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This study presents the Auditory Cortex ResNet (AUCO ResNet), it is a biologically inspired deep neural 

network especially designed for sound classification and more specifically for Covid-19 recognition from 

audio tracks of coughs and breaths. Differently from other approaches, it can be trained end-to-end thus 

optimizing (with gradient descent) all the modules of the learning algorithm: mel-like filter design, fea- 

ture extraction, feature selection, dimensionality reduction and prediction. This neural network includes 

three attention mechanisms namely the squeeze and excitation mechanism, the convolutional block at- 

tention module, and the novel sinusoidal learnable attention. The attention mechanism is able to merge 

relevant information from activation maps at various levels of the network. The net takes as input raw 

audio files and it is able to fine tune also the features extraction phase. In fact, a Mel-like filter is de- 

signed during the training, thus adapting filter banks on important frequencies. AUCO ResNet has proved 

to provide state of art results on many datasets. Firstly, it has been tested on many datasets containing 

Covid-19 cough and breath. This choice is related to the fact that that cough and breath are language 

independent, allowing for cross dataset tests with generalization aims. These tests demonstrate that the 

approach can be adopted as a low cost, fast and remote Covid-19 pre-screening tool. The net has also 

been tested on the famous UrbanSound 8K dataset, achieving state of the art accuracy without any data 

preprocessing or data augmentation technique. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

The severe acute respiratory syndrome coronavirus 2 (Covid-19) 

s the etiologic agent of coronavirus disease 2019 (COVID-19). It 

as rapidly spread worldwide. On the 30th of January 2020 WHO’s 

eneral-Director declared the novel coronavirus outbreak a public 

ealth emergency of international concern (PHEIC), that is WHO’s 

ighest level of alarm [1] . Considering the daily and all-embracing 

mpact of COVID-19, it is auspicial and essential the development 

nd implementation of screening tools, in order to guarantee a re- 

iable, rapid, economical, scalable, and highly repeatable approach. 

It is important to make a clear distinction between screening 

nd diagnostic tools. Screening concerns a likely presence of the 

isease, while diagnosis unequivocally indicates the presence or 

bsence of the disease. Currently, the most frequently used solu- 

ions to diagnose the presence of the disease are the Polymerase 

hain Reaction (PCR) swab test, used to detect genetic material 

rom a specific organism, such as a virus or fragments of it, and 
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he serological tests and rapid antigen or antibody tests [2] . From 

 pattern recognition perspective, a valuable technique for the di- 

gnosis of Covid-19 is based on Chest X-Ray or CT scans image 

nalysis [3] , in fact 99% of accuracy have been already achieved 

4] . The problem is that the source X-rays and CT scans are typi- 

ally performed when the patient is already in a critical phase of 

he disease. As a result, the person has already experienced ad- 

anced symptomatology such as severe breathing difficulties. For 

arly Covid-19 detection, inexpensive screening tools are important 

o understand if there is a certain probability of having contracted 

he virus and, consequently, deepen the analysis with diagnostic 

ools such as the PCR Test. Indeed the basic idea is to inspect early 

ymptoms. Various Chat-bots and tele health systems have been 

ntroduced. Chat-bots ask questions aimed at detecting the early 

ymptoms most frequently related to the presence of Covid-19 and 

t suggesting whether to contact the appropriate medical person- 

el, do PCR swab testing, or not to worry. Microsoft created “Clara”

n collaboration with Center for Disease Control CDC. In this direc- 

ion, Apple updated “Siri” as well as Amazon updated “Alexa” chat- 

ots. Symptoma is of particular interest as it is able to differenti- 

te 20 0 0 0 diseases including Covid-19 [5] . Various risk screening 
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latforms have been developed with the aim of screening Covid- 

9 presence, providing patients with a series of questions to an- 

wer, and then evaluating the outcome by classifying it as “at risk”

r “without risk” [6] . However, all these approaches do not take a 

ital biometric signal as input. 

This paper presents a novel deep neural network architecture 

or audio classification (based on breath and cough) which can be 

ngineered for smartphones in a distributed scenario. The solu- 

ion may be applied as a scalable, non-invasive, prompt and al- 

ost zero-cost screening tool for COVID-19 infection. According to 

he output provided by the system, COVID-19 potential infected 

ubjects would be encouraged to limit their social activities until 

hey undergo laboratory tests, such as the routinely used Covid-19 

irus-specific reverse transcriptase polymerase chain reaction (RT–

CR) test [7] . 

Previous works have put in evidence that the analysis of breath 

 8 , 9 ], cough [9–12] and voice [13] can be used as a precious source

f information for pattern recognition algorithms, which are able 

o extract a great amount of patient data (as gender and prove- 

ance) and to determinate with high accuracy if the patient suffers 

rom some diseases and disorders. The most part of these diseases 

re respiratory ones (such as asthma, pneumonia, pertussis, Chron- 

cal Obstructive Pulmonary Disease or COPD, tuberculosis and, last 

ut not least, COVID-19). In fact, COVID-19 does not lead to a “typ- 

cal” Acute Respiratory Distress Syndrome. More generally, diseases 

hat cause different pathomorphological alterations in the respira- 

ory system are reflected by different sounds of cough, breath, and 

oice. 

Taking into consideration the high percentage of asymptomatic 

et contagious COVID-19 patients, researchers have argued that 

orced-cough (i.e. voluntary cough [11] ) keeps the same biomarker 

otential of the spontaneous one, as data have wildly proved [ 10–

2 , 14–19 ]. In fact, half of the asymptomatic cases present CT ab-

ormalities [3] . According to a wide set of previous studies, this 

ork inspects cough and breath, which are universal, language in- 

ependent, and allow cross dataset tests. In this case, the classifi- 

ation problem has been considered as a binary one. Many previ- 

us works are based on features extraction (according to different 

echniques) and on the use of some classifiers to get the final deci- 

ion [ 8 , 11 , 20 ]. The main limitation of these works is based on the

mpossibility to perform an end-to-end training. In this article, the 

erm “end-to-end training” is referred as the possibility of training 

 complex system as a whole with gradient descent. End-to-end 

raining is a desirable property because it allows to optimize all the 

odules of the learning algorithm in order to minimize an error. 

hus a single neural network framework is capable of performing 

eature extraction, feature selection, dimensionality reduction and 

rediction by optimizing each single module. Other works such as 

 9 , 16 , 19 ] used end-to-end training and deep neural networks, how-

ver these works lack the optimization of the spectrogram’s filter 

eneration as an internal process. Moreover, no attention mecha- 

isms are used to extract relevant patterns. 

Another relevant issue deals with the lack of proper cross- 

ataset tests. These tests are of paramount importance to stress 

eneralization capabilities of the models while reducing biases 

21] . All the reviewed works use no more than two datasets 

erged together but no work has tested the proposed system with 

he cross-dataset modality, which conversely can be referred to the 

ost part of real cases [ 9 , 17 ]. In order to overcome aforementioned

roblems the Auditory Cortex ResNet architecture is presented in 

his work providing the following innovations: 

1. The Auditory Cortex ResNet, briefly AUCO ResNet, is proposed 

and tested. It is a deep neural network architecture especially 

designed for audio classification trained end-to-end. It is in- 

spired by the architectural organization of rat’s auditory cortex, 
2 
containing also innovations 2 and 3. The network outperforms 

the state-of-the-art accuracies on a reference audio benchmark 

dataset without any kind of preprocessing, imbalanced data 

handling and, most importantly, any kind of data augmentation. 

2. A trainable Mel-like spectrogram layer can finetune the Mel- 

like-Spectrogram to capture relevant time frequency informa- 

tion. This is achieved by summing trainable Mel-banks fil- 

ters and then performing the dot product with the short-time 

Fourier transform (STFT) spectrogram. 

3. A novel sinusoidal learnable attention mechanism that can be 

considered as a technique to weight local and global feature 

descriptors focusing on high frequency details. This novel atten- 

tion mechanism is used to create a multi-stages concept learn- 

ing, i.e. the fact that a complex concept representation is built 

by merging meaningful information from various intermediate 

levels. 

4. State of the art cross-dataset testing and related accura- 

cies. In this scenario, AUCO ResNet has been trained on the 

large Coswara [14] dataset and tested on the Cambridge [8] 

dataset. 

The work is organized as follows: Section 2 sketches the state- 

f-the-art in Covid-19 screening techniques using audio and deep 

eural network architectures. Section 3 presents the Auditory Cor- 

ex ResNet model and all its internal components. Section 4 de- 

cribes the various experiments on different Covid-19 screening 

asks as well as the cross-dataset tests. The section also describes 

he tests on the UrbanSound 8K dataset. Results and their discus- 

ion are presented in Section 5 . Conclusions and future work are 

resented in Section 6 . 

. State of the art review 

In general, already available solutions can be categorized as 

hallow learning -based, deep learning -based and hybrid ones. 

urrently, the most widespread are pure deep learning approaches 

nd hybrid. Hybrid approaches are an orchestration of both deep 

earning and shallow learning techniques. Hybrid solutions are 

ainly composed of a feature engineering phase and a shallow 

earning classifier to provide the final decision. In turn, pure deep 

earning solutions can adopt non-recurring deep learning models 

nd recurrent deep neural networks. In the first case, Convolutional 

eural Network are used to exploit spatial information from spec- 

rogram images obtained from audio samples. In the second case, 

ecurrent neural networks exploit the sequential nature of the au- 

io samples. The work by Brown et al. [8] provide an example of 

ybrid solution. In this case an Android App and a web tool have 

een used to collect audio of breaths and coughs from healthy and 

ovid-19 patients. Feature engineering was performed on data to 

xtract a set of features (i.e. sound period, the acoustic tempo, the 

oot mean squared energy, the roll-off energy, the spectral cen- 

roid, the Zero Crossing Rate, the Mel Frequency Cepstral Coeffi- 

ients MFCCs and its derivatives). Additionally, a pre-trained deep 

earning VGGish model was used to extract 128 dimensional em- 

edding features. It is important to underline that the VGGish net- 

ork was pre trained on YouTube-8M sound datasets. Particularly, 

he feature vector created was trained using the shallow learning 

echnique SVM (Support Vector Machine) with radial basis function 

ernel. It is worth noting that an inter-patient separation scheme 

as adopted with aim of balancing the number of Covid-19 pos- 

tive and healthy controls (HC) thus avoiding bias on the learn- 

ng process. The Area Under the ROC Curve (ROC) resulted in a 

alue of around 0.8 on task 1. The solution proposed by Laguarta 

t al. [11] is another example of hybrid solution. Authors employed 

FCCs and ResNet deep learning architectures along with four 

dditional biomarkers related to muscle degradation, vocal cords, 



V. Dentamaro, P. Giglio, D. Impedovo et al. Pattern Recognition 127 (2022) 108656 

s

p

o

d

t

r

r

w

p  

8

d

L

w

t

c

s

a

c

l

b

s

u

p

i

(

p

a

d

a

0

w

w

R

a

t

t

v

s

t

e

a

f

i

f

p

b

a

h

(

h

s  

7

C

v

i

p

b

c

t

t

[

u

i

a

r

t

s

s

w

r

c

e

b

c

b

a

n

s

t

n

t

p

d

[

t

T

t

t

k

o

a

s

s

p

b

j

t

o

t

/

C

/

w

i

s

c

s

w

r

d

c

t

d

w

b

t

i

t

f

v

3

p

t

entiments and lung & respiratory tract [11] . These were used as a 

re-training phase of the deep learning algorithm: each biomarker 

utput was the input of an in-parallel trained 2D ResNet. The last 

ensely connected layer was concatenated with the others to ob- 

ain the final classification. In this case, an accuracy of 98.5% was 

eported on the task of detecting Covid-19 from cough audios, rep- 

esenting the highest accuracy ever obtained on a dataset designed 

ith the inter-patient separation scheme [8] . A similar approach is 

roposed by Alsabek et al. [20] , even if a limited dataset of only

0 people (60 HC and 20 positive to Covid-19) was employed. The 

ataset includes audio of coughs, breaths and voice recordings. A 

ong-Short term Memory (LSTM) Recurrent Neural Network (RNN) 

as adopted upon the following features: Spectral Centroid, Spec- 

ral Roll-Off, Zero-Crossing Rate, MFCCs and its derivatives. In this 

ase no inter-patient separation scheme was designed. The audio 

oundtracks were merged and then the 70/30 train-test ratio was 

dopted. The AUC achieved around 97.4%, 98.8% and 84.4% when 

lassifying coughs, breaths and voices respectively. 

Sharma et al. [14] introduced in 2020 an interesting and pub- 

icly available dataset named Coswara which includes a huge num- 

er of coughs, breaths and various phonemes along with the re- 

pective metadata. The authors also presented a CNN architecture 

sed for training and inference on the MFCCs features as in [9] re- 

orting a F1-score on Covid-19 detection of 0.8952. In this case no 

nter-patient separation scheme was adopted, however in our work 

this article) the same architecture has been reproduced in order to 

erform a comparison with the adoption of the interpatient sep- 

ration scheme. Another hybrid solution tested on the Coswara 

ataset takes as input the Mel-frequency Cepstral Coefficients for 

 modified VGG16 architecture [16] . Authors report F1-score of 

.6959 without inter-patient separation scheme. Similarly to these 

orks, it was implemented also the ensemble of methods in [19] , 

here a COVID-19 Identification ResNet (CIdeR) is used (based on 

esNets, a variant of the CNN which uses residual blocks) over 

 decibel representation (the log transformation) of a frequency- 

ime domain spectrogram, authors used the inter-patient separa- 

ion scheme with a AUC of 0.827 on Covid-19 detection. The pre- 

iously mentioned datasets in [8] and [14] were used to train a 

pecific system of detection that is then tested on nearly 390 pa- 

ients from Asia and Latin America [17] . The authors employed an 

nsemble of 3 different networks: a 1D network, a 2D network 

nd a LSTM network. The first one uses the MFCCs as extracted 

eatures. The second one resizes (64 × 64) the Mel-spectrogram 

mages. The third uses two extra features related to the state of 

ever/myalgia and the respiratory conditions. The overall AUC is re- 

orted to be 0.77. Results already reported have been confirmed 

y a similar [15] . On the other hand, standard MFCC features and 

 wide set of classifiers, along with multiple experimental settings 

ave been tested, reporting SVM as the best performing classifier 

accuracy of 70%) in the binary classification task [22] . Many works 

ave adopted data augmentation to overcome the problem of data 

carcity [ 23 , 24 ] reaching a mean accuracy of 73% [ 23 , 24 ] and of

5% [25] depending on the classification model. 

Concerning pure non-recurrent deep learning solutions, a 1D 

NN especially designed for audio classification on low end de- 

ices has been proposed [26] . An interesting element of this work 

s the data processing procedure based on the idea to weight sam- 

les of the audio tracks. The resulting accuracy is 70.5% on Ur- 

anSound8k. A dilated CNN-based Environmental Sound Classifi- 

ation Tasks D-CNN-ESC system and LeakyReLU activation func- 

ion were adopted with the aim to evaluate ESC particularly on 

he UrbanSound8k dataset [27] . Authors of the study presented in 

28] aim to classify inter-floor noise according to noise sources by 

sing a convolutional neural network model, in [29] a similar task 

s performed on recognizing audio events in urban environments 

dopting a deep learning architectural scheme (Convolutional Neu- 
3 
al Networks, CNNs), which has been trained to distinguish be- 

ween different audio context classes. 

Concerning pure non-recurrent deep neural networks with 

pectrogram generation, the work in [16] generated a Mel- 

pectrogram from the audio and a small Convolutional Neural Net- 

ork (CNN) was used for classification aims achieving an accu- 

acy of 70.58%. Typical Covid-19 symptoms such has wet and dry 

oughs, croup, pertussis and bronchitis coughs have been consid- 

red when acquiring undetermined coughs. A similar approach has 

een adopted on the Pfizer dataset of “Sick Sound” [30] , in this 

ase audio signals were converted into images of Spectrograms 

y using a Short Time Fourier Transform and the resulting im- 

ges were fed into a Xception deep neural network [31] . A fi- 

al accuracy of 75% was achieved with no inter-patient separation 

cheme: the result is consistent with those already found in litera- 

ure (e.g. [16] ). 

The work proposed in [10] also belongs to the category of pure 

on-recurrent deep learning solutions with spectrogram genera- 

ion is: a pre-training phase of a ResNet-18 CNN architecture is 

erformed on Log-Mel spectrogram images computed on the au- 

io tracks of the Free Sound database and of the Flusense database 

32] . The pre-trained network is augmented by adding an adap- 

ive average pooling layer in both the time and frequency domains. 

he output is then passed through 3 densely connected layers with 

he last one layer having 2 neurons and a softmax activation func- 

ion. In this case the inter-patient separation scheme was used by 

eeping balanced the proportions of Covid-19 positive versus HC 

n both training and test sets. Multiple tests were performed with 

nd without label smoothing techniques: the AUC values were re- 

pectively 0.68 and 0.65. The dataset used by the study in [10] con- 

isted of 3,118 cough sounds from 1,039 subjects (376 of which 

ositive to Covid-19). 

Transformers [33] with the Attention mechanism were used 

y Pinkas et al. in [34] , where Transformer Embeddings were in- 

ected into a GRU-RNN neural network to perform classification. In 

his case the F1-score in cross-validation modality was 0.74. An- 

ther important aspect in the work by Pinkas [34] is the introduc- 

ion of a dataset which included recordings of phonemes /ah /e 

z, coughing and counting from 50 to 80. The dataset includes 29 

ovid-19 positive patients and 59 HC. Authors also report that the 

z phoneme can provide higher performance then those obtained 

ith the cough signal. This result is of particular interest; however, 

t cannot be generalized given the reduced and unbalanced dataset. 

Many of the previously mentioned works share a ground as- 

umption related to the excellent capability of CNNs to perform 

lassification tasks over images (e.g. spectrograms). Similar as- 

umptions are at the basis of the use of recurrent neural net- 

orks over time series (e.g. raw audio). Moreover, based on the 

eviewed works, different authors have tested their approaches on 

ifferent datasets with different testing modalities, so it is diffi- 

ult to derive some consistent conclusion from them. Sometimes 

he inter-patient scheme wasn’t adopted, thus using different au- 

io of the same user in training and testing. Moreover, due to the 

idespread diffusion of the Covid-19 pandemic, approaches should 

e benchmarked on a wide set of datasets. This work overcame 

hese limitations by proposing a new approach and benchmarking 

t against the most performing techniques (re-implemented) on the 

wo most used big datasets on which a quality check has been per- 

ormed by the original authors [ 8 , 14 ], thus providing inter country 

alidation. 

. The Auditory Cortex ResNet Deep Neural Network model 

Auditory Cortex ResNet, briefly AUCO ResNet or AUCO, here pro- 

osed, is a nature/biologically inspired deep neural network that 

akes as input a raw audio and outputs the respective class. This 
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Table 1 

The structure of the six layers in the AC. The V layer is the thickest and is of great interest for its projections to 

telencephalic and mesencephalic targets. 

Layer Histology [37] 

Specific layer 

thickness [37] 

% of the total 

thickness (1100 

μm) [37] 

I Few neurons 140 μm 13% 

II Many small and densely packed polymorphic cells 125 μm 11% 

III Less packed pyramidal and non-pyramidal large neurons, 

organized in small columnar chains 

190 μm 17% 

IV Small stellate cells, spherical or oblate 105 μm 10% 

V Low density of large pyramidal neurons with large 

intercellular space, named corticocollicular neurons, and 

commissural cells that are smaller and more 

heterogeneous 

270 μm 26% 

VI Closely packed and flattened pyramidal and 

non-pyramidal cells, oriented parallel to the underling 

white matter 

245 μm 22% 
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s achieved without preprocessing, data augmentation or manual 

pectrogram generation. The model includes elements also present 

n the biological auditory cortex of mammals (rats). The main 

oints are briefly reassumed as follows: 

• It is composed by six main blocks. 
• It can evolve sound perception depending on the classification 

problem. 
• It has many attentions levels as a combination of features 

learned from the main blocks. 
• The number of neurons within each stage has similar propor- 

tions of neurons found in rats and similar functionalities with 

respect to the type of neurons and their connections. 

The result is a deep neural network that learns features in 

he frequency domain. It generates learned finetuned spectrograms 

ithout loss of information due to compression, thus preserv- 

ng the complex components of the short time Fourier transform. 

hese spectrograms are then fed at lower levels which make use 

f architectures that simulate non-pyramidal (basket) and pyrami- 

al cells found in mice auditory cortex. Different levels of atten- 

ion mechanisms are used to model the different type of auditory 

ttentions of mammals [35] . 

.1. Brief description of biological rat auditory cortex 

Auditory processing takes place in the auditory cortex (AC). 

ven if each mammalian species has its own frequency range sen- 

ibility, there are some common characteristics, such as the pres- 

nce of two fields (primary auditory and anterior auditory field) 

ith a regular tonotopy. The general histological structure of the 

ortical depth, that consists of six layers parallel to the pial surface 

 Table 1 ), is mostly the same in the primary auditory, visual and

omatosensory cortices of the mice. [36] 

It is important to specify that two kinds of AC neurons are 

riefly described here: Pyramidal neuronal cells (PCs) and Basket- 

ike cell (BCs). PCs are found in different areas of the brain; they 

re basic excitatory-type elements of the mammalian nervous sys- 

em. In the AC, PCs allow to perform pitch recognition and sound 

ttention [38] . Instead, BCs are interneurons that are common in 

ayers II-IV of rat somatosensory cortex. 

From a functional point of view, the cerebral cortex presents a 

ertical columns organization in which the neurons have similar 

unctions. Even in this case it seems that the AC has peculiar fea- 

ures compared to the other neocortex areas. A study by Tischbirek 

. H. et al. aiming to map the activity of mouse primary audi- 

ory cortex neurons, identified “functional microcolumns bringing 

ogether large-scale tonotopy and locally heterogeneous frequency 

esponses throughout all AC layers.” The study concludes that this 
4 
patial organization, linked to its response patterns, “may reflect 

earning-dependent wiring rules in the AC” [39] . 

These evidences are at the base of choices for the architecture 

s described in the following. 

.2. The Auditory Cortex ResNet model 

Similarly to learnable sound perception of mammals, Mel- 

ike spectrograms are learned and Convolutional Neural Networks 

CNNs) are used to learn discriminant features. Both Mel-like spec- 

rograms and CNN kernels are learned using the backpropagation 

lgorithm, which regulates the change in weights of both Mel-like 

lterbanks and CNNs kernels with respect to the target function. 

his is similar to the response-based learning process typical of 

ammal’s brain [40] . In fact, the capability of CNNs to perform hi- 

rarchical feature extraction from raw signals emulates the multi- 

ayer learning process present in the Neocortex of mammals. 

From a pattern recognition perspective, the AUCO ResNet is a 

eep neural network built on top of SE-ResNet [41] architecture 

ith ResNet bottleneck layers [42] . Bottleneck layers are used in 

lace of basic ResNet blocks for allowing deeper networks while 

aving computational time. They use a 1 × 1 convolution for re- 

ucing channels of the input followed by a 3 × 3 convolution and 

nally another 1 × 1 convolution for repristinating the number 

f channels. The ResNet [42] architecture was selected as back- 

one due to its residuals generalization. Its generalization bound 

s equivalent to other state of the art neural networks such as 

esNeXT and DenseNet [43] . 

In AUCO ResNet three types of attention mechanisms are used 

or propagating relevant channels and time wise frequency in- 

ormation: the convolutional block attention module (cbam-block) 

44] , squeeze and excitation network (se-block attention) [41] and 

inusoidal learnable attention. The last mechanism is a combina- 

ion of learnable attention from [45] and a dense layer with a si- 

usoidal activation function properly initialized as shown in [46] . 

ig. 1 shows the legenda of symbols used for the description of 

ach piece of the network. 

Hence, AUCO ResNet is composed by six macro layers: 

1. The Spectrogram convolutional layer with channel and spatial 

attention. This layer can be compared to the first layer of the 

mammal’s auditory cortex which performs a complex (spectro- 

gram like) representation of the audio [35] . 

2. Plain set of two 1 × 1 2D convolutional layers (VGG-ish style 

layers) ending with a Squeeze and Excitation attentional layer. 

This layer contains a small number of neurons and plain convo- 

lutions (without residual) and can be compared to the second 

layer of the rat auditory cortex (which contains a small number 

of basket cells neurons [37] ). 



V. Dentamaro, P. Giglio, D. Impedovo et al. Pattern Recognition 127 (2022) 108656 

Fig. 1. Legenda of symbols used in the architectural description. 
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3. The first SE-ResNet block (depicted in Fig. 2 ) ending with a Max 

Pooling layer, this architecture would resemble the pyramidal 

neuronal cells in the third layer of rat’s auditory cortex. 

4. The second SE-ResNet block ending with a Max Pooling layer 

whose number of filters is doubled with respect to the first SE- 

ResNet block. 

5. The third SE-ResNet block ending with a Max Pooling layer 

whose number of filters is doubled with respect to the second 

SE-ResNet block. 

6. The fourth SE-ResNet block ending with a Max Pooling whose 

number of filters is equal with respect to the third SE-ResNet 

block. It is followed by a convolutional layer with 64 filters, 

a batch normalization layer, a max pooling layer and a CBAM 

block. The output of the CBAM is the general descriptor of 

the Sinusoidal learnable attention layer. At the end of this 

macro layer, the classification is carried out by concatenating 

the learned representation performed by this sinusoidal learn- 

able attention layer, squashing them into a dense layer which 

uses a “softmax” activation function to perform the final classi- 

fication. The sixth macro layer acts like a macro pyramidal neu- 

ronal cell whose dendrites capture important information from 

middle to lower levels and its axon ends with a concatenation 

of the learned attentions as feature embeddings to be fed to 

the final dense classification layer. 

The overall architecture is depicted in Fig 3 . The first and the 

econd macro layers are never repeated. The third macro layer is 

epeated 8 times, the fourth macro layer is repeated 3 times, the 

fth macro layer is repeated 7 times and the last macro layer is re-

eated 2 times plus the final sinusoidal learnable attention mecha- 

ism. This organization mimics the equilibrium based on the num- 

er of neurons and the physical thickness of each layer of the rat 

rimary auditory cortex (par. 3.1) in Table 1 . 

Although the design of the AUCO ResNet was guided by the or- 

anization of the biological auditory cortex of rats as explained in 

ection 3.1 , it is also interesting to report that many different con- 

gurations have been tested by modifying the number of layers in 

ach macroblock, as well as the positions where to cut the net- 

ork to feed the sinusoidal learnable attention layer. The reported 

UCO is the most performing one. 
5 
.3. Trained Mel-like Spectrogram layer 

The discrete Fourier transform is one of the classic algorithms 

hat allows conversion from the time domain to the frequency do- 

ain. The Short-time Fourier Transform (STFT), refers to an appli- 

ation of the DFT in which the signal is cut into short windows 

ithin which the signal can be considered quasi-stationary so that 

he transform can be computed. The STFT function is composed by 

wo variables, ω which represents a frequency and τ , contains in- 

ormation about the window size. Eq. (1) represents the STFT in 

ontinuous domain. 

ˆ 
 ( τ, ω ) = ∫ x ( t ) w ( t − τ ) e −iωt dt (1) 

The spectrogram of an audio sample is the module of the STFT 

s shown in Eq. (2) : 

pectr ( x ) = | X ( τ, ω ) | 2 (2) 

Then the Mel filter bank is typically applied having the aim of 

imulating the non-linear human perception of sounds [15] . This 

lter provides a better resolution at low frequencies and a smaller 

ne at high frequencies in a logarithmic scale. There are several 

ypes of filters, among them the triangular filters are widely used. 

hey capture the energy at each frequency band and approximate 

he spectrum shape. In this work the original Mel filter-bank’s am- 

litude is evolved to maximize the accuracy on each task. More 

pecifically: 

• Let c be the number of classes in of the classification task, in 

the specific case of Covid-19 recognition 2 classes are consid- 

ered (positive and negative); 
• Let m be the triangular Mel-filterbank; 
• Let v be a variable (to be optimized by the backpropagation 

step) initialized with the transposed of m: m 

T . 

The trainable Mel-like filterbank tm is defined in Eq. (3) : 

m = 

c ∑ 

1 

v c (3) 

The sum is performed after that the backpropagation operation 

hanged the weights of each trainable Mel-like filterbank. In this 

ay the designed filter has a set of bands focused on frequen- 

ies that are discriminative of one class with respect to the other. 

he final sum creates a filter for the frequencies information that 

re not much relevant, by merging only bank’s amplitudes that 

re necessary to preserve important frequency information for that 

pecific classification task. In practice, it leverages the property of 

nd-to-end training of optimizing each single part of the network 

oward the goal. In this specific case, the intuition is that, by per- 

orming the sum of trainable banks before the dot product, the 

ackpropagation algorithm (thus, the gradient descent optimiza- 

ion) optimizes each single v c so that its sum would merge only 

lter banks relevant to the task at hand. Thus, the filtered spectro- 

ram is defined as the dot product among the STFT spectrogram 

nd the tm filterbank as in Eq. (4) . 

elspectrogram ( x ) = spect r ( x ) , t m 

T (4) 

The filtered spectrogram is then converted to decibel and re- 

urned as a layer of the AUCO ResNet. Images of the trainable fil- 

ered spectrograms and standard Mel spectrograms are presented 

n Appendix A showing partially visible differences able to play 

n important role for the final classification accuracy, but also for 

tructuring the evolution of the sound perception. 

.4. The Convolutional Block Attention Module (CBAM) 

CBAM is composed by a channel attention module and a spatial 

ttention module as depicted in Fig. 4. 
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Fig. 2. Se-ResNet block. 

Fig. 3. The Auditory Cortex ResNet architecture. 

Fig. 4. The CBAM block attention module. 
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In this specific case, the CBAM generates attention maps by 

rstly performing the channel attention. This attention is a kind of 

ernel-wise attention. It uses one dense layer with ELU activation 

unction followed by a linear dense layer. Usually, the first dense 

ayer has a number of neurons smaller than the number of ker- 

els, in the case of AUCO the ratio is 1 
2 . Successively, its output is
6 
ed into two pooling layers, a max and an average pooling layer; 

esults are then summed and fed to a sigmoid activation layer. The 

adamard product among the output of this sigmoid layer and the 

riginal input creates this type of attention: it can be seen as a 

earnable weighting factor for the original input. 
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Fig. 5. The Squeeze and Excitation block diagram. 
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In a second stage, the CBAM block performs spatial attention, 

hich in this specific case is referred to the temporal and the 

requency domain. It concatenates the output of both an average 

ooling layer and a max pooling layer built on the same input and 

eeds this output to a 1 × 1 2D convolutional layer with sigmoidal 

ctivation function. The Hadamard product of the output of this 

onvolution with the original input generates spatial attention. The 

uthors in [44] showed that the exploitation of the different pool- 

ng layers is twofold: first they allow to weight discriminant kernel 

aps and increase the representational power of previously highly 

eighted feature-maps. The weights are determined through the 

igmoidal activation function. 

.5. The Squeeze and Excitation Network Attention Module (SE-Block) 

The SE-Block was originally proposed in [47] as a plug and play 

lock (in Fig. 5 ), to be added before the CNN block. Here it is

sed for automatically selecting “important” feature-maps (chan- 

el wise). 

The importance weight increases for feature maps that con- 

ribute positively to the classification task and decreases (tends to 

ero) for feature maps that do not contribute. It is composed by 

wo operations, namely squeeze and excitation. The squeeze oper- 

tion is composed by a global 2D average pooling layer that gen- 

rates feature maps descriptors channel wise. This average pool- 

ng operation is meant to squash the dimensions of the tensor to 

hannel Size 1 × 1 dimensions. It is important to get global de- 

criptors of each channel. The excitation block starts with a dense 

ayer used for weighting each channel. This dense layer has a num- 

er of neurons inferior to the input feature map size, this num- 

er is an hyperparameter of the model. In this work the ratio 

s 1 
8 and the ELU (Exponential Linear Unit) activation function is 

sed in place of the ReLU (Rectified Linear Unit) in its dense layer. 

he next layer is another dense layer with the number of neurons 

qual to the feature map size (in order to return to the original 

hannel dimension) which concludes the bottleneck operation and 

ses a sigmoidal activation function. The sigmoidal activation func- 

ion is more appropriate to weight more channels, as it returns 

ontinuous differentiable values between 0 and 1 with respect to 

ther functions such as softmax, which would set strong weights 

o few channels only. The Hadamard product among the repristi- 

ated shape of this dense layer output and the original feature 

ap is computed and returned as weighted feature maps. 

.6. Sinusoidal Learnable Attention 

Learnable attentions can be defined as a set of techniques that 

llow the continuous learning of increased weights for some rel- 

vant features with respect to irrelevant ones for a specific task. 

his is of paramount importance because the weights of those 

eatures are learnt over time. The intuition is that the gradient 

escend algorithm incorporated within the backpropagation pro- 

edure would selectively increase only the weights that decrease 
7 
he error. In addition to the previously explained attentions, AUCO 

esNet uses also a novel type of attention inspired by the work of 

uthors in [45] which uses sinusoidal [46] layers for carrying out 

he weighting among local and global feature descriptors. It is ex- 

ected that weighting local feature descriptors by superimposing a 

onlinear sinusoidal representation of the global descriptor would 

ncrease the capability of the network to filter concepts at differ- 

nt stages. This various stages concept learning, i.e. the fact that 

 complex concept representation is built by merging meaningful 

nformation from various intermediate levels, is present in neu- 

oscience community with the term “grandmother neuron“. The 

grandmother neuron” is a theory where a hypothetical pyramidal- 

ike neuronal cells code for high level concepts and is able to rep- 

esent objects (e.g. faces). [48] 

Since global feature maps live in the time frequency domain, 

t was shown that sinusoidal representations and, more in gen- 

ral, differentiable periodic functions, are capable of capturing fine 

rained, high frequency information especially when spectrograms 

nd Fourier transforms operations are involved [46] . Indeed, au- 

hors in [46] defined the problem of signal restoration using a 

inusoidal periodic activation function properly initialized. In the 

pecific case of AUCO ResNet, the sinusoidal representational dense 

ayer learns a function that maps frequency points inside a fea- 

ure map to temporal location. The work in [46] adopted the sine 

unction as the preferred non-linearity and reported that ReLU 

ased architectures for continuous signals (such as sound, video 

nd highly detailed images, but also chaotical systems) lack the ca- 

acity to represent with enough power the underlying signal: i.e. 

eLU do not effectively represent the derivatives of a target signal. 

The proposed learnable sinusoidal attention mechanism is com- 

osed by a compatibility function [45] that returns a compatibility 

core between local feature maps extracted at several intermediate 

ayers. In the case of AUCO ResNet, these local feature maps are lo- 

ated at the end of each SE-ResNet macro layer (layers 3,4,5 and 6 

f Fig. 3 ), plus the global feature map. This compatibility score is a 

earned weight matrix that weights more the patches whose local 

eatures are part of the dominant class. 

Formally, let L s = { l s 
1 
, l s 

2 
, . . . , l s n } be the se t of feature vector for 

 given CNN layer, being l s 
i 

the i-th feature vector of the n dimen-

ional spatial location of feature vector L s and with s ∈ { 1 , 2 , . . . , S }
here S is the max number of intermediate convolutional layers 

sed to merge high level concepts, in this case 4. 

Let us consider �(g) , where g is the global feature descriptor 

xtracted from the last CBAM block just after the last max pooling 

ayer and fed into the sinusoidal dense representation � as shown 

n Fig. 3 . 

The compatibility function can be defined as: 

 = u, l s i + �( g i ) , i = 1 , 2 , . . . , n (5)

In Eq. (5) the first operation is to add the local features l s 
i 
with

he sinusoidal global feature �(g) . Later the dot product (the angu- 

ar parentheses) with a learned vector u is performed for inferring 

n initial attention mechanism which intuitively can be interpreted 
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s a learning weighting factor for common patterns among in- 

tances of the same class. This attention is derived from the align- 

ent model of attentions used in [49] which led to transformers 

n natural language processing tasks [28] . 

The set of compatibility scores C = u, l s 
i 
+ �( g i ) = { c s 

1 
, c s 

1 
, . . . , c s n }

s then normalized with a softmax activation function. Let define 

 

s = { a s 
1 
, a s 

2 
, . . . , a s n } as the set of softmax normalized compatibility 

cores as shown in Eq. (6) : 

 

s 
i = 

e c 
s 
i 

∑ n 
j e 

c s 
j 

(6) 

The global feature descriptor vector g s is the final attention 

echanism for a particular layer s that takes the weighted com- 

ination of the original local features l s . This is computed as in 

q. (7) . 

 

s = 

n ∑ 

i =1 

a s i · l s i (7) 

All the g s feature descriptor tensors are concatenated and fed to 

 fully connected layer ending with a softmax activation function 

or carrying out the final classification. 

In order to make up the learnable sinusoidal attention, inside 

he AUCO ResNet the following inputs are used: 

• l s 
1 

is the layer prior to the Max Pooling layer in the first SE- 

ResNet block 
• l s 

2 
is the layer prior to the Max Pooling layer in the second SE- 

ResNet block 
• l s 

3 
is the layer prior to the Max Pooling layer in the third SE- 

ResNet block 
• l s 

4 
is the layer prior to the Max Pooling layer in the fourth SE- 

ResNet block 
• �1 (g) is the flatten global feature map after the last CBAM 

block fed inside a sinusoidal dense representation layer with 64 

neurons. 
• �2 (g) is the flatten global feature map after the last CBAM 

block fed inside a sinusoidal dense representation layer with 

128 neurons. 
• �2 (g) is the flatten global feature map after the last CBAM 

block fed inside a sinusoidal dense representation layer with 

256 neurons. 
• �2 (g) is the flatten global feature map after the last CBAM 

block fed inside a sinusoidal dense representation layer with 

512 neurons. 

The complete architecture in Fig. 3 shows the use of each at- 

ention mechanism and its integration within the overall network, 

oncluding the description of the Auditory Cortex ResNet architec- 

ure. 

. Experimental Setup 

In order to extract the relevant patterns that are useful to dis- 

ern Covid-19 positive subjects from healthy ones, it is necessary 

o apply an inter -patient separation scheme (i.e. different people 

re used for training and test). This separation scheme is more 

uitable for medical purposes because with an intra-patient sepa- 

ation scheme the independently and identically distributed (i.i.d.) 

ssumption between instances would not be achievable. This sep- 

ration scheme with a balanced number of samples for each class 

s used [8] , therefore the training set has been balanced with re- 

pect to the number of positive and negative patients, and the test 

et contains a balanced number of different subject’s audio of both 

lasses. Metrics adopted for evaluations are the average accuracies 

nd the area under the receiver operator characteristics (AUC). 
8 
.1. Cambridge Tasks 

Preliminary tests have been performed on the Cambridge 

ataset [8] . Data were collected via an Android app and a web 

pp. This dataset contains audio from 70 0 0 users, 235 of which 

re Covid-19 positive. 

Many people did not report their location, but given the avail- 

ble data, source countries are Greece, United Kingdom, Italy, Ger- 

any, Spain, France, Iran, United States, Bangladesh, India and 

rance. Age ranged from 0 to 79 with the majority of people be- 

ng 20-50 years old. The average age of positives and negatives was 

ot specified. The 68% of subjects were male, 31% female, 0.7% pre- 

erred to not answer and 0.3% answered “other”. Authors found 

s common symptoms a wet and dry cough, as well as a lack of 

ense of smell and a chest tightness. Authors also discarded all 

udio recordings acquired by people who reported to be healthy 

nd having some symptoms. Three tasks can be performed on this 

ataset: 

1. To distinguish Covid-19 PCR-Test positive users from HC, with- 

out symptoms, and with a clean medical history. 

2. To distinguish Covid-19 PCR-Test positive users reporting Cough 

as a symptom from HC with a clean medical history. 

3. To distinguish users using breath sounds only who resulted 

positive on Covid-19 PCR-Test and reported cough as a symp- 

tom, from HC with asthma and cough symptoms. 

The first task is performed on cough and breaths of 62 Covid-19 

ositive users and 220 HCs without symptoms. 

For the second task cough sounds of 23 Covid-19 positives sub- 

ects and 29 HCs having cough as symptom are available. 

For the third task, the positive class is composed by breath 

ound of 23 Covid-19 positive subjects with cough and the nega- 

ive class by breath sounds of 18 healthy subjects with cough that 

lso reported to have asthma. 

All audio files were sampled at 22050 Hz mono and only 10 

ecs of every audio were utilized. Audio longer than 10 secs were 

runcated, those shorter than 10 secs were zero padded. In an ini- 

ial phase it was investigated if audio segmentation (e.g. segment 

udio in coughs and breaths) was of any help. Preliminary results 

uggested that results were better without performing any kind of 

ata segmentation, in line with the state of the art [8] . 

In order to get a balanced number of subjects in both covid pos- 

tive and negative classes in both train and test sets, it has been 

ecided to perform random under sampling on a per subjects’ ba- 

is as in [8] . In order to get reliable results, this random sampling

as been performed 10 times in a 10-fold cross validation fash- 

on as shown in Fig. 6 . In average for Task 1, 448 Covid-19 pos-

tive samples and 508 healthy samples were used for training as 

ell as 44 Covid-19 positive samples and 56 healthy samples have 

een used for testing. For Task 2, in average, 266 Covid-19 positive 

amples and 92 healthy samples were used for training as well as 

4 Covid-19 positive samples and 14 healthy samples have been 

sed for testing. For Task 3, in average, 236 Covid-19 positive sam- 

les and 50 healthy samples were used for training as well as 56 

ovid-19 positive samples and 34 healthy samples have been used 

or testing. It is important to state that for both Cambridge [8] and 

oswara [14] datasets, as shown in Cambridge tasks 2 and 3, Covid 

ositive samples are more numerous because covid sufferers cre- 

ted, on average, more audio samples with respect to control sub- 

ects. In contrast, healthy people created fewer samples. The bal- 

nce was on the number of people and not on samples as in [8] . 

.2. Cross Datasets Tests 

Because of the limited amount of people in the various Cam- 

ridge tasks, it has been decided to perform cross dataset testing 
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Fig. 6. Area under the ROC curve obtained by training AUCO ResNet for each fold of the various Cambridge Tasks as defined in [8] . 
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nd, thus, to ensure the generalization power of the proposed ap- 

roach. At time of writing, this is the biggest cross dataset test on 

ovid-19 cough sounds. 

The Coswara dataset [14] includes audio recordings of 1167 HCs 

nd 100 Covid-19 positive users. Each participant provided 9 audio 

les. The 90% of subjects are from India mainland and 10% out- 

ide India. The majority of people had an age between 20 and 40. 

he 87% were male and 13% female. The following tests have been 

erformed: 

1. The cough test : in addition to the cough samples within the 

Cambridge dataset in [15] also the Coswara dataset was used. 

Coswara dataset [14] has been used for training while the Cam- 

bridge dataset [8] , containing only controlled cough recordings 

(practically the data used in Cambridge Task 2), was used for 

testing. In order to keep balanced the number of subjects in 

both the training and testing set, a class-balanced random num- 

ber of subjects were selected from Coswara dataset and used 

for training. A class-balanced random number of subjects were 

selected from Cambridge dataset for testing. For the validation 

phase the 25% of the training set was used. The reported accu- 

racy metrics are per patient on the test set. All audio files were 

sampled at 22050 Hz mono and 10 seconds length, cut if sound 

was longer, zero padded otherwise. For this task, 292 Covid-19 

positive and 284 healthy audio samples were used for training 

and 434 Covid-19 positive and 108 healthy audio samples were 

used for testing. 

2. The breath test : the Coswara dataset was used for training by 

randomly selecting a class-balance amount of subjects. In this 

case only breaths audio recordings have been considered. The 

validation size is set to 25% of training data. For test the Cam- 

bridge dataset containing only breaths sound was used. Even 

for the testing set, class-balance subjects were randomly cho- 

sen. Again, all audio files were sampled at 22050 Hz mono and 

10 seconds length, cut if sound was longer, zero padded other- 

wise. For this task, 356 Covid-19 positive and 352 healthy audio 

samples were used for training and 1358 Covid-19 positive and 

282 healthy audio samples were used for testing. 

The Cambridge dataset has been used in the test phase as it 

ontains less data then Coswara. On the other hand the latter has 

een used for training. Moreover, in order to cope with the limited 

mount of data available for training, transfer learning has been 

dopted. Transfer learning refers to a technique that makes use of 

 pre-trained neural network (a neural network whose weights are 

rained on a bigger dataset). Then this pretrained network is used 

or fine-tuning (refining weights) of only some top layers, by train- 
9 
ng them on the new smaller dataset while keeping other bottom 

ayers weights frozen. The former layers learn high level represen- 

ation of the underlying sound patterns, while top layers need to 

e specialized on the new smaller dataset. In this specific case, 

eights of the AUCO ResNet trained on UrbanSound 8K were used 

o transfer knowledge. UrbanSound 8K was used as suggested in 

22] . No data augmentation was performed, and accuracies were 

veraged over the 10 folds. AUCO ResNet was trained end-to-end. 

The AUCO ResNet has a total number of 400 layers, the 250 

ottom layers were frozen (apart from the trainable mel-like spec- 

rogram layer) and the remaining 150 top layers were allowed to 

e trained. These top 150 layers were initialized with the trained 

eights instead of random weights initialization. 

.3. The Auditory Cortex ResNet setup 

The same AUCO ResNet architecture has been used for all the 

ests reported here. The adapted spectrogram was generated with 

048 bins of the FFT, 150 trainable filters, an overlapping window 

ength of 140ms and a hop size of 344. The first convolution having 

s input the mel-like spectrogram, performed subsampling (5 × 5 

or avoiding managing big tensors) with 3 × 3 strides. RMSProp 

50] optimizer was used for training the neural network, while the 

efault activation function for all non-sinusoidal layers (apart from 

he softmax and sigmoidal layers) was the exponential linear unit 

elu). For all tests, no preprocessing was performed in order to 

ake results highly reproducible and reliable. The output size of 

he generated Mel-spectrogram layer is 962 × 150 × 1. 

In order to compare the results with those from other works, 

he following deep neural network architectures have been re- 

mplemented and tested: ResNet 50 [42] , DenseNet 201 [51] and 

nception ResNet V2 [52] . In order to allow these networks to work 

n sounds, mel spectrograms images have been generated us- 

ng the same hyperparameters previously described for the AUCO 

esNet setup. All networks were trained for 150 epochs. Moreover, 

 different works (Brown et al. [8] , Imran et al. [9] , Bansal et al.

16] and Coppock et al. [19] ) have been re-implemented and tested 

n the exact same conditions. 

.4. Shallow Learning setup 

In order to compare the approach proposed here with shallow 

earning techniques (i.e. everything that is not deep learning), it 

as decided to use the following set of features already adopted 

n a set of related works [ 8 , 16 , 20 ] 
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Table 2 

Models’ comparison on Cambridge Task 1. 

Model Accuracy Precision Recall F1 score AUC ROC 

AUCO ResNet 0.8039 0.8028 0.8039 0.7998 0.8308 

DenseNet 201 0.7703 0.7872 0.7703 0.7315 0.6515 

Inception ResNet V2 0.6672 0.6797 0.6672 0.6605 0.7106 

ResNet 50 0.6969 0.6639 0.6969 0.6514 0.6571 

Shallow SVM 0.52 0.51 0.51 0.51 0.5130 

Shallow Random Forest 0.48 0.48 0.48 0.47 0.4785 

Shallow KNN 0.47 0.47 0.47 0.47 0.4696 

Work in Brown et al. [8] NA 0.72 0.69 NA 0.80 

Work in Bansal et al. [16] (re-imp) 0.7212 0.7124 0.7212 0.7074 0.6846 

Work in Imran et al. [9] (re-imp) 0.7088 0.7135 0.7088 0.6797 0.7834 

Work in Coppock et al. [19] (re-imp) 0.5946 0.5387 0.5946 0.5353 0.5645 

Table 3 

Models’ comparison on Cambridge Task 2. 

Model Accuracy Precision Recall F1 score AUC ROC 

AUCO ResNet 0.9256 0.8881 0.9256 0.8980 0.9257 

DenseNet 201 0.8801 0.8508 0.8801 0.8498 0.6150 

Inception ResNet V2 0.8916 0.8632 0.8916 0.8690 0.6786 

ResNet 50 0.8596 0.8037 0.8596 0.8251 0.6118 

Shallow SVM 0.78 0.84 0.78 0.80 0.625 

Shallow Random Forest 0.76 0.88 0.76 0.80 0.7410 

Shallow KNN 0.71 0.83 0.71 0.76 0.5892 

Work in Brown et al. [8] NA 0.70 0.90 NA 0.87 

Work in Bansal et al. [16] (re-imp) 0.8789 0.8590 0.8789 0.8419 0.6559 

Work in Imran et al. [9] (re-imp) 0.8498 0.8193 0.8469 0.8998 0.8816 

Work in Coppock et al. [19] (re-imp) 0.7223 0.7680 0.7223 0.6936 0.6303 
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• Chromagram from power spectrogram with same parameters 

used in AUCO ResNet setup in Section 4.3 [53] 
• Spectral centroid [54] . Parameters are the same as AUCO ResNet 

setup in Section 4.3 
• Spectral bandwidth [54] with same parameters of AUCO as re- 

ported in Section 4.3 
• Spectral roll-off [55] with same parameters of AUCO as reported 

in Section 4.3 
• Zero-crossing rate [54] with same parameters of AUCO and re- 

ported in Section 4.3 

Features are stacked horizontally to create one single instance 

ow for each sound to be classified. 

For classification purposes, the Random Forest classifier with 

00 trees as base learners and pre-pruning depth set to 5, the lin- 

ar Support Vector Machine and the weighted K-nearest neighbors 

ith Euclidean distance and K = 7 were used. Features were stan- 

ardized using z-score normalization. 

. Results and discussion 

.1. Camrbidge Tasks results 

Fig. 6 shows the various AUC scores obtained by the AUCO 

esnet proposed here for each fold of the 10-Fold cross validation 

erformed on each Cambridge [8] task. As it is possible to observe, 

he AUC is generally high for all folds and all tasks. 

Comparisons with other different techniques are reported in 

ables 2 , 3 and 4 which are referred, respectively, to the three 

ambridge tasks as described in paragraph 4.1. As it can be easily 

bserved, Auditory Cortex ResNet proposed here outperforms all 

he other approaches. Moreover, it performs with reasonable accu- 

acies even when the amount of data is limited and the network is 

rained end-to-end (without transfer learning). The reason of this 

obustness is due to the use of the three different attention mecha- 

isms and the use of the learnable Mel-like spectrograms. Detailed 

blation is in Section 5.3 . It has been proved that switching off

he sinusoidal learnable attention causes a decrease of 1.3% AUC 
10 
n Cambridge Task 1, thus achieving an AUC equal to that in the 

ork [8] . This behavior is justified by the fact that the sinusoidal 

earnable attention can capture fine grained information within the 

espective feature map at different levels. As a consequence, it was 

ble to merge only the relevant information. In addition, the train- 

ble mel-like spectrograms contributed to the achieved results by 

ltering only the Mel-bands that extrapolated meaningful 2D rep- 

esentation of the audio. 

.2. Cross Datasets Tests 

Results related to the cross-dataset tests are reported in 

ables 5 and 6 respectively for cough and breath. AUCO ResNet 

lways outperforms all the other approaches in terms of accu- 

acy and AUC scores, however the best generalization capability is 

eached only when transfer learning is performed. This result sug- 

ests that, when trained with transfer learning, the network at for- 

er layers learns the internal representations of filter maps (ker- 

els) that are used to extract relevant patterns from Mel-like spec- 

rograms. If large amount of data is not present, AUCO ResNet can 

till deliver results that are better than those from the standard 

eep Neural Network (DNN) architectures and even higher than 

hose from pre-trained standard DNNs. This is probably due to the 

resence of the attention mechanisms, especially the sinusoidal 

earnable attention one, where sinusoidal representation layers can 

epresent the information with low amount of data as input. Ad- 

itionally, an initial blurred representation of log-frequencies pat- 

erns or a careful automatic selection of Mel amplitudes could have 

layed major roles. However, more investigations are needed. 

Considering tests on breath sounds ( Table 6 ), results are lower 

han those obtained on cough. This is probably due to the fact that 

reath sounds were disturbed by the noise generated by the air 

lowing on the microphone. 

In all tests, shallow learning techniques’ performance is worse 

hen compared with DNNs and in particular AUCO ResNet. One 

ingle exception is in Camrbidge task 2 in Table 3 , where the shal-

ow learning technique using Random Forests reported a higher 
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Table 4 

Models’ comparison on Cambridge Task 3. 

Model Accuracy Precision Recall F1 score AUC ROC 

AUCO ResNet 0.8630 0.7198 0.8230 0.8439 0.8972 

DenseNet 201 0.8548 0.7771 0.8548 0.8008 0.7478 

Inception ResNet V2 0.8212 0.7946 0.8212 0.7979 0.8181 

ResNet 50 0.8760 0.8541 0.8760 0.8425 0.8489 

Shallow SVM 0.66 0.84 0.55 0.65 0.4523 

Shallow Random Forest 0.71 0.83 0.71 0.77 0.3857 

Shallow KNN 0.55 0.84 0.55 0.65 0.4523 

Work in Brown et al. [8] NA 0.61 0.81 NA 0.88 

Work in Bansal et al. [16] 

(re-imp) 

0.9013 0.9049 0.9013 0.8805 0.7575 

Work in Imran et al. [9] 

(re-imp) 

0.8462 0.7806 0.8462 0.8055 0.8709 

Work in Coppock et al. [19] 

(re-imp) 

0.8648 0.8212 0.8648 0.8298 0.8776 

Table 5 

Models comparison cross dataset cough tests. 

Model Accuracy Precision Recall F1 score AUC ROC 

AUCO ResNet non transfer 0.7412 0.6732 0.7412 0.6892 0.6220 

AUCO ResNet transfer 0.7688 0.7326 0.7688 0.7098 0.8186 

DenseNet 201 non transfer 0.5180 0.5968 0.5180 0.3949 0.5518 

DenseNet 201 transfer 0.6315 0.6126 0.6315 0.6027 0.6013 

ResNet 50 non transfer 0.5037 0.7506 0.5037 0.3403 0.5634 

ResNet 50 transfer 0.5834 0.6956 0.5834 0.4698 0.5821 

Inception ResNet V2 non 

transfer 

0.5505 0.5742 0.5505 0.5114 0.5576 

Inception ResNet V2 

transfer 

0.5977 0.5994 0.5977 0.5885 0.6012 

Shallow SVM 0.42 0.35 0.42 0.34 0.4234 

Shallow Random Forest 0.51 0.53 0.51 0.41 0.5102 

Shallow KNN 0.41 0.36 0.41 0.35 0.4132 

Work in Brown et al. [8] 0.66 0.66 0.67 0.66 0.6221 

Work in Bansal et al. [16] 

(re-imp) 

0.62 0.67 0.62 0.64 0.5814 

Work in Imran et al. [9] 

(re-imp) 

0.72 0.59 0.72 0.63 0.641 

Work in Coppock et al. [19] 

(re-implemented) 

0.72 0.66 0.72 0.67 0.5253 

Table 6 

Models’ comparison cross dataset breath tests. 

Model Accuracy Precision Recall F1 score AUC ROC 

AUCO ResNet non transfer 0.59 0.62 0.59 0.55 0.6436 

AUCO ResNet Transfer 0.6822 0.7031 0.6816 0.6724 0.7051 

DenseNet 201 non transfer 0.5403 0.5776 0.5403 0.4774 0.5811 

DenseNet 201 transfer 0.6236 0.6521 0.6235 0.6531 0.6612 

ResNet50 non transfer 0.5967 0.6107 0.5967 0.5836 0.6269 

ResNet50 transfer 0.6644 0.6824 0.6644 0.6623 0.6971 

Inception ResNet V2 non transfer 0.5666 0.5694 0.5666 0.5622 0.5330 

Inception ResNet V2 transfer 0.6421 0.6247 0.6241 0.6316 0.6542 

Shallow SVM 0.51 0.51 0.51 0.50 0.5080 

Shallow Random Forest 0.52 0.52 0.52 0.52 0.5161 

Shallow KNN 0.52 0.52 0.52 0.51 0.5161 

Work in Brown et al. [8] 0.55 0.55 0.55 0.55 0.5466 

Work in Bansal et al. [16] (re-imp) 0.61 0.62 0.61 0.60 0.5829 

Work in Imran et al. [9] (re-imp) 0.62 0.63 0.63 0.62 0.6691 

Work in Coppock et al. [19] (re-imp) 0.59 0.61 0.59 0.58 0.6136 
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UC with respect to other state of art DNNs, but lower if compared 

ith AUCO ResNet. 

.3. UrbanSound 8K Test 

Given that good results were obtained by AUCO-ResNet on 

ovid-19 related tasks, tests have been also performed on the wide 

rbanSound 8K dataset [22] . Results obtained on the different folds 

re reported in Fig. 7 . 

Tests have been also performed considering data augmentation. 

or this purpose a time stretching technique has been adopted 
11 
ith the aim of reducing the speed of audio samples and back- 

round noise [22] . This data augmentation was performed on the 

y on each training set of the 10-folds of UrbanSound 8K. Results 

re reported in Table 7 . It can be observed that AUCO ResNet with-

ut data augmentation outperforms all the other solutions that do 

ot use data augmentation. 

On the other hand, the approach does not perform well in the 

ase of data augmentation. State of art accuracy is achieved by 

hin et al. in [28] , where both data augmentation and transfer 

earning were adopted. Confusion matrices for AUCO-ResNet are 

eported in Fig. 8 . It is possible to observe that data augmentation 
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Fig. 7. Accuracies of AUCO ResNet on original (unaltered) folds of UrbanSoud 8K dataset. 

Table 7 

Urbansound 8K results compared with other state of the art works. NA means not acknowledged. NO means not present and YES means the 

presence of the pre-training or data augmentation technique. 

Model Accuracy Precision Recall F1 score AUC ROC Pre Trained Data Augmentation 

AUCO ResNet 0.7783 0.7851 0.7783 0.7709 0.9677 NO NO 

Chong et al. [27] 0.751 NA NA NA NA NO NO 

Salamon et al. [25] 0.75 NA NA NA NA NO NO 

Giannakopoulos et al. [29] 0.731 NA NA NA NA NO NO 

Salamon et al. [23] 0.73 NA NA NA NA NO NO 

Piczac et al. [24] 0.73 NA NA NA NA NO NO 

Jin et al. [26] 0.705 NA NA NA NA NO NO 

Salamon et al. [22] 0.70 NA NA NA NA NO NO 

Shin et al. [28] 0.8514 NA NA NA NA YES YES 

Shin et al. [28] without transfer learning 0.7632 NA NA NA NA NO YES 

Zhang et al. [56] 0.819 NA NA NA NA NO YES 

AUCO ReseNet with data augmentation 0.7222 0.7329 0.7222 0.7146 0.9413 NO YES 

Fig. 8. Results on first fold of UrbanSound 8K. (a) left confusion matrix of AUCO ResNet trained on augmented training set. (b) right confusion matrix of AUCO ResNet trained 

on non-augmented training set. Names of columns and rows are: 1 = Air Conditioned, 2 = Car Horn, 3 = Child, 4 = Dog Barking, 5 = Drilling, 6 = Engine, 7 = Gun Shot, 

8 = Jackhammer, 9 = Siren, 10 = Street Music. 
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as created some confusions in recognizing the right patterns for 

ome classes such as engine sound (confused with air conditioner) 

nd drilling class (confused with jackhammer). It is in the authors’ 

pinion that data augmentation increases the chance to have fea- 

ures maps sharing the same weights among the different classes 

o that the first layer of the net (trainable Mel-like filter) special- 

zes itself more on synthetic data than on the real ones. Moreover, 

ata augmentation reduces reproducibility and is questionable in 

he medical field, as a consequence it has not been used in exper- 

ments related to Covid-19 [57] . 

.3.1. Ablation Studies 

Ablation studies are presented in Table 8 . The intuition behind 

he end-to-end training is the capability of the system to opti- 

ize every single module of the entire learning system toward 
12 
 global goal (decreasing the error). As previously discussed, the 

nclusion of the trainable mel-spectrogram layer within the end- 

o-end training process is aimed to optimize the learned spectro- 

ram representation with the goal of decreasing the error. But this 

rocess does not happen in isolation, Table 8 shows that only the 

ynergic integration of trainable Mel-spectrogram layer, CBAM, SE- 

lock and sinusoidal learnable attention allows to achieve the best 

esults in terms of average accuracy, precision, recall, F1-score and 

UC ROC on UrbanSound 8K dataset trained end-to-end. Specifi- 

ally, as reported in the works [41] and [44] , it is observed that 

dding Squeeze and Excitation block into a ResNet architecture im- 

roved the AUC ROC as well as adding the CBAM block, although 

he latter with a little increase in AUC ROC. Results in Table 8 also

onfirm the importance of adding the learnable attention as noted 

n [45] achieving same importance of the Squeeze and Excitation 
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Table 8 

Ablation studies performed on UrbanSound 8K dataset. Results show average 10-fold scores achieved with original 

(vanilla) AUCO ResNet and the modified AUCO ResNet where, one at time, various properties have been disabled. 

NT means non trainable. SLA means sinusoidal learnable attention. 

Model Accuracy Precision Recall F1 score AUC ROC 

Vanilla AUCO ResNet 0.7783 0.7851 0.7783 0.7709 0.9677 

AUCO with NT Mel 0.7620 0.7706 0.7629 0.7542 0.9499 

AUCO without CBAM-Block 0.7779 0.7843 0.7779 0.7708 0.9531 

AUCO without SE-Block 0.7715 0.7849 0.7715 0.7673 0.9538 

AUCO without SLA 0.7687 0.7768 0.7687 0.7625 0.9538 

AUCO without CBAM, SE-Block, SLA and NT Mel 0.7617 0.7649 0.7617 0.7518 0.9494 

Table 9 

Deep Neural Networks complexity in terms of number of train- 

able weights. 

Model Trainable Weights 

AUCO ResNet 22128290 

DenseNet 201 18090498 

ResNet 50 23517186 

Inception ResNet V2 54278690 

Work in Bansal et al. [16] (re-imp) 44953883 

Work in Imran et al. [9] (re-imp) 65506 

Work in Coppock et al. [19] (re-imp) 15276096 
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lock in [41] . These results are confirmed by the respective works 

n [ 41 , 43 ] and [44] . It is also important to underline that the re-

ults obtained are not a mere sum of the improvements from 

ach technique, thus showing that the various attention techniques 

ompete with each other in a sensitive way and also the limits of 

he overall model and datasets. 

.3.2. Limitations of AUCO ResNet 

AUCO ResNet is a novel deep neural network that can be valu- 

ble for audio classification tasks, but this comes with a cost as 

t is not without some limits. It is not clear why data augmen- 

ation decreases the accuracy of the model. In fact, results on Ur- 

anSound 8K dataset are lower when compared to techniques such 

s [28] that make use of data augmentation. Our intuition is that 

UCO ResNet is very sensitive to the input audio quality. It is also 

mportant the complexity of training the network: from Table 9 it 

s possible to observe that its complexity in terms of number of 

rainable parameters is in the average. It is by far less than an In-

eption ResNet V2 or Bansal et al. in [16] , but it is higher than a

enseNet with 201 layers as well as other deep neural networks 

esigned specifically for Covid-19 recognition from audio such as 

mran et al. [9] and Coppock et al. [19] . The number of trainable

arameters in the AUCO ResNet is governed by the presence of 

queeze and Excitation blocks which add dense layers for chan- 

el attention and recalibration, but their presence is of paramount 

mportance as shown in ablation studies and results in Table 8 . Im- 

lementation of vanilla pre-trained AUCO ResNet models in edge 

I devices is difficult but not impossible: in paper [58] authors 

ere capable of running ResNet-50 with 23.6 million trainable pa- 

ameters and Inception V3 with 21.8 million trainable parameters 

n an edge AI device, and AUCO ResNet complexity stands just in 

he middle of those two, but it requires a modern edge AI device. 

nother limitation is that it cannot process large audio inputs of 

inutes and hours because the tensors within the network would 

ll the available GPU RAM, differently from models that are intrin- 

ically recurrent. 

. Conclusions and future remarks 

In this work a biologically inspired deep neural network, 

amely the Auditory Cortex ResNet, for audio classification has 
13 
een presented. AUCO ResNet takes as input raw audio and works 

ithout any preprocessing, data augmentation or manual spectro- 

ram generation. 

AUCO ResNet has been tested on several Covid-19 sound 

atasets including cough and breath recordings and adopting an 

nter-patient schema. Moreover, cross dataset tests (training/test) 

ave been performed. This neural network has been compared to 

 wide set of state of art approaches and it has reported an AUC of

.8308, 0.9257 and 0.8972 respectively on Cambridge Task1, Task2 

nd Task3 as defined in [8] . Improvements (compared to the other 

pproaches) range from 3% to 20% of AUC. It is also interesting to 

bserve that, given the independence of cough and breath from 

he language, cross-dataset tests have been possible. In this case 

.8186 and 0.7051 of AUC, respectively on cough and breath have 

een achieved thus demonstrating that the system proposed here 

an be a viable Covid-19 pre-screening solution. 

The approach has been also tested on the wide UrbanSound 

K dataset obtaining state of the art performances without data 

ugmentation. On the other hand, it has been shown that the 

pproach reduces its performance in case of data augmentation. 

UCO ResNet is a complex network with 400 layers and number 

f trainable weights just slightly below a common ResNet-50, it 

xploits some parallel computation with the sinusoidal learnable 

ttention mechanism, but the presence of several CNN layers lim- 

ts its parallelization. In addition, it cannot process long audio se- 

uences, as it would a recurring neural network: the size of the 

ensors, and consequently the GPU ram used, would get saturated. 

Future works efforts will be addressed to reduce the network 

omplexity, to investigate different configurations of the different 

ayers as well as to stress the generalization capabilities of the net- 

ork on other audio-related health tasks. 
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ppendix A. A comparison of trainable and non-trainable mel 

pectrogram layer 

In this appendix there are plots of trainable and non-trainable 

el-spectrogram and their differences. The Mel-spectrogram is a 

pectrogram generated by converting sound frequencies in the Mel 

cale. The key insight about using a trainable Mel-spectrogram 

ayer is to seek within the end-to-end training framework defini- 

ion. Thanks to the end-to-end approach, the training of a weight 

atrix and its dot product with the original Mel-filterbank, pro- 

uce a spectrogram that is optimized for the global goal of reduc- 

ng the error by enhancing only frequencies that are important. As 

t is possible to observe from Figs. 9 and 10 , the two spectrograms

re visually very similar, but Fig. 11 shows their difference by us- 

ng the known structural similarity algorithm. It seems that in cer- 

ain places of the spectrogram (e.g. areas localized toward the low- 
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Fig. 9. Non trained Mel-spectrogram for first covid-19 positive audio of the entire dataset. 

Fig. 10. Trained Mel-like spectrogram for first covid-19 positive audio of the entire dataset. 

Fig. 11. differences (marked in red) from trained and non-trained Mel-spectrograms using structural similarity algorithm. 

b

n

t

o

l

R
 

 

 

 

and frequencies), the magnitude of some frequencies is higher in 

on-trainable Mel-spectrogram and somewhat less pronounced on 

he trained Mel-spectrogram, thus confirming authors’ hypotheses 

f performing additive selection on Mel-filterbanks for filtering out 

ess important information. 
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