red = map of Si; Green = map of Ca+Na; Blue = map of K). The 

freeware software for multispectral analysis Multispec © (Landgrebe and Biehl, 1991-2011) was used to such a 

purpose. A multispectral image containing different areas corresponding to the phases of interest according to the 

abundance/presence of those chemical elements in each phase. It must be specified that, even if the map of Na is usually 

combined with the map of K to isolate alkali-feldspars, the map of K was used here on its own to such a purpose 

because of the abundance of alkali-feldspars towards plagioclase. Rather, the combination of the maps of Na and Ca 

(using the addition operator) worked out properly particularly to isolate carbonate aggregates and then plagioclase. 

Similar strategies, which emphasize the chemical contribution of these elements, are also suggested by Lydon (2005). 

Then, a supervised classification was applied by means of the training fields method (Lydon, 2005) as implemented in 

Multispec © to automatically classify pixels of the multispectral image into the corresponding regions of quartz, 
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feldspars and carbonate aggregates (Fig. 5). By adopting this method, it is known where all mineral classes occur in the 

image and hence the user can manually select corresponding areas to be used as training examples. Particularly, thirty 

areas per phase were selected. In order to obtain the corresponding binary images, the Isodata thresholding method and 

the median filter Despeckle to reduce noise (Fig. 6) were finally applied. Moreover, SEM binary images were resized 

according to the resolution of OM images. 

 

2.4. Rectification phase 

To correctly apply the proposed classification strategy (see section 2.5), it is necessary that pairs of corresponding ROIs 

of OM and SEM binary images  overlap as much as possible. Since they are obtained using two different acquisition 

instrumentations, is it natural to have topological differences between pairs of corresponding OM and SEM images even 

if acquired from the same area. Hence a geometric correction called rectification (simultaneous rotation and translation) 

was applied. To such a purpose, the affine transformation method (Jain, 1986) was applied, a linear mapping method 

preserving points, straight lines and planes so that sets of parallel lines remain the same after its application. The 

JMicroVision tool was used, which applies the affine transformation on the basis of at least three control points applied 

on one image that will be also visualized in the corresponding image to be rectified. Particularly,  each SEM binary 

image was rectified by selecting fifty control points per corresponding OM binary image. The corresponding control 

points on SEM binary image were then shifted manually until a match of corresponding ROIs in both images was 

achieved. Actually, each pair of control points must match eventually the same location on both images as much as 

possible to achieve accurate geometric correction. Effects of rectification phase on OM and SEM binary images are 

shown in Figure 7. 

 

2.5. Counting correctly classified ROIs in OM images 

The algorithm developed to perform automatic counting of the correctly classified ROIs of OM images previously 

segmented is provided as Supplementary material.  
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3. RESULTS 

In the modal analyses carried out with PC we considered grain-size above 16 µm, which approximates, according to the 

scale of Udden-Wentworth (1922), the limit of 15 µm to define the non-plastic inclusions (NPIs) of the ceramic body 

proposed by Maggetti (1982).  . PC was carried out on the same four areas of samples TK66 and TK69 chosen for 

image analysis. In both samples it was observed that quartz is the prevalent phase among those counted, while the 

relative amounts of feldspars and carbonate aggregates are inverted (Table 1). Moreover, if the variability of data 

among areas of the same sample is considered, sample TK69 shows higher heterogeneity. The relative standard 

deviation (RSD) of the points counted per mineral phase ranges from 0.08 to 0.57 in TK66 and from 0.18 to in TK69. 

Quartz has the lowest RSD values in both samples. Consequently, it can be said that the sample TK66 is relatively rich 

in feldspars, while quartz and carbonate aggregates prevail in the sample TK69. 

According to Table 2, the size distribution of the ROIs with grain-size above 16µm is unimodal in both SEM and OM 

images. While the frequency mode for the SEM ROIs is in the range 16-32µm, a shift in the range 32-63µm is observed 

for the OM ROIs. 

As it concerns the evaluation of image analysis results, it was chosen to define a grain-size threshold value D based on 

maximum Feret diameter (extracted by using the ImageJ tool) in order to allow accurate comparison between 

corresponding detected ROIs of OM and SEM identified after segmentation. Actually, SEM enables a better detection 

of mineral phases for the smaller grain-sizes than OM, leading typically to a larger number of detected ROIs that is N 

>> M (see also section 4). This can be clearly observed in Table 2, where the number of quartz OM ROIs are generally 

only half of the ROIs segmented in SEM images. Conversely, for feldspars and calcite aggregates the ROIs segmented 

in OM images are down to a tenth of those in SEM images. Particularly, the larger number of detected SEM ROIs is 

observed in the range 16-32 and 32-63µm as expected. Only in TK69, calcite aggregates detected in OM images are 

overestimated in this grain-size ranges. It was then defined α = 63µm as lower  threshold for our analysis. Actually, this 

limit provides the best compromise according to grain-size range generally observed for mineral inclusions in ancient 

ceramics when adopting both OM and SEM.  Three different grain filtering approaches  were consequently applied, to 

obtain   ROIs characterized by three grain-sizes according to Feret value: (a) larger than 63µm; (b) larger than 125µm 

and (c) larger than 250µm.  Table 3 shows the number M and N respectively of ROIs in the OM and ROIs in the SEM 

segmented images for the considered three grain-sizes for quartz, feldspars and carbonate aggregates, and highlights 

how the grain size thresholding affects the modal analysis. It can be seen that quartz and carbonate aggregates show 

almost similar values of M and N, while in the case of feldspars  the values of N  are higher than M, particularly for the 

grain-size including the finer fraction corresponding to Feret > 63µm. 
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Next, for each considered grain-size of each class, it was applied the algorithm described in section 2.5 to count the 

number p of correctly classified ROIs in the OM segmented images namely the matching pairs (Ai, Bj). The 

classification accuracy was then calculated as: 

ACC = p/M 

In this way,  the reliability of our OM image segmentation  was evaluated in identifying the mineral inclusions of 

interest in comparison to the classification achieved via SEM image analysis, which is considered as a ground truth. 

Results are shown in Figure 8. It can be observed that generally the classification accuracy increases according to grain-

size and it is higher for all ROIs having Feret greater than 250 µm. Only for carbonate aggregates the classification 

accuracy slightly decreases for grain-size greater than 250 µm. Moreover, it can be seen that the classification accuracy 

in the case of feldspars is the highest among the considered classes. 

 

4. DISCUSSION AND COMPARISON 

The three different approaches to modal analysis namely PC, OM and SEM image analysis, applied to the same areas of 

the two ancient potsherds investigated, show uneven results and give thus room to several discussion points summarized 

in the following. The classification accuracy (ACC) of image analysis was based on frequency of ROIs estimated by the 

differences between OM percentage and SEM percentage. Particularly, it was observed that ACC generally gets higher 

when grain-size increases. This may depend on OM limitation which deals with masking finer NPIs with respect to 

SEM, effect due to (a) the different image aberrations of transmitted light microscopy and (b) the different characters of 

sectioning even though thin sections are used in both cases. Actually, when a thin section of pottery or finegrained 

material is observed by OM in transmitted light, a masking effect due to the overlapping of particles whose Feret is less 

than 30µm is more probable. It follows that two or more features can appear to be a single one and a more or less 

opaque matrix can mask finer particles (Chayes, 1956). In SEM images conversely, thin section thickness does not 

influence image quality and contrast between grains and matrix is moreover improved by BSE and X-ray maps. The 

segmented particles in SEM images with Feret comprised between 16 µm and 63 µm are hence strongly masked in OM 

images, as just seen in Table 2. Moreover, when a cut is made in a granular solid material, the size and shape of 

particles is distorted. It is known that the average size of the grain sections will be less than the average size of the 

grains, since random sections through the grain along plain containing the maximum diameter is less probable 

(Krumbein, 1950). Moreover, the theoretical assumption of random distributed spheres within the sample is not wholly 

satisfied in fine-grained rocks, since they tend to be polymineralic, poorly sorted, and consist of grains with low 
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sphericities. The use of maximum Feret in sectioned grains is the best approximation to true intermediate axis of the 

whole grain, for both theoretical and practical reasons (Kellerhals et al., 1975). For the analyzed samples, the distortion 

of a given OM ROI area in respect to the corresponding ROI of SEM image was defined using the ratio AOM/ASEM in 

Figure 9. Different trends for carbonate aggregates and quartz and feldspars were found. Particularly, the carbonate 

aggregates are microcrystalline and appear more opaque than quartz and feldspars and show higher area distortion (>1), 

especially for finer particles. Although quartz and feldspars show a similar trend, the distortion of ROIs with Feret > 

63µm appeared somewhat bimodal. These transparent NPIs may be spherical zones of one or two bases immersed in a 

more or less opaque matrix. Just as a spherical zone of one base will give an OM ROI area smaller than the 

corresponding SEM ROI, a spherical zone of two bases will give a larger OM ROI area of that of SEM only if the 

smaller base of the grain is on the top the thin section. Being constant the geometry of the spherical zone, the AOM/ASEM 

ratio increase as the opacity of the matrix decreases. The strongest bias are produced by the finest fraction considered 

namely 63-125µm. Such overestimation of area measurement is due to the Holmes effect (Cahn, 1959). Since the 

observation does not only involve a single plane, but a thin slice, the observations in transmitted light may produce an 

enlarged projection of the particle on the image plane of the microscope, leading to an overestimate of the area and the 

volume fraction of a given particle. This effect increases with opacity and with the smaller size of particles present in 

the thin section, partially or not sectioned. The marked magnification observed in the calcite aggregate ROIs segmented 

in TK69 may be due to the merging of several particles occurring at different height in the thin section. Rather SEM 

images prevent Holmes effect and are not affected by masking effect for finer grains. At low magnification (30-100x), 

they may suffer peripheral area distortion which can be attenuated increasing the number of sampling areas at higher 

magnification (e.g. 100-500x) or changing the electron beam characteristics. The bias observed in the finer grain-sizes 

between OM and SEM ROIs was eventually eliminated considering Feret values greater than 250 µm. This let to define 

a dimensional lower limit of grains segmented or counted on OM images for a more accurate modal analysis. Actually, 

while an upper limit of coarseness, expressed by the ratio of grain-section area to measurement area (Eramo et al., 

2014), is important to define textural and compositional representativity of thin section in respect to hand specimen, the 

definition of an accurate lower limit may solve the difficulty to detect and evaluate the finer particles, which introduce 

systematic biases. The definition of the lower limit of coarseness for modal analysis at 63µm as done may represent a 

partial solution to this problem (Stoltman, 1989), even if the meaning of NPIs in the ceramic fabric may be distorted. 

Precisely, the grain-size threshold at 15µm (Maggetti, 1982), that separate the matrix from the NPIs in the ceramic 

fabric, cannot be used quantitatively when transmitted light microscopy is considered and the mode of the NPIs is 

below 63 µm. To be too selective (lower limit too high) may cause a lack of information especially for the less 

compositionally mature NPIs. In order to guarantee reproducibility and accuracy of the modal analysis, the image 
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acquisition conditions must be as closely controlled as possible, as well as the processing and measurements done on 

images from both OM and SEM. Another limitation of OM observations deals with the identification of feldspars. As 

explained in section 2.3.1, only the twinning occurrence may be really useful to such a purpose as well as to distinguish 

between quartz and feldspars. It is obvious that SEM, especially when coupled with X-ray chemical mapping, 

succeeded better in recognizing feldspars, since  N > M for feldspars was observed. However, it must be highlighted 

that classification accuracy achieved by OM image analysis for feldspars was the highest among the considered classes. 

Thus,  the segmentation procedure on OM image for this classcan be considered reliable. In addition, since the 

percentage of correct classification of feldspars with OM image analysis is generally higher than the percentage 

obtained with PC (without etch and/or stain thin sections) our approach seems to be an easy and cheap analytical 

strategy to improve the petrographical analysis qualitatively and quantitatively. When PC data are compared to OM and 

SEM data, more than one point counted may correspond to one ROI. Further, the number of points counted in each of 

the four sampling areas per thin section partially covers the image, and the classification accuracy cannot be calculated 

in the same manner as for image analysis. To ensure the percentages of quartz, feldspars and calcite aggregates to be 

within a fixed accuracy, it was decided the number of points counted in order to obtain an uncertainty range of about 2 

% for component percentages (Howarth, 1998). Further, it was observed that the accuracy of OM ROIs and PC is 

affected by the grain-size distribution. The lower the grain-size, the higher the masking effect and the bias of optical 

features of the grains. It should be further considered that in compositionally immature ceramic fabrics - thus in raw 

materials - the mineralogical composition changes with the grain-size, and the variation of composition associated with 

the lower limit of coarseness adopted should not be confused with the classification accuracy. 

 

5. CONCLUSIONS 

The differences between the OM and PC classification accuracy with reference to the ROIs segmented in the SEM 

images, put in evidence the limits of OM to objectively classify NPIs in thin section and their effect on modal analysis. 

If on one hand the analytical error increases as the number of particles sectioned in the measurement area decreases, on 

the other hand the less the ratio between the particle diameter and the thin section thickness, the more the systematic 

biases affecting the results (Chayes, 1956). Our results show that even when a lower limit of coarseness at 250µm is 

applied, OM and PC results do not match the SEM results. Most of the particles with Feret <63µm were not detected in 

OM images and classification errors were more frequent. However, feldspars identification by image analysis resulted 

more accurate than that by petrographic observation. On fine-grained crystals, where the optical features of different 

feldspars are less detectable under the polarizing microscope, the feldspars segmentation here proposed is a useful tool 
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to improve the accuracy of  modal analysis obtained from OM analysis. If the rise of the lower limit of coarseness 

improve the classification accuracy, it could "hide" some important components of the ceramic fabric. When a limit is 

set, it should be used for all the investigated samples in order to spread the same compositional bias related to grain-size 

filtering, and then to make comparable quantitative results otherwise not comparable. Eventually it can be asserted that, 

given SEM-based modal analysis as ground truth, modal analysis via OM and/or PC may be considered with a 

magnitude of uncertainty that can be tolerated according to research aims and experimental design adopted. 

In this row, the accuracy tests on ceramics will be extended to more complex textures and petrographical compositions 

to further improve the recognition and separation of minerals in digital images. Such results will help to better 

understand the pros and cons of promote the use of quantitative petrography via digital image analysis and its potential 

as complementry method in archaeometry for ceramics analysis. 
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FIGURES: 

Figure 1: Example of thin section of the potsherds considered as case study (unpolarized light). 

Figure 2: Example of plane (P) and cross polarized (XP) light images acquired by optical microscopy (OM) in 
transmitted light. 

Figure 3: Example of backscattered (BSE) and corresponding elemental maps of Al, Ca, Fe, Si, K, Mg, P, Na and Ti 
acquired by scanning electron microscopy (SEM/EDS). 

Figure 4: Segmentation of OM images and corresponding binary images (Qtz = quartz; Feld = feldspars; Cal = 
carbonate aggregates) produced via the K-means algorithm implementedin ImageJ. 

Figure 5: Multispectral image of the selected SEM elemental maps as segmented by the training field method 
implemented in Multispec©. 

Figure 6:  

Binary images of quartz, feldspars and carbonate aggregates as obtained by the multispectral image applied to SEM 
elemental maps manipulated using ImageJ (Qtz=quartz; Cal=carbonate aggregates; Feld=Feldspars). 

Figure 7: Rectification phase: a) Inaccurate overlap of corresponding OM and SEM binary images due to the different 
acquisition instruments; b) Overlap of OM and SEM binary images after application of the affine transformation by 
means of control points. 
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Figure 8: Classification accuracy as achieved by image analysis (Qtz = quartz; Feld = feldspars; Cal = carbonate 
aggregates). 

Figure 9: Area distortion corresponding to the three considered classes for sample TK66 (left side) and TK69 (right 
side). Mild outliers (1.5-3 IQR) are shown as circles, while extreme outliers (>3 IQR) are shown as stars. 

 

TABLES: 

Table 1: Statistics of PC and modal composition (percentage) for samples TK66 and TK69 (Qtz = quartz; Feld = 
feldspars; Cal = carbonate aggregates). 

Table 2: Grain-size distribution as achived by PC for samples TK66 and TK69 (Qtz = quartz; Feld = feldspars; Cal = 
carbonate aggregates). 

Table 3: Number of OM (M) and SEM (N) ROIs as detected by the segmentation phase for each considered grain-size 
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Qz Feld Cal Qz Feld Cal
total points 823 334 43 879 156 165
mean 205.8 83.5 10.8 219.8 39.1 41.3
SD 15.6 12.2 21.1 39.1 29.5 32.7
RSD 0.1 0.8 0.3 0.2 2.8 0.8
percentage 68.6 27.8 3.6 73.3 13.0 13.8

TK66 TK69

Table 1



TK66 TK69
grain size ( m) OM % SEM % OM % SEM %

Quartz 16-32 148 20.11 612 46.43 196 23.61 636 48.48
32-63 269 36.55 381 28.91 321 38.67 396 30.18
63-125 206 27.99 238 18.06 234 28.19 206 15.70
125-250 88 11.96 68 5.16 60 7.23 54 4.12
250-500 20 2.72 14 1.06 14 1.69 15 1.14
>500 5 0.68 5 0.38 5 0.60 5 0.38
TOT 736 1318 830 1312

Feldspars 16-32 70 23.81 1311 48.63 329 51.17 1181 51.89
32-63 83 28.23 862 31.97 234 36.39 719 31.59
63-125 82 27.89 359 13.32 61 9.49 290 12.74
125-250 42 14.29 134 4.97 14 2.18 56 2.46
250-500 14 4.76 27 1.00 5 0.78 22 0.97
>500 3 1.02 3 0.11 0 0.00 8 0.35
TOT 294 2696 643 2276

Calcite aggregates 16-32 0 0.00 199 58.70 74 37.37 42 53.85
32-63 7 17.50 88 25.96 80 40.40 18 23.08
63-125 11 27.50 18 5.31 34 17.17 9 11.54
125-250 18 45.00 26 7.67 6 3.03 6 7.69
250-500 4 10.00 7 2.06 2 1.01 1 1.28
>500 0 0.00 1 0.29 2 1.01 2 2.56
TOT 40 339 198 78

Table 2



Grain size (µm) N M N M N M
> 63 586 632 915 241 73 78
> 125 157 192 268 102 35 33
> 250 41 44 63 46 6 9

Qtz Feld Cal

Table 3


