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 A method of accelerometric site reclassification was tested on Italian data.  

 Univariate cluster analysis of site-independent GMPE regression residuals was used. 

 Application to PHA and PHV observations proved to improve GMPE performances. 

 A site can need distinct classifications for different ground motion parameters. 

 Conventional classifications can lead to overestimate “base” seismic hazard.  
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Abstract 1 

One basic element for seismic hazard assessment is the empirical definition of ground motion 2 

prediction equations (GMPE) to estimate shaking expected for earthquakes of given magnitude and 3 

distance. GMPEs are calibrated from data of accelerometric stations, distinguishing among site 4 

categories of different lithological type (e.g. hard rocks, more or less stiff soils) expected to cause 5 

different levels of ground motion amplification. Such a site classification is commonly based on 6 

geological observations and/or geophysical parameters like the mean propagation velocity of 7 

seismic waves through subsoil surficial layers. However, doubts have been raised about the 8 

effectiveness of results obtained from these conventional methods. Here we propose a methodology 9 

of accelerometric site classification relying on peak ground motion observations, exploiting the 10 

large amount of such observations available in the Italian National accelerometric database. The 11 

method is based on a cluster analysis of differences between observations and predictions provided 12 

by GMPEs whose functional form does not comprise site class among the explanatory variables. 13 

The new method was applied to the ITalian ACcelerometric Archive (ITACA), extracting a 14 

“training” dataset (used to calibrate some GMPEs through regressions) and a “validation” dataset” 15 

(to select the optimal GMPE form). A cluster analysis was then applied to regression residuals, 16 

grouping stations into three categories with increasing value of residual average. Checking the 17 

reclassification effectiveness through the examination of differences between independent 18 

“validation” observations and predictions of GMPEs adopting the new classification, these proved 19 

to be more consistent with site response properties than predictions provided by GMPEs using 20 

current classification. 21 

 22 

Keywords: Italian accelerometric stations; site classification; ground motion prediction equations; 23 

cluster analysis; regression residuals. 24 

 25 

  26 
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1. Introduction 27 

The main strategy followed at present for seismic risk mitigation relies on the adoption of design 28 

criteria aimed at providing constructions with the capacity of resisting to seismic shakings (defined 29 

“design seismic actions”). In order to optimize such a capacity, standard procedures of seismic 30 

hazard assessment are employed to evaluate the level of shaking expected not to be exceeded at a 31 

site with a probability  representative of a targeted safety level (e.g. 90% in 50 years). 32 

In the commonly used procedures of hazard assessment, after having estimated the number of 33 

earthquakes of different magnitudes expected to be generated in a given span of time by 34 

seismogenic structures  located at different distances from a selected site, a fundamental stage 35 

consists of evaluating the ground motion expected at this site for such events. The most practical 36 

tools for these evaluations are empirical relations, named “Ground Motion Prediction Equations” 37 

(GMPE). They model with a simplified functional form the relation between some shaking 38 

parameters and a set of explanatory variables related to the length of the wave path and to properties 39 

both of the seismic source and of the wave propagation medium. With regard to the latter 40 

properties, a special emphasis is laid on local geological conditions at the site where ground motion 41 

needs to be predicted, in that such conditions are commonly observed to considerably modify local 42 

ground motion, sometimes increasing the level of ground shaking. In particular, ground motion 43 

amplitude is typically higher at sites where the upper few tens of meters of subsoil lithology present 44 

relatively lower stiffness. For this reason, GMPEs generally include in their functional form some 45 

terms accounting for such amplification effects, containing explanatory variables related with the  46 

propensity of site to amplify ground motion. 47 

Such a propensity is also taken into account in the rules for the calculation of design seismic 48 

actions, typically through a categorization of sites into a set of classes differing according to a 49 

description of the stratigraphic profile and to geophysical/technical parameters measuring subsoil 50 

stiffness. In some cases, the belonging to these site classes is used as explanatory variable in 51 

GMPEs. For instance, the GMPEs obtained for Italy by Bindi et al. (2011) adopt the site 52 
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categorization proposed within the technical rules recommended by the European Community for 53 

the design of earthquake-resistant structures in the Eurocode no. 8 (EC8 – see EN 1998-1). These 54 

rules define five ground types named A, B, C, D and E, identified according to the criteria reported 55 

in Table 1, and for each of them a different factor of increase of seismic actions is defined in 56 

comparison to class A, consisting of hard rock and assumed as reference site type. 57 

As geophysical criterion supporting the site classification, the EC8 proposes to consider the average 58 

value of propagation velocity of S waves along a vertical path in the upper 30 m of the soil, 59 

commonly named VS,30. After being first introduced in the United States within the provisions for 60 

seismic regulations recommended by the National Earthquake Hazards Reduction Program 61 

(NEHRP), this parameter has had a widespread employment in site classification, even to model site 62 

effect in GMPE functional form. Indeed, VS,30 is commonly used either to categorize site classes 63 

represented in GMPE expression through dummy binary variables (e.g. Danciu and Tselentis, 2007; 64 

Bindi et al., 2011; Chousianitis et al., 2018), or is used directly as explanatory variable (e.g. 65 

Abrahamson et al., 2014; Boore et al., 2014; Campbell and Bozorgnia, 2014; Chiou and Youngs, 66 

2014; Akkar et al., 2014; Lanzano et al., 2019a). 67 

However, some doubts have been raised about the effectiveness of VS,30 in characterizing site 68 

dynamic response to shaking (cf. Castellaro et al., 2008), considering that it does not account for an 69 

important factor of site amplification, i.e. the stiffness contrast between the overburden soil and the 70 

underlying bedrock, whose interface could be located at depths different from 30 m. Furthermore, 71 

some studies have observed that, especially for shaking parameters depending on ground motion 72 

acceleration, the introduction of common site classes among the explanatory variables of GMPEs 73 

does not seem to improve their predictive performance (cf. Chousianitis et al., 2018). Therefore, we 74 

are experimenting a new approach to site classification to be used in GMPE calibration, based on 75 

the analysis of ground motion observations reported in large-scale accelerometric databases. The 76 

new method analyzes the residuals of regressions carried out on such databases, using GMPE 77 

functional forms not including site effect terms. The basic idea is that these residuals should 78 
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present, within a variability related to factors not considered by GMPEs, a significant difference in 79 

their mean values for sites affected by different levels of amplification. A similar approach has been 80 

adopted in recent studies for site classifications relying on observed spectral accelerations (Puglia et 81 

al., 2015) and pseudo spectral accelerations (PSA) (Kotha et al., 2018). Here we apply this principle 82 

in a simplified way to the analysis of peak ground motion parameters, i. e. peak horizontal 83 

acceleration (PHA) and velocity (PHV). 84 

For the purposes of this approach to site classifications, one can exploit the large amount of data 85 

currently available in national accelerometric databases, thanks to the increased number of stations 86 

of modern networks and their improved sensitivity, which allows the recording of events of 87 

different magnitudes over a large range of epicentral distances. A preliminary test of the new 88 

approach was conducted in a previous study, within an investigation on the performances of 89 

GMPEs calibrated for the prediction of PHA in the Greek area (Del Gaudio et al., under review).  90 

In the present study, the method is applied by using GMPEs aimed at estimating PHA and PHV 91 

values, calibrated for the Italian area on data of the ITtalian ACcelerometric Archive (ITACA – 92 

Pacor et al. 2011; Luzi et al., 2016). The extension of the experimentation of this method to a new 93 

area, with a larger dataset, provided new insight into potential and limits of the new approach to site 94 

classification.   95 

 96 

2. Methodology 97 

Several different functional forms have been proposed for GMPE calibration through regressions 98 

carried out on global or regional databases. While the first formulae were very simple, including 99 

just a couple of explanatory variables to represent the seismic source energy (typically through the 100 

earthquake magnitude) and the effect of ground motion reduction with distance, in the last decades 101 

new functional forms have been introduced, including an increasing number of terms and 102 

explanatory variables. For instance, separate terms were introduced to represent shaking attenuation 103 

with distance, one representing the effect of wave geometrical spreading and the other accounting 104 
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for inelastic attenuation of the propagation medium, whereas the influence of site response and of 105 

the earthquake fault style were taken into account through additional variables.  106 

However, the employment of more articulated functional forms does not always clearly demonstrate 107 

to provide a real improvement of the GMPE predictive performance. The reduction of misfit 108 

between predicted and observed ground motion sometimes is just a statistical artifact due to the 109 

better capacity of a function depending on more variables to adapt itself to a regression dataset. To 110 

certify that a certain functional form actually improves the GMPE prediction capacity, capturing the 111 

most significant sources of observation variability, one should test this capacity on a “validation” 112 

dataset different from that employed for regression.  113 

Applying this approach to look for the functional forms best predicting different shaking parameters 114 

in the Greek region, we found that generally the best performance were not provided by the 115 

equations with the largest number of variables (Chousianitis et al., 2014; 2018; Del Gaudio et al., 116 

under review). For instance, the earthquake fault style turned out to be irrelevant for the accuracy of 117 

prediction of all the shaking parameters examined, in agreement with what found recently by other 118 

authors (Kotha et al., 2018; Lanzano et al., 2019a) about the absence of a clear correlation between 119 

differences of fault mechanism and of ground motion parameters.   120 

With regard to the influence of site response, we found that the inclusion of terms depending on soil 121 

category was ineffective for the prediction of several acceleration-based parameters, including 122 

PHA, whereas improved the predictive performance of GMPEs for velocity-base parameters like 123 

PHV (Chousianitis et al., 2018). This, however, could depend on an incorrect classification of 124 

accelerometric station sites: one cannot exclude that currently used classification criteria, while are 125 

sufficiently adequate for PHV predictions, do not work properly for PHA. Therefore, we have 126 

experimented a new approach of site classification for PHA and PHV predictions, directly based on 127 

ground motion observations, rather than on parameters expected to be correlated to ground motion. 128 
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For this purpose, we propose to analyze the residuals derived from the regression of a GMPE not 129 

including site class as explanatory variable, optimized starting from a basic equation with a simple 130 

form, i.e. 131 

 log � = � + �	 + 
 ∙ log √
� + ℎ� +  � ∙ √
� + ℎ� ± �                                      [1], 132 

where Y is a ground motion parameter (e.g. PHA or PHV), M is the moment magnitude, R is the 133 

epicentral distance and a, b, c, d, h are coefficients to be determined through regression carried out 134 

on a properly selected dataset (defined as “training” dataset).  135 

In equation [1], the third and fourth terms are representative of the effects of geometrical spreading 136 

and inelastic attenuation, respectively, and the coefficient h is the so-called effective-depth 137 

parameter, introduced to account for the saturation effect constraining Y to finite values as R tends 138 

to zero. The coefficients of [1] are obtained from a two-step regression (Joyner and Boore, 1993). 139 

At a first stage, the coefficients of terms representing the effect of wave propagation (c, d, h) are 140 

calculated together with generic “event coefficients”, and then, with a second regression, 141 

coefficients depending on source properties (a, b) are determined from the “event coefficients” 142 

obtained at the previous stage (see Chousianitis et al., 2014 for more details). In this way it is 143 

possible to distinguish better the effect of ground motion variation with distance (within-event 144 

variability), from that depending on magnitude (between-event variability). The total standard 145 

deviation σ of regression is calculated as quadratic average of those of each regression step. 146 

For the selection of the optimal functional form, we carry out preliminary tests comparing equations 147 

derived from [1] by removing the inelastic term or the coefficient h, or fixing the coefficient c to the 148 

theoretical value −1 (instead of calculating it from regression), or variously combining these 149 

modifications. Among all functional forms, we select the one providing the best predictive 150 

performance when applied to a distinct “validation” dataset (completely different from the 151 

“training” dataset used for regression). In particular, as optimal equation we choose the one 152 

minimizing the root mean square rmsl of prediction deviations from the actual observations.  153 
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The residuals of regression of the best performing equation are then used to classify the sites of 154 

stations whose recordings constitute the regression dataset. For this purpose, starting from the set of 155 

residual values found for different stations (see example in Fig. 1a), the averages of residuals 156 

relative to each station are calculated (black dots in Fig. 1) and the stations are ordered by 157 

increasing value of such averages (Fig. 1b). Stations are then grouped into a number l of classes, 158 

through a univariate cluster analysis, finding the l-1 limits (marked by dashed vertical lines in Fig. 159 

1b) separating l classes so to minimize the quantity: 160 

� = ∑ ∑ ∑ ����� − ��� �
�

���,!(�,�)��$%(�),$&(�)���,'                                             [2] 161 

where εijk is the residual of the i-th recording of the j-th station belonging to the k-th class, m1(k) and  162 

m2(k) are the order numbers of the first and last station belonging to the k-th class, n(j,k) is the 163 

number of recordings of the  j-th station belonging to the k-th class and  ���  is the average of the 164 

values εijk relative to the recordings of the stations belonging to the k-th class. Thus, in equation [2], 165 

q represents a measurement of observation scattering within a class, given by the quadratic sum of 166 

the deviations of residuals of recordings from the average relative to all the stations belonging to the 167 

same class (marked by solid horizontal lines in Fig. 1b). 168 

The class limits satisfying the minimization of [2] are found through a procedure calculating 169 

iteratively the quantity q for all the possible combinations of the l-1 class limits, obtained by 170 

moving such limits along the series of stations ordered by residual averages. For the first class, 171 

m1(1) = 1 and m2(1) varies from 2 to M−l+1, with M equal to the total number of stations, whereas 172 

for each of the following classes, m1(k) varies from m2(k-1)+1 to M−l+k, and m2(k) varies from 173 

m1(k) to M−l+k.   174 

Once a new site classification is obtained, its effectiveness is evaluated using it to calibrate a new 175 

GMPE, in this case including a function of site class expressed as linear function of l-1 dummy 176 

variables sk according to the expression  177 

     ( = ∑ )�*����,'+�                                                                    [3]. 178 
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The site class with the minimum negative residuals, corresponding to stations having the lowest 179 

values of ground motion, is represented by setting to 0 all the variables sk, whereas each of the other 180 

classes is represented setting just one of the l-1 variables to 1 and all the others to 0.  181 

The expression [3] is added to that of the best predicting equation previously obtained and the 182 

coefficients ek are calculated from the first of a new two-step regression (i.e. the stage analyzing the 183 

factors of within-event variability), carried out on the training dataset. The resulting equation is then 184 

tested on the validation dataset to evaluate if the inclusion of site class terms based on the new 185 

classification improves the GMPE predictive performance in comparison to an equation with the 186 

same functional form, which relies on a conventional site classification. 187 

 188 

3. Data 189 

In order to apply the previously described methodology to the stations of the Italian National 190 

Accelerometric Network, PHA and PHV data were extracted from the database ITACA - release 2.1  191 

(Luzi et al., 2016), now more easily available from the database ESM (Engineering Strong Motion 192 

database – Lanzano et al.,  2019b: see https://esm.mi.ingv.it) . The ITACA database includes 25222 193 

three-component accelerometric waveforms of 1365 earthquakes with magnitude M ≥ 3.0, recorded 194 

from 1972 to 2015 by 1210 stations (see Fig. 2a for their location). 195 

Data selection was conditioned by two requirements of the techniques adopted for analysis i.e.: i) in 196 

the regression dataset, more than one recording for each seismic event must be included and ii) for 197 

each station, recordings should be distributed over a range of event magnitude and epicentral 198 

distances as wide as possible. 199 

The first requirement is related to the need of excluding events for which just the recording at a 200 

single station is available, because such events cannot provide information on within-event 201 

variability (cf. Cotton et al., 2006; Bommer et al., 2010). The requirement ii) was suggested by the 202 

results of a first implementation of the method carried out on the Greek accelerometric database 203 

(Del Gaudio et al., under review). These results showed that the improvement of GMPE predictions 204 
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provided by the new classification might be rather poor if data from a single station cover a narrow 205 

range of magnitude/distance combinations.  206 

Based on these considerations, we selected a dataset including not less than 10 recordings for each 207 

accelerometric station and, for the training dataset, events with at least two recordings at differently 208 

distant stations. As a result of this selection, we extracted, from the ITACA database, recordings 209 

acquired at 87 stations, listed in Table 2 and whose geographical distribution is shown in Fig. 2b. 210 

For each station, Table 2 reports, together with its coordinates, the site class assigned by ITACA 211 

(according to the EC8 criteria), the VS,30, when available, the number of recordings used for our 212 

analysis and the ranges of event magnitudes and epicentral distances covered by these recordings. 213 

This dataset was subdivided into two subsets consisting of approximately 2/3 and 1/3 of the total, 214 

respectively, the former to be used as training dataset, with only events for which more than one 215 

recordings are available, and the latter forming a validation dataset with the remaining recordings. 216 

The distribution of recordings between the two subsets was made so to obtain a relatively good 217 

coverage through the total range of magnitudes and distances (see Fig. 3). The training dataset 218 

includes 1389 recordings of 204 events with magnitude between 3.1 and 6.4 (see Fig. 2c for their 219 

location), whereas, the validation dataset consists of 740 recordings of 378 events with magnitude 220 

between 3.1 and 6.9 (Fig. 2d). Both dataset includes only recordings of crustal events (depth up to 221 

30 km) acquired at distances from about 1 to 200 km.  222 

The selected recordings stations were classified by the ITACA database following the EC8 223 

nomenclature (Luzi et al., 2015): they belong almost only to three of the existing classes and, in 224 

particular, 21 of them are of type A (rock), 40 of type B (very stiff soil) and 25 of type C (stiff soil). 225 

Just one station (CMPO – Campotto Po) is classified in class D but, for the purpose of this study, 226 

was associated to class C.  227 

From Fig. 3, one can notice that the distribution of recordings over the total range of magnitudes 228 

and distances is not homogeneous and, in particular, only a very small number of recordings 229 

acquired at short distances (< 10 km) are relative to events of magnitude higher than 5.0. This 230 
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depends on the fact that, while low energy seismicity is very diffuse, making more probable the 231 

detection of events even very close to an accelerometric station, the more infrequent strong events 232 

are more likely to be recorded at longer distances. This inhomogeneity, commonly observed in 233 

accelerometric dataset, is the reason for the adoption of a two-step regression aimed at better 234 

separating the modelling of ground motion reduction with distance, from that depending on 235 

magnitude decrease. Indeed, the simultaneous increase of distance of observations and of event 236 

magnitude tends to partially compensated each other, thus possibly causing an underestimate of the 237 

attenuation rate resulting from regression (cf. Fukushima and Tanaka, 1990). 238 

 239 

4. Results of reclassification 240 

The preliminary optimization of GMPE functional forms provided the following site-independent 241 

equations for PHA and PHV: 242 

log ,-. = 0.620 + 0.689 	 − 1.975 ∙ log √
� + 10.69� ± 0.359                                      [4], 243 

log ,-9 = −1.934 + 0.834 	 − 1.654 ∙ log √
� + 8.74� ± 0.306                                      [5], 244 

where PHA is the median value estimated for the geometric mean of the peak horizontal 245 

accelerations along east-west and north-south directions, measured in Gal (cm/s2) and PHV is the 246 

analogous geometric mean for peak velocities measured in cm/s.  Applied to the validation dataset, 247 

these equations provided errors, in the estimate of log PHA and log PHV, whose root mean square 248 

rmsl is 0.443 and 0.390, respectively. These rmsl values are slightly lower than those obtained with 249 

functional forms including the term representative of inelastic attenuation (0.447 and 0.393 for PHA 250 

and PHV, respectively). Such a result indicates that, at least within the examined range of distances 251 

(< 200 km), the GMPE predictive performance is not improved by separating geometrical spreading 252 

and inelastic attenuation instead of incorporating both of them into a single attenuation term. 253 

Figure 4 shows the distribution of regression residuals for both equations, together with the mean 254 

values of residuals and of magnitude of the recorded events, both calculated as running average 255 
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over 21 recordings ordered by increasing epicentral distances. Residuals are largely scattered 256 

around an average close to 0 (0.02 for PHA and 0.04 for PHV) and their variations with distance 257 

show random oscillations without any clear trend. A possible asymmetry in residual distribution can 258 

be recognized for recordings at epicentral distances less than 4 km, which show prevailingly 259 

positive residuals, and, possibly, for recordings at distances greater than 100 km, which show a 260 

slightly decreasing trend. The first asymmetry concerns very few observations for events of low 261 

magnitude (from 3.1 to 4.5). The descending trend at distances greater than 100 km recalls what 262 

observed for high frequency PSAs by Kotha et al. (2018) about a major sensitivity of more distant 263 

observations to the inelastic attenuation, which motivated a bilinear modelling of attenuation with 264 

distance. This trend appears also inversely correlated with the obvious tendency to an increase of 265 

mean magnitude of events recorded at longer distances (see red lines in Fig.4). Thus, overall, it is 266 

possible that the adoption of a simplified GMPE implies an underestimation of predictions for small 267 

very close events and an overestimation for stronger events at distances > 100 km. However the 268 

underestimation affects only very few events, whereas the amount of mean residual decrease 269 

between 100 and 200 km is very low in comparison to the residual scattering, so that these possible 270 

biases should have minor influence on site classification based on residual analysis. 271 

A cluster analysis according to the procedure described in section 2 was then applied to the 272 

regression residuals, tentatively assigning different values to the number l of classes. The resulting 273 

quadratic sums of residual deviations from class average (q in equation [2]) are plotted in Fig. 5 for 274 

both PHA and PHV residuals as function of the number l of classes. The value of q decreases 275 

quickly as l increases from 1 to 3 (by about the 90% of the total variation) and then undergoes only 276 

minor further reductions. This result is consistent with the fact that almost all the stations (save 277 

one), were assigned by ITACA to three classes, thus, also to maintain a comparability between the 278 

new and the standard classification, the value of l was finally set to 3.  279 

The 87 stations examined in this study were therefore reclassified by grouping them into three 280 

classes named Aʹ, Bʹ and Cʹ, for the PHA-based reclassification, and A″, B″ and C″, for the PHV-281 
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based one. These classes are intended as site typologies characterized by an increasing amplification 282 

factors in comparison to a reference category identified as that with the lower amplification level 283 

(classes Aʹ and A″).  284 

Figure 6 illustrates the results of the cluster analyses based on residuals of PHA and PHV estimates. 285 

With regard to the PHA-based classification, 21 stations are assigned to the reference class Aʹ, 286 

characterized by logarithmic residuals of −0.419±0.287 (where −0.419 is the average and 0.287 the 287 

standard deviation); 43 stations are classified as of category Bʹ, with residuals of 0.027±0.279; the 288 

remaining 23 stations are in category Cʹ, with residuals of 0.406±0.313. With regard to the PHV-289 

based classification, 22 stations are in class A″, with logarithmic residuals of −0.302±243; 36 290 

stations are classified into category B″, with residuals of 0.030±0.265; 29 stations are in category 291 

C″, with residuals of 0.302±0.277. In numerical terms, the distribution of stations among the three 292 

categories is quite similar to that of the conventional classification, with a prevalence of sites of 293 

intermediate classes (40 B, 43 Bʹ, 36 B″), in comparison to sites with weaker (21 A and Aʹ, 22 A″) 294 

or stronger amplification (26 C, 23 Cʹ, 29 C″). 295 

The mean residual at the boundary between the new classes could be used to classify other 296 

accelerometric stations, different from those listed in Table 1, whose data were not included in the 297 

training dataset. In particular, with regard to the PHA-based classification, the average between the 298 

mean residuals of stations AVZ and TOR, and that between the stations AMN and MCR, i.e. 299 

−0.200 and 0.218, respectively, can be set as limit separating classes Aʹ and Bʹ and classes Bʹ and  300 

Cʹ, respectively. Thus, applying the equations [4] and [5] to calculate residuals of observations 301 

acquired at other stations, these can be assigned to Aʹ, Bʹ or Cʹ according that the residual average is 302 

below −0.200, between −0.200 and 0.218 or over 0.218, respectively. Similarly, with regard to the 303 

PHV-based classification, mean residuals equal to −0.135 and 0.175, derived as averages over the 304 

station couples ACER-BOTT and BRZ-VSD, respectively, can be assumed as limits between A″-305 

B″ and between B″-C″, respectively. 306 
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Tables 3 and 4 compare the classification reported by ITACA and the new ones. In both cases, old 307 

and new classifications agree for less than half of the classified sites (40 and 39 for PHA- and PHV-308 

based classification, respectively) and in 10-13% of cases the ranking, in terms of expected 309 

amplification, differs by two levels (11 and 9 stations for PHA- and PHV-based classification, 310 

respectively). Stations classified by ITACA as of class A, are almost evenly distributed among the 311 

three categories of the new classifications (6 in Aʹ and A″, 7 in Bʹ and C″, 8 in Cʹ and B″) and sites 312 

of class B are more than half of those classified as of class Aʹ and A″. This can in part derive from 313 

an uncertain definition of boundaries between categories, so that moving such boundaries even by a 314 

small amount can transfer some sites across the limit between contiguous classes. However, in 315 

several cases the difference of classification reflects a poor correlation of observed residuals with 316 

conventional class assignments, which suggest the need of a reclassification. This result is 317 

consistent with the outcome of a recent study by Felicetta et al. (2018), which, adopting a 318 

combination of 6 geological and geophysical proxies to reclassify 47 stations of the Italian 319 

Accelerometric Network, found that a considerable number of stations previously assigned to class 320 

A needs to be reclassified as not adequate to be used as reference sites.  From our analysis, a high 321 

number of class A sites (rock sites expected not to be amplified) are among those with the highest 322 

level of peak ground motion (8 in Cʹ and 7 in C″) and some of class C stations expected to be 323 

considerably amplified, are characterized by negative residual of ground motion prediction (3 in Aʹ 324 

and 2 in A″).  325 

A measurement of the discrepancy between the ITACA classification of a station and that provided 326 

by the residual analysis can be obtained by calculating the minimum difference between the station 327 

mean residual and the values of residuals within the class having the same ranking as that assigned 328 

by ITACA to the station. For instance, for a class A station assigned by the PHA residual analysis 329 

to class Bʹ or Cʹ, the minimum difference of its mean residual from a value compatible with the 330 

assignment of the station to the first class (as in ITACA) is that at the boundary between classes Aʹ 331 

and Bʹ (i.e. the average between AVZ and TOR). Normalizing these differences by the standard 332 
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deviation of the same station residuals, these differences result larger than one standard deviations 333 

for a considerable number of stations (26% and 15% of PHA- and PHV-based classifications, 334 

respectively), and larger than two standard deviations for 8  of PHA-classified and 5 of PHV-335 

classified stations (see values of difn in Tables 3 and 4).  336 

Comparatively, a much better agreement is present between the two new classifications. No site is 337 

assigned by the PHA-based classification to a category differing by more than one level from that 338 

derived from PHV residuals (see Table 5). Discrepancies are mostly concentrated on groups of 339 

stations whose residual average is close to the limit separating two contiguous classes and only for 340 

one station (AVZ – Avezzano) this average differs from the limit of the class corresponding to that 341 

assigned using PHA residual by more than 1 standard deviation (but just for a tiny amount). 342 

 343 

5. Validation tests 344 

In order to evaluate the effectiveness of the new classifications, we first examined its consistency 345 

with ground motion parameters observed for recordings different from those used in GMPE 346 

regressions. For this purpose, the equations [4] and [5], estimating PHA and PHV, respectively, 347 

without consideration of site class differences, were applied to the validation dataset and differences 348 

of observations from GMPE predictions were examined. In order to verify whether these residuals 349 

show some dependence on seismic event magnitude and epicentral distance, they were plotted as 350 

function of such variables, after having averaged over some ranges of magnitude and distance, in 351 

order to reduce the influence of random fluctuations due to other variability factors not considered 352 

by GMPEs. Figures 7 and 8 shows the results obtained for PHA and PHV, respectively, averaging 353 

logarithmic residuals of predictions relative to magnitude and distance range comprised between an 354 

increasing lower bound and the maximum. Such averages were calculated separately for groups of 355 

stations classified as belonging to the same category, following both the conventional ITACA 356 

classification and the new ones based on PHA (Fig. 7) and PHV (Fig. 8) residuals. It is apparent 357 

that, adopting the new classifications, the residuals distribution points out clearly a systematic 358 
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increase of peak ground motion values passing from the first to the third ground category for almost 359 

the entire range of magnitude and distances examined. Only when the averages are based on a small 360 

number of data (as it occurs towards the right end of the data series), separation among classes 361 

appears less pronounced, likely being more influenced by random fluctuations. The same clear 362 

separation among classes cannot be recognized when the classification reported by ITACA is 363 

adopted. In this case, sites of class A and B appear practical indistinguishable in terms of mean 364 

level of ground motion, whereas only the higher level of amplifications affecting class C sites can 365 

be in part recognized. Thus, the new classifications show a much better consistency with the 366 

expected influence of site response also for observations different from those used in the 367 

classification procedure. 368 

As further test, we verified if, the adoption of the new classifications for the calibration of new 369 

GMPEs accounting for site effects is able to improve the GMPE predictive performance. Therefore, 370 

we calibrated new GMPEs including site terms in the form of equation [3]. Since all the examined 371 

stations are grouped into three categories, two dummy binary variables were introduced, i.e. sB′ and 372 

sC′ for the PHA-based classification, and sB″ and sC″ for the PHV-based classification. For sites 373 

belonging to the reference class (A′ and A″), both variables are set to 0, whereas, for each of the 374 

other classes, only the variable having the class name as subscript is set to 1. Using the same 375 

training dataset for regressions, the following equations were obtained: 376 

log ,-. = 0.318 + 0.677 	 − 1.999 ∙ log √
� + 10.26� + 0.410 *;< + 0.777 *=< ± 0.249    [6]                      377 

log ,-9 = −2.282 + 0.792 	 − 1.542 ∙ log √
� + 6.10� + 0.321 *;" + 0.597 *=" ± 0.227  [7].                      378 

For comparison homogeneity, regressions according to the same functional form, but assigning to 379 

stations the ITACA classification, were also carried out obtaining 380 

log ,-. = 0.588 + 0.686 	 − 1.936 ∙ log √
� + 9.87� − 0.097*; + 0.072 *= ± 0.351         [8]                      381 

log ,-9 = −2.018 + 0.826 	 − 1.598 ∙ log √
� + 7.27� − 0.060 *; + 0.190 *= ± 0.286    [9],                      382 

where sB and sC are set to 1 for class B and C, respectively, and to 0 otherwise. 383 
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Figure 9 shows the curve of predictions of these equations as function of distance, for different 384 

magnitudes and site classes, compared to the observations acquired at stations of the corresponding 385 

classes. 386 

As first consideration, standard deviations of regressions are smaller for equations [6] and [7] 387 

adopting the new classifications. This could be expected, since such classifications are obviously 388 

better correlated to residuals of equations [4] and [5] (not including site terms) than the 389 

classifications used in equations [8] and [9], so that a larger amount of the observed ground motion 390 

variability is explained in terms of site response by the equations adopting the new classifications.  391 

More interestingly, on the one hand, the result of regressions adopting the ITACA classification, 392 

implies rather small amplification factors for the class of maximum site effect (1.2 for PHA, against 393 

the factor 1.5 proposed by EC8 -  see Table 1 - and 1.5 for PHV). On the other hand the coefficients 394 

obtained for the second categories (B′ and B″) appear anomalous, in that they are negative, thus 395 

predicting for class B sites a slight de-amplification in comparison to rock sites (by a factor of 0.8 396 

and 0.9, for PHA and PHV, respectively). These anomalous results can be explained considering 397 

that, according to the observed ground motion, most (about 70%) of class A sites should be 398 

assigned to classes of higher amplification level, about 1/3 of the class B sites to the reference class 399 

and a percentage from 44% (for PHV) to 60% (for PHA) of class C to less amplified classes. This 400 

leads to a reduction of differences among the mean amplification factors of the three ITACA 401 

classes, also exchanging the role of less amplified category between the first two classes. 402 

Comparatively, equations [6] and [7], adopting the new classifications, are consistent with the 403 

expected increase of amplification factor passing from the first to the third class. The resulting 404 

factors are much larger than those proposed by EC8 (2.6 for class B′ and 6.0 for class C′), 405 

consistently, however, with what commonly observed on soil sites, where amplification factors 406 

larger than 2 are anything but unusual. 407 

The better performance of the new classifications could reflect a better adaptation of the regression 408 

results just to the training dataset. To compare their performance on independent data, we applied 409 
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all the obtained equations (from [4] to [8]) to predict the observations comprised in the validation 410 

dataset. Table 6 summarizes the results obtained. It is apparent that the adoption of the new 411 

classification outperforms not only the equations not including site effect among the explanatory 412 

variable, but also those obtained following the ITACA classification, by reducing estimate errors by 413 

an amount from 10% to 30%, on average.  414 

 415 

6. Discussion 416 

6.1 Comparison with other classification methods 417 

An approach to site classification based on ideas similar to those inspiring the method we present in 418 

this study was recently proposed by Kotha et al. (2018). Their method applies a multidimensional 419 

cluster analysis to residuals of GMPE predicting pseudo spectral acceleration (PSA) for several 420 

periods between 0.01 to 2 s. For this purpose, these authors had the possibility to exploit a very 421 

large and high quality database acquired in Japan by the Kiban-Kyoshin network (Okada et al. 422 

2004; Dawood et al., 2016), from which they extract a dataset including 15896 records of 850 423 

events with magnitude between 3.4 and 7.3 recorded at distances up to 543 km.  The functional 424 

form they adopted for GMPE has a term accounting for attenuation with distance differentiated for 425 

distances greater or shorter than 100 km, also including an effective-depth h depending on 426 

magnitude, and a magnitude scaling differentiated for different magnitude ranges. Comparatively, 427 

our method differs from that by Kotha et al. (2018) for the use of simpler functional forms for 428 

GMPE, justified by the availability of a smaller dataset, covering a smaller range of distances, to 429 

constrain the model parameters. Furthermore, our approach applies a unidimensional clustering 430 

approach separately to PHA and PHV, with the aim of exploring the hypothesis that different 431 

ground motion parameters requires distinct criteria of site classification.  432 

Despite the simplifications introduced by our approach in comparison to more sophisticated ones, it 433 

proved to be able to considerably improve the GMPE predictions. This is particularly important for 434 

the predictions relative to the reference site class used for the assessment of “base” seismic hazard. 435 
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Indeed, it should be reminded that the main employment of GMPE in the framework of hazard 436 

assessment is for prediction of ground motion parameter under reference site conditions not affected 437 

by amplifications. The employment of ground type classification to account for the influence of 438 

local conditions on hazard and, consequently, on the definition of design seismic actions for 439 

building codes, is recommended only for few simple situations (flat horizontal layering with Vs 440 

increasing with depth according a few types of stratigraphic profiles). Otherwise, the evaluation of 441 

expected ground motion should be obtained by using site response numerical modelling, starting 442 

from ground shaking estimated for reference conditions, rather than using a GMPE accounting for 443 

different site conditions. 444 

Our validation tests showed that an incorrect classification of reference site, including sites affected 445 

by amplification effects, can lead to a considerable overestimation of ground motion prediction (see 446 

dashed lines relative to class A sites in Fig. 9). Indications of the same type were also derived by 447 

Felicetta et al. (2018) in their exam of reference rock sites in Italy, conducted through a 448 

multiparametric criterion of reclassification. 449 

The results of our tests show additionally that no “natural” separation among site classes emerges 450 

from ground motion observations (see Fig. 6): the averages of residuals relative to different stations 451 

present a gradual variation without no jump that could be related to a sharp change of site response 452 

properties. Thus, the subdivision into categories appears just as an artifice, which is functional to 453 

the practical convenience of discretizing the modelling of site effect influence on ground motion. 454 

This could be an argument in favor of a direct use of technical/geophysical parameters as 455 

continuous variable in a GMPE rather than as basis of site categorization, but the comparison of 456 

regression residuals with VS,30 values (when available) does not support the effectiveness of its use 457 

for this purpose. In Figure 10 the averages of residuals of site-independent PHA and PHV 458 

regressions, relative to stations for which VS,30 is available, are plotted as function of the VS,30 459 

estimated values.  While a decrease of residuals should be expected for stiffer, higher velocity site 460 

conditions, no correlation with VS,30 is observed for PHA residuals (the coefficient of 461 
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determination R2 of a linear regression being 0.001) and only a weak descending trend results from 462 

PHV data (but with a R2 of only 0.22).   463 

 464 

6.2. Possible causes of discrepancies from previous classifications  465 

We also examined possible reasons of major discrepancies between conventional and new 466 

classifications. In general, such discrepancies could depend on an incorrect site classification for 467 

lack of data on subsoil properties. Actually, for the majority of the accelerometer stations selected 468 

for this study (52 out of 87), the site classification reported by ITACA relies on geological 469 

observations alone, not being available the VS,30 values (see Table 2).   470 

On the other hand, the results of the classification criteria proposed here could be biased by data 471 

scarcity. It can be observed that the amplification factor of peak ground motion presents a certain 472 

dependence on magnitude and distance (cf. Del Gaudio and Wasowski, 2011), likely in relation to 473 

the closeness of the resonance frequency of site response to the frequency of wave maximum 474 

amplitude. Since low-magnitude, short-distance events present maxima of wave amplitude at 475 

relatively higher frequencies, for such events, rock sites, although not affected by significant 476 

amplification, can appear relatively more amplified because of a stronger response to higher 477 

frequency in comparison to sites on soil where such waves are more attenuated. Thus, if the training 478 

dataset includes, for a rock site, recordings comprised within a limited range of small magnitudes 479 

and short distances, this site would be classified as belonging to a site class affected by high 480 

amplification. 481 

The need of considering, for residual-based reclassification, observations spanning, for each station, 482 

over a wide range of magnitudes and distances is also supported by the results of the analysis of 483 

residual scattering around GMPE predictions, shown in Fig. 4. The bias due to a possible 484 

underestimation of GMPE predictions at very short distances (< 4 km) and to overestimation at very 485 

long distances (> 100 km) can be countered avoiding the use of data of stations for which only 486 

recordings acquired within one of these two ranges are available. The validation test conducted on a 487 
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dataset independent form that employed for regressions confirmed that, despite the possible 488 

presence of bias in GMPE estimates of ground motion at very short  and very long distances, the 489 

reclassification proved to be able to correctly predict the distinct behaviour of reference sites in 490 

terms of expected ground motion (see Figs. 7-8). 491 

 492 

6.3 Analysis of cases of major differences between previous and new classifications 493 

To shed more light on causes of classification discrepancies, we analyzed in more detail the cases of 494 

differences larger than two standard deviations between the residual average of a station and the 495 

limit of the class corresponding to that assigned by ITACA to the same station (see parameter difn 496 

in Tables 3 and 4). For 5 stations (ASOL, ASO7, BCN, SNN, SRT) this condition is encountered 497 

both in PHA- and PHV-based classifications, whereas, for three more stations (ASR, BRZ, MOCO), 498 

only for the classification using PHA residuals. 499 

In most of such cases (5 out of 8: ASOL, ASO7, ASR, BCN, MOCO) the ITACA classification 500 

actually is based only on geological surface observations, since VS,30 was not measured.  501 

For stations ASOL and ASO7, both located in the municipality of Asolo (Veneto region), in 502 

different location (the local cemetery and a fortress, respectively) and for different spans of time, 503 

the attribution to class A is likely related to the local outcrop of a Miocene sandstone formation 504 

(Dal Piaz et al., 1946) in the station area. However, the mean difference of logarithm of peak 505 

ground motion observed from the median of GMPE prediction are rather high (0.413 – 0.381, for 506 

PHA, 0.379 – 0.377, for PHV), implying a mean increase by a factor larger than 2 in comparison to 507 

the expected median, which justifies its assignment to class C′ and C″. This assignment is based on 508 

a large number of data comprised in the training dataset (27 for ASOL and 6 for ASO7), covering a 509 

wide range of distances (60-200 km) and magnitudes (3.1-6.1). Thus, it appears quite well 510 

constrained and the association of these stations to class A could depend on lack of consideration of 511 

mechanical conditions of outcropping rocks and/or possible unrecognized shallow lithological 512 

variations. As alternative, considering that both stations are inside a building, the considerable 513 
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amplification of ground motion could be due to the building response. 514 

In case of station ASR (Ascoli Satriano, Puglia region), its attribution to class A appear weakly 515 

founded, since it is located on a surface where a Pleistocene conglomerate outcrops. This 516 

conglomerate is generally poorly compact, consisting of cobbles included in a sandy matrix, which 517 

only locally appear strongly cemented to form a pudding-stone (Malatesta et al., 1967). Thus, the 518 

attribution of station ASR to category C′ or C″, resulting from PHA and PHV residual analysis 519 

appears plausible, although relying on a relatively small number of recordings belonging to the 520 

training dataset (7), which covers a limited range of distances (30-100 km) and magnitude (3.2-4.5). 521 

The presence of significant amplification conditions is also supported by historical records reporting 522 

a high level of damages (with 4000 victims) in the Ascoli Satriano zone for a magnitude 6.0 523 

earthquake occurred in 1361  (Boschi et al., 2000). 524 

An opposite situation is found at station BCN (Buccino, Campania region), which ITACA classifies 525 

as C category, possibly in relation to the local presence of incoherent Holocene debris covering a 526 

substratum consisting of Cretaceous limestone (Cestari, 1971). PHA and PHV data includes this 527 

station in classes A′ and A″, on the basis of highly negative residuals (-0.605 and -0.409, for PHA 528 

and PHV, respectively) averaged over 11 recordings covering a range of magnitudes from 3.5 to 5.0 529 

and distances between 15 to 190 km. Thus, ground motion appear here much weaker than the 530 

expected median, and the classification of BCN as an amplified site, reported by ITACA, could 531 

depend on the lacking evaluation of the local thickness of overburden soil, hiding a much more 532 

compact substratum which could have a major influence on site response.  533 

The last case of classification not based on VS,30 (MOCO – Biccari Monte Cornacchia, Puglia 534 

region) is particular. Although ITACA classification differs only by one level from those resulting 535 

by the new approach (B against A′ and A″), station residual averages are very distant from the 536 

limits separating the first from the second class. Indeed, MOCO residuals are characterized by 537 

strongly negative values (on average -0.828 and -0.472, for PHA and PHV, respectively),  which are 538 

the lowest among all the examined stations, thus indicating ground motion levels far from those 539 
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expected for an even weakly amplified sites. Ground motion dataset, consisting of 12 recordings of 540 

events of magnitude between 3.6 and 5.2, acquired at distances from 30 to 180 km, provides a quite 541 

large range of observations. Thus, the assignment of MOCO to class B can be related to the local 542 

presence of a Miocene flysch formation, which however includes terms consisting of more compact 543 

carbonate rocks (Jacobacci et al., 1967). A more detailed analysis of local rock typology and 544 

mechanical conditions could be necessary for a clarification of site response properties of this 545 

station, which does not show evidence of significant amplifications. 546 

Among the eight stations presenting major discrepancies between conventional and new 547 

classifications, three (BRZ, SNN, SRT) were classified by ITACA on the basis of VS,30 548 

measurement. Despite resulting values larger than 800 m/s for all three stations (1030, 865 and 871 549 

m/s, respectively), however, the residual averages of ground motion predictions are largely positive, 550 

particularly high for PHA (0.418, 0.561, 0.303, respectively) and a bit lower for PHV (0.165, 0.332, 551 

0.236, respectively). Thus, while ITACA classifies the sites as of class A, the new classification 552 

assigns them to the third class (C′ and C″), with the only exception of PHV residuals of BRZ, which 553 

places this station in class B″. 554 

The case of BRZ (Bersezio, Piemonte region), located on a relief consisting of Cretaceous 555 

carbonate rock (Crema et al., 1971), is particular, because, although 11 recordings are available in 556 

the complete dataset, only 2 of them are relative to events satisfying the requirements for two-step 557 

regression. Thus, its classification does not appear well constrained, also considering that the two 558 

recordings were acquired at similar epicentral distances (around 30 km) from two events of 559 

magnitude 3.4 and 4.9. Taking additionally into account that the PHA- and PHV-based  560 

classifications are not completely in agreement and that data from validation dataset show lower 561 

residuals, this reclassification based on residual analysis might be unreliable.  562 

On the contrary, the classifications of SNN (Sannicandro Garganico, Puglia region) and SRT 563 

(Sortino, Sicilia region) are based on a relatively more consistent set of data (7 and 9 recordings, 564 

respectively) distributed over a diversified range of epicentral distances (20-120  and 20-135 km, 565 
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respectively) and of magnitudes, at least in case of SNN (3.6-5.7 and 3.1-4.2, respectively). For 566 

these stations, ITACA provides also a Vs vertical profile, which, in case of SRT, does not extend 567 

below 30 m, whereas, for SNN, presents a complex pattern of variations, including alternation of 568 

slower and faster layers, with a deeper substratum characterized by velocities significantly higher 569 

than the VS,30 value (1500-2000 m/s at depths larger than 50 m). Overall, it is possible that VS,30 570 

is not able to capture deeper velocity contrasts, responsible for amplification effects resulting in the 571 

high values of peak ground motion observed, which leads to their classification in classes C′ and 572 

C″.  573 

Combining the observation relatives to stations SNN and SRT with what shown by Figure 7, it 574 

appears that situations where VS,30 is poorly representative of site propensity to amplification are 575 

quite recurrent. Thus, unless to find other parameters proving to work better than VS,30, the 576 

practice to take into account site effects for ground motion predictions through a discretized 577 

categorization, rather than using a single physical parameter, still appears a reasonable solution.  578 

The results of tests presented in this study and in a previous one relative to the Greek area (Del 579 

Gaudio et al., under review) indicate that categorizations based on GMPE regression residual 580 

analysis, can produce results not completely homogeneous when different ground motion 581 

parameters are employed. Although, until now, this has been found comparing PHA and PHV only, 582 

it is likely that similar conclusions would derive from the application of the proposed classification 583 

method to other shaking parameters, e.g. spectral acceleration response at different periods, which 584 

are more explicitly related to site resonance frequencies. However, the proposed classification 585 

approach offers the possibility of associating a “multi-categorization” to accelerometric sites, 586 

possibly assigning different classes to each of them for shaking parameters reflecting ground 587 

motion at different frequency intervals.  588 

 589 

7. Conclusion 590 

Considering uncertainties and errors that can affect conventional methods of site classifications 591 
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relying on qualitative observation of surface geology and/or measurement of parameters not enough 592 

representative of all possible site amplification conditions, the direct use of ground motion 593 

observations for the classification of accelerometric stations offers interesting perspectives. In 594 

particular, a univariate cluster analysis of residuals of regressions of GMPEs that adopts site-595 

independent functional forms, proved to be able to improve predictive performance of new GMPEs 596 

including site terms defined according to classifications that use the outcome of cluster analysis. 597 

Although the proposed approach for site classification cannot be of general use, being applicable 598 

only at sites for which a large amount of accelerometric observations are available, it can contribute 599 

to improve the definition of GMPEs suitable for “base” hazard assessment, which requires the 600 

prediction of ground motion expected for site conditions not affected by amplification. Indeed, the 601 

use of accelerometric database including recordings of stations classified as sites of class A on the 602 

basis of conventional methods can introduce ground motion data resulting from unrecognized 603 

amplification conditions.  Furthermore, accelerometric stations not included in the dataset used for 604 

class limit definitions could be also re-classified by comparing these limits with the average of 605 

residuals resulting from the application of site-independent GMPE to recordings available for such 606 

stations. Finally, the proposed method of accelerometer site classification offers a tool for a cross-607 

check of the reliability of station classifications obtained through different methods. In presence of 608 

strong inconsistencies of classifications, a more thorough investigation of the causes of such 609 

discrepancies can reveal inaccuracies in the results of the conventional or the new classification 610 

method, thus suggesting appropriate revisions. 611 
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Tables 

Table 1: Site classification according to the Eurocode 8. Descriptive and geophysical (based on 

VS,30) criteria of ground type identification are reported together with the amplification factors S 

applied to seismic actions for each type. 

Ground 

type 
Description of stratigraphic profile 

Parameters 

VS,30 

(m/s) 

Amplification 

factor S 

A 

Rock or other rock-like geological formation, 

including at most 5 m of weaker material at the 

surface.  

> 800 1.0 

B 

Deposits of very dense sand, gravel, or very stiff 

clay, at least several tens of metres in thickness, 

characterised by a gradual increase of 

mechanical properties with depth. 

360 - 800 1.4 

C 

Deep deposits of dense or medium–dense sand, 

gravel or stiff clay with thickness from several 

tens to many hundreds of metres. 

180 - 360 1.5 

D 

Deposits of loose-to-medium cohesionless soil 

(with or without some soft cohesive layers), or 

of predominantly soft-to-firm cohesive soil. 

< 180 1.8 

E 

A soil profile consisting of a surface alluvium 

layer with Vs values of type C or D and thickness 

varying between about 5 m and 20 m, underlain 

by stiffer material with Vs > 800 m/s .  

  1.6 

  



Table 2: List of accelerometric stations of the Italian National Accelerometric Network, selected for 

this study. Legend: Code = station identification code; Name = station identification name; Lat, lon 

= station coordinates (latitude and longitude); Class = class assigned to station by ITACA; VS,30 = 

mean S-wave velocity of the upper 30 m of station subsoil (n.a. when not available); nrec = number 

of recordings available for the station; M,  Dist = magnitude and distance range of station data. 

Code Name  Lat Lon Class VS,30 nrec M Dist(km) 

ACER ACERENZA 40.787 15.943 B n.a. 28 3.1-5.2 11-192 

ACQ ACQUI TERME 44.683 8.462 C n.a. 25 3.1-5.1 40-186 

AMN AMANTEA (CABINA ENEL) 39.137 16.080 B n.a. 13 3.3-5.2 12-82 

AMT AMATRICE 42.632 13.286 B 670 25 3.1-5.3 6-180 

AQP L'AQUILA - V. ATERNO - M. PETTINO 42.384 13.369 A 836 40 3.1-5.6 1-84 

ASO7 ASOLO ROCCA 45.805 11.918 A n.a. 13 3.1-4.4 45-199 

ASOL ASOLO 45.800 11.902 A n.a. 33 3.2-6.1 15-196 

ASR ASCOLI SATRIANO 41.199 15.563 A n.a. 14 3.1-5.0 30-97 

AVZ AVEZZANO 42.027 13.426 C 199 33 3.1-6.3 11-130 

BCN BUCCINO 40.634 15.382 C n.a. 18 3.1-5.0 10-198 

BGN BAGNONE 44.322 9.992 B 640 27 3.1-6.1 9-171 

BOJ BOJANO (NUOVA) 41.484 14.472 C 306 16 3.1-6.3 23-159 

BORM BORMIO 46.469 10.376 B n.a. 30 3.2-6.1 70-193 

BOTT BOTTICINO 45.549 10.310 A n.a. 48 3.2-6.1 50-183 

BRZ BERSEZIO 44.380 6.968 A 1030 11 3.4-4.9 24-77 

CADA CAPODARCO 43.194 13.761 B n.a. 23 3.4-4.9 32-192 

CAR CARRODANO 44.247 9.620 A n.a. 24 3.1-5.1 35-147 

CASA CASACALENDA 41.739 14.846 B n.a. 11 3.1-4.6 3-10 

CESM CESI MONTE 43.005 12.903 A n.a. 15 3.4-5.6 1.5-20 

CHT CHIETI 42.370 14.148 B n.a. 33 3.1-6.3 44-134 

CIMA CIVITANOVA MARCHE 43.305 13.670 B n.a. 25 3.4-4.9 23-176 

CMPO CAMPOTTO PO 44.581 11.805 C (D) 116 16 3.5-4.9 38-194 

COR1 CORINALDO 43.632 13.000 B n.a. 13 3.5-6.1 47-197 

CPC COPPARO (COCCANILE) 44.921 11.876 C n.a. 22 3.7-6.1 36-116 

CPGN CARPEGNA 43.801 12.321 B n.a. 74 3.1-6.1 21-199 

CRND CORNUDA 45.836 12.013 C n.a. 28 3.3-6.1 6-175 

CSC CASCIA 42.719 13.012 B 698 26 3.1-6.0 7-121 

CSN CESENA 44.137 12.241 B 541 35 3.2-6.1 2-189 

FAEN FAENZA 44.290 11.877 C n.a. 18 3.5-6.1 5-126 

FAZ FAENZA (NUOVA) 44.298 11.891 C 292 22 3.4-6.0 6-179 

FLP FELTRE (PASQUER) 46.027 11.923 C n.a. 12 3.3-6.1 23-169 

FOR FORLI' (NUOVA) 44.199 12.042 C 296 22 3.2-6.1 6-194 

FRC FORGARIA CORNINO 46.221 12.997 B 454 24 3.4-6.1 1.2-25 

FRE8 FREGONA 46.015 12.355 A n.a. 41 3.1-6.1 21-196 

GLT GUALDO TADINO 43.233 12.789 C n.a. 10 3.6-4.6 5-55 

GMN GEMONA 46.292 13.123 B 445 13 4.1-6.1 3-24 

GSA GRAN SASSO (LAB. INFN ASSERGI) 42.421 13.519 B 492 71 3.1-6.3 6-142 

LARI LARINO 41.805 14.919 B n.a. 21 3.1-5.5 9-152 

LSS LEONESSA (NUOVA) 42.558 12.969 A 1091 20 3.2-6.3 10-51 

MCEL MONTICELLO 40.325 15.802 A n.a. 21 3.2-5.2 37-170 

MCR MACERATA FELTRIA 43.800 12.448 C n.a. 10 3.4-6.0 34-160 



MCS MERCATO SARACENO (NUOVA) 43.994 12.107 B 568 39 3.1-5.1 15-164 

MDN MODENA 44.647 10.890 C 213 26 3.6-6.1 24-98 

MELA MELANICO - S. CROCE DI MAGLIANO 41.706 15.127 A n.a. 17 3.1-5.0 14-181 

MLC MALCESINE 45.808 10.849 B 430 30 3.1-6.4 5.3-196 

MLD MELDOLA 44.118 12.071 C 214 20 3.1-6.1 15-120 

MMUR MONTE MURANO 43.442 12.997 A n.a. 31 3.1-5.2 38-197 

MNS MONSELICE 45.252 11.722 C 227 14 3.5-6.4 54-166 

MNTP MONTAPPONE 43.137 13.469 B n.a. 21 3.4-4.9 29-176 

MNTV MANTOVA 45.150 10.790 C 237 48 3.2-6.1 31-175 

MOCO BICCARI MONTE CORNACCHIA 41.370 15.158 B n.a. 22 3.6-5.2 29-185 

MPAG MONTE PAGANUCCIO 43.629 12.760 B n.a. 63 3.1-6.1 32-199 

MSAG MONTE S. ANGELO 41.712 15.910 A n.a. 19 3.1-5.0 29-199 

NTE NOTO (AREA ENEL) 36.910 15.069 B 659 10 3.1-4.4 8-129 

PCRO PIETRA CROCE 43.608 13.532 B n.a. 42 3.1-4.9 18-193 

PLAC PLACANICA 38.449 16.438 A n.a. 14 3.4-4.4 45-189 

PNN PENNABILLI 43.818 12.263 C 335 24 3.1-6.1 10-146 

PP3 MAROLINO (POTENZA PICENA) 43.378 13.610 C n.a. 19 3.4-4.6 29-193 

PTT PATTI - CABINA PRIMARIA 38.134 14.975 C 251 33 3.1-5.8 6-115 

RDG RODI GARGANICO 41.926 15.879 A n.a. 11 3.1-4.6 31-194 

RNC RINCINE (LONDA) 43.870 11.607 A 859 11 3.1-6.1 21-124 

SANR SANDRIGO 45.640 11.610 C 321 64 3.1-6.1 41-199 

SCF SCAFA 42.265 13.998 B n.a. 16 3.2-5.9 12-74 

SCM S. CROCE DI MAGLIANO 41.711 14.984 B n.a. 16 3.1-6.3 7-150 

SENI SENIGALLIA 43.705 13.233 C n.a. 66 3.3-6.3 41-197 

SGMA S. GIULIANO - PALAZZO MARCHESALE 41.685 14.964 B n.a. 10 3.6-5.0 2-150 

SGSC S. GIULIANO - SCUOLA NUOVA 41.689 14.958 B n.a. 11 3.6-5.0 2-178 

SGTA SANT'AGATA DI PUGLIA 41.135 15.365 B n.a. 24 3.5-5.2 36-177 

SIRI MONTE SIRINO - MOLITERNO 40.182 15.868 B n.a. 19 3.5-5.2 16-186 

SLD SALUDECIO 43.874 12.674 B n.a. 29 3.1-4.9 50-168 

SMAP S. MARTINO IN PENSILIS 41.870 15.011 B n.a. 20 3.1-5.5 18-143 

SMU SOMPLAGO CENTRALE - USCITA GALLERIA 46.340 13.061 B n.a. 10 3.6-5.3 1-25 

SNN SANNICANDRO GARGANICO 41.832 15.571 A 865 15 3.1-5.7 11-117 

SNS SANSEPOLCRO 43.567 12.143 C 310 12 3.3-6.3 5-178 

SPS SPEZZANO DELLA SILA (CAMIGL.) 39.340 16.449 C 318 16 3.2-5.2 10-120 

SRT SORTINO 37.167 15.054 A 871 17 3.1-5.6 20-135 

SSV S. SEVERO 41.681 15.386 B 386 11 3.6-6.9 10-103 

STAL STALIGIAL 46.260 12.710 B n.a. 25 3.3-6.1 12-197 

STR STURNO 41.021 15.116 B 382 11 3.2-6.9 12-58 

T0815 T0815 44.873 11.720 C n.a. 18 3.7-6.0 38-157 

TERO TERAMO 42.623 13.604 B n.a. 21 3.5-5.0 20-156 

TLM1 TOLMEZZO CENTRALE - DIGA AMBIESTA 1 46.381 12.984 B 458 12 3.1-6.4 10-32 

TOR TORTORICI 38.044 14.815 B 455 25 3.1-5.8 2-193 

VAGA VALLE AGRICOLA 41.415 14.234 A n.a. 26 3.1-5.0 15-172 

VSD VIESTE (DANTE) 41.881 16.170 A 800 11 3.1-5.0 24-154 

VULT VULT 40.955 15.616 B n.a. 13 3.6-5.0 69-196 

ZOVE ZOVENCEDO 45.454 11.488 B  n.a. 73 3.1-6.1 40-199 

 



Table 3: Comparison between PHA-based and ITACA classifications of accelerometric stations. 

Cell reporting classes with different ranking in terms of expected amplification level are marked 

with different grey shades (white for A/A′, light grey for B/B′, dark grey for C/C′). Legend: Code = 

station code; reclass = class assigned from the analysis of PHA residuals; ITACA = class reported 

by ITACA; means = average of PHA residuals; sds = standard deviation of PHA residuals; difn = 

minimum difference between means and values within the class having the same ranking as the 

class assigned by ITACA to the station, normalized by the sds value.  

Code reclass ITACA means sds difn Code reclass ITACA means sds difn 

MOCO   A' B -0.828 0.239 -2.633 PTT     B' C 0.040 0.223 -0.798 

BCN     A' C -0.605 0.365 -2.256 CSN     B' B 0.055 0.316 0.000 

SGMA   A' B -0.550 0.217 -1.616 FRE8    B' A 0.056 0.268 0.953 

SGTA    A' B -0.532 0.301 -1.107 PCRO   B' B 0.057 0.269 0.000 

CASA    A' B -0.517 0.212 -1.502 CHT    B' B 0.061 0.213 0.000 

CPGN   A' B -0.484 0.209 -1.361 T0815   B' C 0.064 0.256 -0.600 

MPAG   A' B -0.458 0.243 -1.063 MDN    B' C 0.071 0.395 -0.371 

PLAC    A' A -0.454 0.256 0.000 PNN     B' C 0.073 0.212 -0.682 

SGSC    A' B -0.385 0.258 -0.720 BORM   B' B 0.074 0.197 0.000 

SCM     A' B -0.380 0.216 -0.836 MNTP   B' B 0.079 0.272 0.000 

LARI    A' B -0.374 0.207 -0.843 CADA   B' B 0.085 0.234 0.000 

LSS     A' A -0.356 0.262 0.000 FAZ     B' C 0.097 0.214 -0.563 

MCEL   A' A -0.343 0.224 0.000 TLM1   B' B 0.101 0.257 0.000 

RNC     A' A -0.320 0.211 0.000 MSAG   B' A 0.113 0.225 1.387 

ACER   A' B -0.314 0.252 -0.452 STR     B' B 0.121 0.378 0.000 

VULT    A' B -0.309 0.369 -0.298 GSA     B' B 0.127 0.260 0.000 

VAGA   A' A -0.308 0.287 0.000 SNS     B' C 0.133 0.315 -0.267 

GLT     A' C -0.245 0.296 -1.562 ZOVE   B' B 0.157 0.296 0.000 

CESM   A' A -0.221 0.140 0.000 GMN    B' B 0.173 0.289 0.000 

TERO   A' B -0.219 0.378 -0.051 AMN    B' B 0.213 0.158 0.000 

AVZ     A' C -0.208 0.238 -1.788 MCR    C' C 0.222 0.334 0.000 

TOR     B' B -0.191 0.198 0.000 FRC     C' B 0.255 0.200 0.186 

SIRI    B' B -0.165 0.248 0.000 CRND   C' C 0.257 0.216 0.000 

CAR     B' A -0.147 0.316 0.166 BOJ     C' C 0.272 0.275 0.000 

CMPO   B' C -0.105 0.195 -1.657 MNS    C' C 0.283 0.437 0.000 

COR1    B' B -0.105 0.296 0.000 SRT     C' A 0.303 0.242 2.074 

PP3     B' C -0.084 0.212 -1.422 CPC     C' C 0.311 0.412 0.000 

CIMA    B' B -0.076 0.249 0.000 VSD     C' A 0.322 0.432 1.208 

FAEN    B' C -0.075 0.231 -1.265 ACQ    C' C 0.327 0.392 0.000 

CSC     B' B -0.074 0.248 0.000 MLD    C' C 0.358 0.185 0.000 

MNTV   B' C -0.071 0.304 -0.950 ASO7    C' A 0.381 0.226 2.572 

SPS     B' C -0.069 0.287 -1.000 SCF     C' B 0.384 0.201 0.829 

SMAP   B' B -0.064 0.252 0.000 SENI    C' C 0.398 0.294 0.000 

BOTT    B' A -0.007 0.286 0.674 ASOL   C' A 0.413 0.214 2.867 

AMT    B' B -0.004 0.219 0.000 BRZ    C' A 0.418 0.064 9.705 

NTE     B' B -0.001 0.058 0.000 STAL   C' B 0.433 0.306 0.703 

MCS     B' B -0.001 0.451 0.000 SSV     C' B 0.484 0.280 0.952 

BGN     B' B 0.000 0.296 0.000 SANR   C' C 0.485 0.317 0.000 

FOR     B' C 0.017 0.246 -0.815 MLC    C' B 0.548 0.254 1.303 

AQP     B' A 0.025 0.328 0.685 SNN     C' A 0.561 0.199 3.815 

SMU     B' B 0.028 0.138 0.000 ASR     C' A 0.621 0.380 2.161 

SLD     B' B 0.032 0.195 0.000 RDG    C' A 0.689 0.502 1.768 

MELA   B' A 0.036 0.237 0.993 FLP     C' C 0.709 0.284 0.000 

MMUR   B' A 0.038 0.272 0.872         



Table 4: Comparison between PHV-based and ITACA classifications of accelerometric stations. 

Cell reporting classes with different ranking in terms of expected amplification level are marked 

with different grey shades (white for A/A″, light grey for B/B″, dark grey for C/C″). Legend: Code 

= station code; reclass = class assigned from the analysis of PHV residuals; ITACA = class reported 

by ITACA; means = average of PHV residuals; sds = standard deviation of PHV residuals; difn = 

minimum difference between means and values within the  class having the same ranking as the 

class assigned by ITACA to the station, normalized by the sds value.  

Code reclass ITACA means sds difn Code reclass ITACA means sds difn 

MOCO   A" B -0.472 0.198 -1.707 MELA   B" A 0.080 0.263 0.816 

LARI    A" B -0.434 0.280 -1.071 CHT    B" B 0.090 0.200 0.000 

MPAG   A" B -0.413 0.230 -1.214 AMT    B" B 0.091 0.193 0.000 

LSS     A" A -0.413 0.265 0.000 CIMA   B" B 0.093 0.175 0.000 

BCN     A" C -0.409 0.286 -2.044 FRE8    B" A 0.097 0.266 0.869 

SGMA   A" B -0.389 0.205 -1.240 MSAG   B" A 0.098 0.206 1.133 

GLT     A" C -0.358 0.289 -1.843 CRND   B" C 0.100 0.241 -0.312 

SGSC    A" B -0.333 0.211 -0.942 MCR    B" C 0.120 0.324 -0.170 

SGTA    A" B -0.316 0.190 -0.956 TLM1   B" B 0.123 0.315 0.000 

CASA    A" B -0.312 0.314 -0.566 FOR    B" C 0.127 0.267 -0.179 

PLAC    A" A -0.300 0.226 0.000 ACQ    B" C 0.129 0.369 -0.123 

MCEL   A" A -0.257 0.137 0.000 FAEN   B" C 0.138 0.213 -0.173 

VAGA   A" A -0.247 0.228 0.000 CADA   B" B 0.150 0.224 0.000 

SCM     A" B -0.234 0.243 -0.410 BRZ    B" A 0.165 0.217 1.382 

TERO   A" B -0.230 0.258 -0.368 VSD     C" A 0.184 0.417 0.764 

CPGN   A" B -0.223 0.218 -0.406 STR     C" B 0.192 0.306 0.057 

CESM   A" A -0.212 0.042 0.000 PNN    C" C 0.193 0.206 0.000 

CAR     A" A -0.208 0.258 0.000 GMN    C" B 0.200 0.201 0.128 

TOR     A" B -0.194 0.210 -0.286 AMN    C" B 0.201 0.146 0.180 

VULT    A" B -0.186 0.251 -0.207 PTT     C" C 0.201 0.178 0.000 

NTE     A" B -0.152 0.145 -0.123 STAL   C" B 0.204 0.314 0.093 

ACER   A" B -0.142 0.202 -0.037 FAZ     C" C 0.214 0.220 0.000 

BOTT    B" A -0.127 0.259 0.029 FLP     C" C 0.231 0.347 0.000 

RNC     B" A -0.123 0.186 0.059 SRT     C" A 0.236 0.179 2.071 

SIRI    B" B -0.121 0.172 0.000 T0815   C" C 0.238 0.217 0.000 

BGN     B" B -0.071 0.215 0.000 SCF     C" B 0.242 0.201 0.333 

BORM   B" B -0.068 0.224 0.000 SNS     C" C 0.249 0.310 0.000 

SMAP   B" B -0.045 0.305 0.000 MNTV   C" C 0.251 0.268 0.000 

SPS     B" C -0.043 0.270 -0.806 SSV     C" B 0.255 0.236 0.339 

MMUR   B" A -0.040 0.241 0.390 FRC    C" B 0.265 0.255 0.355 

CSC     B" B -0.039 0.187 0.000 MLC    C" B 0.278 0.247 0.420 

MCS     B" B -0.037 0.417 0.000 CMPO   C" C 0.283 0.145 0.000 

SMU     B" B -0.030 0.222 0.000 RDG    C" A 0.299 0.435 0.998 

GSA     B" B -0.003 0.254 0.000 SNN     C" A 0.332 0.178 2.626 

COR1    B" B 0.017 0.319 0.000 SENI    C" C 0.367 0.287 0.000 

CSN     B" B 0.019 0.283 0.000 MDN    C" C 0.367 0.389 0.000 

ZOVE   B" B 0.022 0.296 0.000 MLD    C" C 0.369 0.157 0.000 

MNS     B" C 0.041 0.434 -0.309 SANR   C" C 0.371 0.295 0.000 

SLD     B" B 0.045 0.213 0.000 CPC    C" C 0.372 0.373 0.000 

MNTP   B" B 0.048 0.215 0.000 ASO7   C" A 0.377 0.232 2.204 

AQP     B" A 0.049 0.329 0.556 ASOL   C" A 0.379 0.219 2.349 

PCRO   B" B 0.050 0.227 0.000 ASR     C" A 0.400 0.371 1.440 

AVZ     B" C 0.072 0.197 -0.523 BOJ     C" C 0.495 0.315 0.000 

PP3     B" C 0.073 0.169 -0.599       



Table 5: Comparison between the results of reclassifications of accelerometric stations. Cell 

reporting classes with different ranking in terms of expected amplification level are marked with 

different grey shades (white for A′/A″, light grey for B′/B″, dark grey for C′/C″). Legend: Code = 

station code; cl(PHV), cl(PHA) = class assigned from the analysis of PHV and PHA residuals, 

respectively; means = average of station PHV residuals: sds = standard deviation of station on PHV 

residuals; difn = minimum difference between means and values within the class having the same 

ranking as the class assigned to the station according to PHA residuals, normalized by the sds value. 

Code cl(PHV) cl(PHA) means sds difn Code PHV PHA means sds difn 

MOCO   A" A' -0.472 0.198 0.000 MELA   B" B' 0.080 0.263 0.000 

LARI    A" A' -0.434 0.280 0.000 CHT    B" B' 0.090 0.200 0.000 

MPAG   A" A' -0.413 0.230 0.000 AMT    B" B' 0.091 0.193 0.000 

LSS     A" A' -0.413 0.265 0.000 CIMA   B" B' 0.093 0.175 0.000 

BCN     A" A' -0.409 0.286 0.000 FRE8    B" B' 0.097 0.266 0.000 

SGMA   A" A' -0.389 0.205 0.000 MSAG   B" B' 0.098 0.206 0.000 

GLT     A" A' -0.358 0.289 0.000 CRND   B" C' 0.100 0.241 -0.312 

SGSC    A" A' -0.333 0.211 0.000 MCR    B" C' 0.120 0.324 -0.170 

SGTA    A" A' -0.316 0.190 0.000 TLM1   B" B' 0.123 0.315 0.000 

CASA    A" A' -0.312 0.314 0.000 FOR    B" B' 0.127 0.267 0.000 

PLAC    A" A' -0.300 0.226 0.000 ACQ    B" C' 0.129 0.369 -0.123 

MCEL   A" A' -0.257 0.137 0.000 FAEN   B" B' 0.138 0.213 0.000 

VAGA   A" A' -0.247 0.228 0.000 CADA   B" B' 0.150 0.224 0.000 

SCM     A" A' -0.234 0.243 0.000 BRZ    B" C' 0.165 0.217 -0.045 

TERO   A" A' -0.230 0.258 0.000 VSD     C" C' 0.184 0.417 0.000 

CPGN   A" A' -0.223 0.218 0.000 STR     C" B' 0.192 0.306 0.057 

CESM   A" A' -0.212 0.042 0.000 PNN    C" B' 0.193 0.206 0.087 

CAR     A" B' -0.208 0.258 -0.285 GMN    C" B' 0.200 0.201 0.128 

TOR     A" B' -0.194 0.210 -0.286 AMN    C" B' 0.201 0.146 0.180 

VULT    A" A' -0.186 0.251 0.000 PTT     C" B' 0.201 0.178 0.149 

NTE     A" B' -0.152 0.145 -0.123 STAL   C" C' 0.204 0.314 0.000 

ACER   A" A' -0.142 0.202 0.000 FAZ     C" B' 0.214 0.220 0.179 

BOTT    B" B' -0.127 0.259 0.000 FLP     C" C' 0.231 0.347 0.000 

RNC     B" A' -0.123 0.186 0.059 SRT     C" C' 0.236 0.179 0.000 

SIRI    B" B' -0.121 0.172 0.000 T0815   C" B' 0.238 0.217 0.293 

BGN     B" B' -0.071 0.215 0.000 SCF     C" C' 0.242 0.201 0.000 

BORM   B" B' -0.068 0.224 0.000 SNS     C" B' 0.249 0.310 0.238 

SMAP   B" B' -0.045 0.305 0.000 MNTV   C" B' 0.251 0.268 0.285 

SPS     B" B' -0.043 0.270 0.000 SSV     C" C' 0.255 0.236 0.000 

MMUR   B" B' -0.040 0.241 0.000 FRC    C" C' 0.265 0.255 0.000 

CSC     B" B' -0.039 0.187 0.000 MLC    C" C' 0.278 0.247 0.000 

MCS     B" B' -0.037 0.417 0.000 CMPO   C" B' 0.283 0.145 0.750 

SMU     B" B' -0.030 0.222 0.000 RDG    C" C' 0.299 0.435 0.000 

GSA     B" B' -0.003 0.254 0.000 SNN     C" C' 0.332 0.178 0.000 

COR1    B" B' 0.017 0.319 0.000 SENI    C" C' 0.367 0.287 0.000 

CSN     B" B' 0.019 0.283 0.000 MDN    C" B' 0.367 0.389 0.495 

ZOVE   B" B' 0.022 0.296 0.000 MLD    C" C' 0.369 0.157 0.000 

MNS     B" C' 0.041 0.434 -0.309 SANR   C" C' 0.371 0.295 0.000 

SLD     B" B' 0.045 0.213 0.000 CPC    C" C' 0.372 0.373 0.000 

MNTP   B" B' 0.048 0.215 0.000 ASO7   C" C' 0.377 0.232 0.000 

AQP     B" B' 0.049 0.329 0.000 ASOL   C" C' 0.379 0.219 0.000 

PCRO   B" B' 0.050 0.227 0.000 ASR     C" C' 0.400 0.371 0.000 

AVZ     B" A' 0.072 0.197 1.048 BOJ     C" C' 0.495 0.315 0.000 

PP3     B" B' 0.073 0.169 0.000       



Table 6: Root mean square of errors in the prediction of PHA and PHV values of the validation 

dataset using the basic equations, with no site terms, or including such terms but following different 

classification criteria (ITACA criteria or analysis of PHA and PHV regression residuals).  

Site classification rmsval (PHA) rmsval (PHV) 

No 0.443 0.390 

ITACA 0.392 0.384 

Re-classification 0.359 0.262 
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Figures 711 

Figure 1: Sketch illustrating the procedure for site reclassification. Open circles and black dot at the 712 

same position on the x-axis represent the residuals of GMPE predictions and the residual average, 713 

respectively, for recordings at the station whose code is reported at the same position below the 714 

axis. In diagram a), stations are alphabetically ordered along the x-axis, in diagram b) are ordered 715 

by increasing values of residual averages. On the latter diagram, vertical dashed lines separate the 716 

stations classified into different site classes and horizontal solid lines mark the average of residuals 717 

for the stations of each class. 718 

Figure 2: Geographical distribution of (a) stations of the ITACA database, (b) recording stations 719 

selected for the implementation of the classification method, (c) seismic events selected for the 720 

training dataset and (d) for the validation dataset. In (b) the site classification reported by ITACA 721 

for the selected stations is represented by different symbols (A – white circles, B – grey squares, C 722 

– black triangles). 723 

Figure 3: Magnitude of recorded events as function of distance of the recording station for the 724 

“training” dataset (a), used in equation regressions, and for the “validation” dataset (b), used in the 725 

equation effectiveness evaluation. White circles, grey squares and black triangles are used for data 726 

acquired at sites classified by ITACA as of type A, B and C, respectively, according to the EC8 soil 727 

categories. 728 

Figure 4: Residuals of regressions for site-independent equations [4] (PHA) and [5] (PHV) as 729 

function of epicentral distance of recordings used in regressions. Colors refer to magnitude of the 730 

recorded events, according to the scale below the diagrams. Black and red lines represent the 731 

running mean of residuals and of magnitude of the recorded events, respectively, both averaged 732 

over 21 data of increasing epicentral distance, as function of mean distance.  733 
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Figure 5: Diagram of the scattering of observations within the classes (expressed through the 734 

quadratic sums q of deviations of observation residuals from class average) as function of the 735 

number l of classes used in clustering of PHA (top) and PHV (bottom) residuals. 736 

Figure 6: Results of cluster analyses carried out on the regression residuals relative to PHA (a) and 737 

PHV (b) predictions. Open circles and black dots represent the residuals of single GMPE 738 

predictions and their average, respectively, for each station whose code is reported on the x-axis. 739 

Vertical dashed lines separate the stations classified into different site classes and horizontal solid 740 

lines mark the average of residuals for the stations of each site class. 741 

Figure 7: Residuals of log(PHA) predictions obtained applying a site-independent GMPE to the 742 

validation dataset. Residuals are averaged over ranges of recording distances (top) and event 743 

magnitudes (bottom), from an increasing lower bound (indicated on the x-axis), to the maximum of 744 

distance and magnitude, respectively. Results obtained for site of different classes are plotted with 745 

different symbols (according to the legend), following the ITACA classification (to the right) and 746 

that proposed in the present study (to the left).  747 

Figure 8: Residuals of log(PHV) predictions obtained applying a site-independent GMPE to the 748 

validation dataset. Residuals are averaged over ranges of recording distances (top) and event 749 

magnitudes (bottom), from an increasing lower bound (indicated on the x-axis), to the maximum of 750 

distance and magnitude, respectively. Results obtained for site of different classes are plotted with 751 

different symbols (according to the legend), following the ITACA classification (to the right) and 752 

that proposed in the present study (to the left). 753 

Figure 9: Curves of variation with distance of predictions from site-dependent GMPEs derived 754 

adopting the new classification (solid lines) based on the clustering analysis of residuals of PHA (to 755 

the left) and PHV (to the right), or the ITACA classification (dashed lines), for different site classes 756 

(A-A′-A″, top,  B-B′-B″, centre, C-C′-C″, bottom). Comparatively, the observations acquired at 757 
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stations classified from PHA and PHV residuals are reported as circles coloured according to the 758 

magnitude of the recorded events. 759 

Figure 10: Diagrams of mean logarithmic residuals at single stations for site-independent PHA (a) 760 

and PHV (b) regressions, as function of VS,30 reported by the ITACA database for the same 761 

stations (see Table 2).  762 
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