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Abstract   
Background: The role of change in proteinuria as a surrogate endpoint for randomized trials in IgA 

nephropathy has previously not been thoroughly evaluated. 

Study design: Individual patient-level meta-analysis. 

Setting and Population: Individual patient data of 830 patients from 11 randomized trials evaluating four 

intervention types (RAS blockade, fish oil, immunosuppression, and steroids) examining associations 

between changes in urine protein and clinical endpoints at the individual and trial level. 

Selection Criteria for Studies: Randomized controlled trials of IgA nephropathy with measurements of 

proteinuria at baseline and at 9-month window (range 5-12), with at least one further year of follow-up for 

the clinical outcome.  

Predictor: 9 month change in proteinuria. 

Outcomes: Doubling of serum creatinine, end stage renal disease or death. 

Results: Early decline in proteinuria at 9 months was associated with a lower risk of the clinical outcome 

[HR 0.40 (95% CI 0.32, 0.48) per 50% reduction in proteinuria] and was consistent across studies.  Estimates 

for the proportion of treatment effect on the clinical outcome explained by early decline in proteinuria 

were 11% (-19 to 41) for RAS blockade and 29% (6 to 53) for steroid therapy.  The direction of the pooled 

treatment effect on early change in proteinuria agreed with the direction of the treatment effect on the 

clinical outcome for steroids and renin angiotension system blockade. Trial level analyses estimated the 

slope for the regression line for the association of the treatment effects on the clinical endpoints and the 

treatment effect on proteinuria was 2.15, (95% Bayesian CI 0.10, 4.32).  

Limitations: Study population restricted to 11 trials, all having less than 200 patients each with a limited 

number of clinical events.  

Conclusions: These results provide new evidence supporting the use of an early reduction in proteinuria as 

a surrogate endpoint for clinical endpoints in IgA nephropathy in selected settings. 
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Introduction 

IgA nephropathy is a common cause of glomerulonephritis. It can have a highly heterogeneous course; 

some patients have hematuria with minimal progression, others have slowly progressive decline in 

glomerular filtration rate (GFR) culminating in kidney failure years later, and rarely fast progression to 

kidney failure. For patients with progressive disease, treatments are thought to be most effective early in 

the disease course. In many chronic kidney diseases, a large decline in GFR, assessed as a doubling of serum 

creatinine from baseline, and more recently 30 or 40% decline in GFR, has often been used as a surrogate 

endpoint for kidney failure in randomized clinical trials of patients with low levels of GFR or rapidly 

progressive disease (RCTs)1,2. However, for the majority of patients with IgA nephropathy with progressive 

disease, these endpoints are not feasible because of the long duration of the disease, leading to expense 

and complexity of trials that would be required to detect a large decline in GFR. These issues have likely 

contributed to the paucity of therapies to treat IgA nephropathy. 

  

For many diseases, use of surrogates has helped accelerate the development and evaluation of new 

therapies3. Critical to the correct assessment of surrogacy is the use of appropriate methods to evaluate 

patient data across multiple trials to avoid approval of ineffective or harmful therapies4,5. Two recent 

individual patient-level meta-analyses provided empirical evidence for use of change in proteinuria as a 

surrogate outcome for disease progression across many causes of chronic kidney diseases6,7.  One criticism  

of these analyses was that it grouped together different of causes of kidney disease and the role of 

proteinuria in the cause and progression of the disease may differ among etiologies8. If so, performance of 

proteinuria as a surrogate would differ , in which case pooling across studies may have masked true 

associations between change in proteinuria and the clinical endpoints in a particular disease. Here we 

report an individual patient-level meta-analysis of a pooled dataset of 830 individuals from eleven RCTs of 

four intervention types in IgA nephropathy to evaluate an early change in proteinuria as a surrogate 

endpoint for progression of this specific cause of kidney disease.  



   
6  

Methods 
 

Study selection and study populations 

We identified potential studies via systematic search of the medical literature on Ovid MEDLINE published 

from January 1, 1979  to July 9, 2012 (see Supplement Figure 1 for flow chart and Supplement Table 1 for 

search terms). The key inclusion criterion was randomized control trials (RCT) design of drug interventions 

in adults with IgA nephropathy (Supplement Table 2). In total, we were able to include eleven studies that 

investigated four intervention types [renin angiotensin system (RAS) blockade, fish oil, steroids or other 

immunosuppression agents] (Supplement Figure 1). Risks of bias for each study were assessed using the 

risk-of-bias tool of the Cochrane collaboration9 (Supplement Table 3 ). We defined the active treatment as 

the treatment hypothesized to produce the greater reduction in the risk of the clinical endpoint. All 

participants underwent informed consent as part of their inclusion in each study. This analysis was 

considered exempt from review by the Tufts Medical CenterIRB.   

 

Early change in urine protein 

We defined change in urine protein from baseline to 9 (range 5 to 12) months. Urine protein was expressed 

in units of grams/day and was log transformed due to skewedness of the data.   

 

Clinical endpoint 

The clinical endpoint was defined as the composite of the time to the first occurrence of doubling of serum 

creatinine, ESRD, or death. If available, we used the study defined censoring dates to define the follow-up 

times10,11. As previously described, if the study defined censoring dates were not available, we 

approximated them as the time from randomization to the final recorded visit date in the data provided 

plus 6 months plus the study-specific 90th percentile of the average interval between visits with serum 

creatinine measurements6,12-20. The purpose of adding 6 months to the estimated right censoring date is to 



   
7  

retain a higher proportion of clinical outcome events which occurred following the patient’s final study visit.  

 

Analyses 

As was previously used in  Inker et al., we  performed three types of analyses which are widely used for 

validation of surrogate endpoints6: 1) Association between the clinical outcome and early change in 

proteinuria at the individual level21; 2) Proportion of treatment effect (PTE) on the clinical outcome 

explained by the early change in proteinuria (Prentice-Freedman criterion)22,23; and 3) Association between 

the treatment effect on the 9 month change in proteinuria and the treatment effect on the clinical 

endpoint24-27.  

 

For all analyses, GFR was estimated using the CKD-EPI creatinine equation28. We report results for each 

study, in the pooled dataset and in subgroups based on intervention type, baseline urine protein (< 1, 1- 2, 

>2 g/day), eGFR (< 45, 45- 90, >90 ml/min per 1.73m2) and blood pressure (SBP < 140 and DBP < 90 vs SBP > 

140 or DBP > 90 mmHg). In a sensitivity analysis, we adjusted for follow up blood pressure at the same time 

point as the second measure of urine protein in the subset of studies in which these measures were 

available. 

 

Individual-level association 

Demonstration of a consistent patient-level association between a surrogate and the clinical outcome is 

widely regarded as necessary, although not sufficient, for establishing the validity of the surrogate endpoint 

in clinical trials4,29,30. We evaluated individual-level association by performing Cox regressions to relate the 

clinical outcome to early change in proteinuria, with results expressed as the hazard ratio associated with a 

halving of proteinuria. Our initial model was adjusted for treatment assignment, study and baseline urine 

protein, with the more fully adjusted models adjusted for additional baseline variables including age, sex, 
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race, estimated GFR and blood pressure. We obtained hazard ratios and associated 95% confidence 

intervals for the overall dataset and for subgroups by repeating the Cox regression in the overall dataset 

and in each of the subgroups pooled across each study, where the baseline hazards of the Cox regressions 

were stratified by study.   

 

Proportion of treatment effect explained (Prentice-Freedman Criterion).    

The proportion of the treatment effect on a clinical outcome “explained by the surrogate” (PTE) has been 

widely used as an index of the validity of surrogate endpoints22,23,31.  Where data permit, the PTE quantifies 

the magnitude of the attenuation of the treatment effect on the clinical outcome that results from 

statistically controlling for the surrogate24,32. We performed joint Cox regressions with baseline hazards 

stratified by study to estimate the treatment effects on the clinical outcomes for each study, first adjusting 

for the full set of baseline covariates and then also adjusting for change in proteinuria. PTE was calculated 

as 1 minus the ratio of the Cox regression coefficients for the treatment with and without adjusting for 

early change in proteinuria. We obtained pooled PTEs and associated 95% confidence intervals for each of 

the four interventions by repeating the above procedure for joint analyses in each of the interventions. The 

PTE were only computed for interventions in which the treatment effect had a P-value of < 0.10. 

 

Trial level analyses 

Assessments of individual-level association and the Prentice-Freedman criteria both depend on the 

untestable assumption of no residual confounding from factors which jointly influence the surrogate and 

clinical endpoints24,33. By contrast, trial-level analyses investigate the relationship between treatment 

effects on the surrogate with treatment effects on the clinical endpoints, where each treatment effect is 

estimated from a randomized trial , and therefore minimizes the risk of confounding that affects the first 

two approaches24. It is the more direct evaluation of potential surrogates as it evaluates the consistency 

and association between treatment effects on the surrogate to the treatment effects on the clinical 
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endpoint and has been the primary focus of the statistical surrogate endpoint literature over recent years in 

diverse therapeutic disease areas25-27,34,35. Demonstration of a relationship between treatment effects on 

the surrogate and treatment effects on  the clinical endpoint across a wide range of interventions is a 

necessary prerequisite to infer that the treatment effect on the surrogate will predict the treatment effect 

on the clinical outcome in future RCTs.   

 

The trial level analysis requires two steps: assessment of the treatment effects within each study and a 

meta-analysis of treatment effects across studies. In the first step, we applied linear and Cox regression in 

each study to estimate the treatment effects (and associated standard errors) on the 9 month  change in 

proteinuria (expressed as the log transformed ratio of follow-up vs. baseline geometric mean proteinuria 

(GMR) between treatment groups) and on the clinical outcome (expressed as log transformed hazard 

ratios). We obtained estimates of the correlation between the treatment effects on the clinical and 

surrogate outcome within each study by performing bootstrap resampling with 2000 repetitions for each 

study. In order to assure convergence of the Cox models for each bootstrap sample, we pooled studies of 

the same intervention that had fewer than 10 clinical events. In the second step, we applied a Bayesian 

mixed effect regression model to relate the treatment effects on the clinical outcome to the treatment 

effects on proteinuria with study as the unit of analysis. A slope greater than zero would indicate that 

treatment effects on early change in proteinuria are associated with treatment effects on the clinical 

endpoint and support the surrogacy hypothesis.   

 

Results 

Characteristics of the study population 

Supplement Tables 3 and 4 describe the included studies. Of the 888 participants in these 11 studies, 58 

were excluded because they had a clinical event before the 9 month window or did not have a repeated 

measurement of urine protein at 9 months, leaving 830 participants in the pooled study population.    Table 
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1 shows the characteristics these 830 participants10-20,36,37. In the pooled dataset, median (25th, 75th) 

baseline urine protein was 1.80 (1.3, 2.7) g/d [range across studies 1.0 (0.6, 2.7) to 2.50 (1.5, 4.0)] and mean 

(SD) baseline GFR was 74 (30) ml/min 1.73 m2 [range across studies 28 (7) to 99 (23)] with varying 

distributions across the interventions (Table 1). In the pooled dataset, the mean (SD) duration of follow-up 

was 4.8 (2.7) years [range 1.5 (0.8) to 7.8 (4) across studies], with a total of 128 (15.4%) clinical endpoints 

[range 3 (8.8%) to 18 (41.9%) across the individual studies] (Table 1). For the sensitivity analysis, a subset of 

699 patients in 10 trials had blood pressure available at the time of the follow-up urine protein. Baseline 

characteristics were similar to the main study population (Supplement Table 5).  

 

Individual level association 

Table 2 shows the associations of change in urine protein with development of subsequent clinical 

outcomes. In the pooled dataset, a decline in urine protein was associated with a lower risk for the clinical 

outcome [hazard ratio (HR) 0.40 (95% CI 0.32, 0.48) for a 50% decline in urine protein]. Results were 

broadly consistent across studies, although hazard ratios in some studies did not reach significance, 

possibly due to low event rates [range 0.03 (95% CI 0, 1.92) to 0.52 (95% CI 0.27, 0.99)]. Similar results were 

seen across subgroups defined by intervention, baseline urine protein, baseline estimated GFR and blood 

pressure (Table 2). Results were similar in the subset after adjusting for changes in blood pressure during 

follow-up (Supplement Table 6).   

 

Investigation of Prentice Criteria  

Table 3 shows the treatment effects on the clinical endpoint before and after adjusting for full set of 

baseline covariates and the change in proteinuria and the associated PTE for 5 of the 11 studies and 2 of 

the 4 intervention types (RAS blockade and steroids) in which the treatment effect approached statistical 

significance (P-value  <0.1). The pooled PTE were 11% (95% CI -19 to 41%) for RAS blockade and 29% (95% 
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CI 6 to 53%) for steroid therapy (indicating smaller treatment effects after adjustment for early change in 

proteinuria). 

 

Trial Level Analysis 

Table 4 shows the treatment effects on the early change in proteinuria and the clinical outcome. In the 

pooled dataset treatment reduced proteinuria compared to control [pooled GMR =0.76 (95% CI 0.68, 0.85). 

However, there was substantial variation across studies [range from 0.38 (95% CI 0.27, 0.53) to 1.39 (95% CI 

0.87, 2.22)] and treatment types [range from 0.50 (95% CI 0.41, 0.6) for studies of steroids to 1.07 (95% CI 

0.86, 1.34) for studies of immunosuppression].  In the pooled dataset, treatment also reduced the risk of 

the clinical endpoint compared to control [0.37 (95% CI 0.25, 0.55)], with variation across study and 

interventions [HR of 0.14 (95% CI 0.07, 0.34) for steroid therapy to 0.69 (95% CI 0.35, 1.35) for 

immunosuppression]. Overall, there was agreement in the direction of point estimates for treatment 

effects on proteinuria and on the clinical endpoint for seven of eleven studies, and two of four 

interventions (steroids and RAS blockade). In sensitivity analyses, findings were similar in the subset after 

adjusting for changes in blood pressure during follow-up (Supplement Table 7). 

 

Figure 1 shows the relationship between treatment effects on early change in proteinuria vs. treatment 

effects on clinical outcome across individual studies. Overall the slope is 2.15 (95% Bayesian credible 

interval 0.10, 4.32) with R2 of 0.91(95% Bayesian credible interval 0.47, 1.0), suggesting there is a significant 

positive relationship between the treatment effects on urine protein and on the clinical endpoint. 

 

Discussion 

Use of surrogate endpoints may improve the efficiency of clinical trials in general and for studies of IgA 

nephropathy, their use allows for evaluation of interventions early in the disease course prior to kidney 

scarring and irreversible changes. There is a reasonably sound biological and empirical basis for the 
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hypothesis that an early change in proteinuria is a valid surrogate endpoint for progression of IgA 

nephropathy. First, there is a range of pathological evidence that the degree of proteinuria correlates with 

greater evidence of disease38-40. Second, on an individual level, proteinuria has been widely reported to be 

prognostic for long-term disease progression at all stages of kidney disease41-47, and a recent study has 

shown that attenuation of proteinuria after steroid therapy is associated with improved prognosis48, 49.  

Third, benefit of treatment appears to be greater at higher levels of proteinuria50. In this report, we have 

provided the first large scale empirical data on the statistical associations between early changes in 

proteinuria and clinical endpoints across multiple interventions. The results from these analyses extend the 

evidence supporting a potential use of early change in proteinuria in IgA nephropathy. 

 

Our analyses of individual level association establish that a greater reduction in proteinuria is consistently 

associated with slower progression of IgA nephropathy across all interventions. These results are limited by 

possible confounding factors that influence both the proteinuria and the clinical endpoint, although the 

results changed little after adjustment for available baseline covariates. These results are consistent with 

and extend results of epidemiologic studies and observational analyses of clinical trials that demonstrate 

the utility of proteinuria as a prognostic marker for subsequent clinical outcomes in IgA nephropathy. These 

results in and of themselves are not evidence of surrogacy, but support the use of change in proteinuria to 

inform prognosis in IgA nephropathy, as has been shown for general CKD45,51,52.   

 

The PTE is a traditional method to evaluate surrogate endpoints. However, this approach has significant 

shortcomings in the requirement for trials to have statistically significant treatment effects on both the 

potential surrogate and clinical outcome and it is also subject to bias due to measurement in error in 

proteinuria and as well as possible residual confounding24,33. Our assessments of the Prentice-Freedman 

criteria were therefore inconclusive with few trials meeting the necessary criteria.  
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We used two approaches to investigate if treatment effects on change in proteinuria were consistent with 

treatment effects on the clinical outcome. First, we found that the direction of the treatment effects on 

reductions both in proteinuria and on the clinical endpoint were in agreement for steroids and RASB 

interventions, but were not in agreement for the fish oil and immunosuppression interventions. The lack of 

agreement for these later two interventions may reflect imprecision of the treatment effects for these 

interventions. Second, using the trial level approach, we found that there was a positive relationship 

between the treatment effects on urine protein and on the clinical endpoint, with a credibility interval, 

though wide, that did not cross 0. Altogether these findings are consistent with the hypothesis that the 

treatment effect on proteinuria may be used to predict the treatment effect on the clinical endpoint. 

However, we did not account for uncertainty in the estimated standard errors of the Cox regression 

coefficients or of the estimated treatment effects on the GMR for proteinuria. Although this approach is 

commonly used in trial level analyses, the consequences of the uncertainty in the standard errors may be 

greater in this analysis than is typically the case due to the small sizes of several of the studies. The addition 

of further data from future trials in IgA nephropathy would help to address this issue. 

 

Prior literature appears to contradict the positive relationship between treatment effects on urine protein 

and clinical endpoint shown by trial level analysis in our study. Inker et al and Lambers-Heerspink et al 

recently evaluated change in proteinuria as a surrogate outcome in studies across of heterogeneous  causes 

of CKD6,7. In contrast to the current analysis, in both studies when the analyses were restricted to early 

change in proteinuria, the confidence interval for the regression line crossed 0. It is possible that evaluation 

across these heterogeneous sets of diseases masked the relationship within IgA nephropathy. Others have 

suggested that the  assessment of  potential surrogate endpoints may be optimally performed within 

specific diseases8. In an analysis performed by Lv et al on evaluating this question in six trials of IgA 

nephropathy, the reduction in risk for kidney failure with steroid therapy was associated with the 

difference in proteinuria reduction between treatment groups, but this finding was not statistically 
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significant (P=0.1), potentially because of four small studies with few clinical events and infinite confidence 

margins on the treatment effect on the clinical endpoint53. Finally, Rauen et al showed the 

immunosuppressive therapy led to a positive treatment effect on proteinuria but not on a reduction of GFR 

of 15 ml/min per 1.73 m2 54. However, as we have recently shown, use of small changes of GFR is not 

appropriate in most settings due to the potential for acute effects on the estimated GFR, and the study was 

not powered sufficiently to assess differences on larger GFR decline or clinical endpoints2. 

 

Strengths of the current analysis include a systematic literature search to include all available studies, 

uniform definitions of exposures and outcomes, and a comprehensive evaluation using the three standard 

approaches for validating surrogate endpoints in the statistical and medical literatures. The results from 

these analyses extend the evidence supporting use of proteinuria in some settings. There are also 

limitations. First, all of the studies included had follow-up less than 10 years while for most patients with 

IgA Nephropathy, it is slowly progressive indolent disease, and the studies with shorter follow up may have 

missed true associations. Second, the evaluation of proteinuria as a surrogate endpoint was limited to 

changes between approximately 6-12 months, and our findings may not extend changes in proteinuria over 

longer (or shorter) time periods. Since the endpoint is defined by the change in proteinuria, all participants 

must have survived to have the second measurement, although that does not invalidate the comparison to 

the clinical endpoints, since endpoints prior to the second measurement were excluded. Third, our 

designation of the treatment arm in each trial as the group hypothesized to have the greater benefit was 

somewhat arbitrary. This is highly relevant for this study as some studies compared azathioprine + steroids 

vs. steroids alone, the azathioprine + steroids was considered the active treatment group  and steroids are 

considered to be an effective therapy18,19. Fourth, our selection of studies may be biased as we only 

included studies written in English prior to 2012, that had sufficient data for our planned analyses and 

where the investigators were willing and able to share data. Fifth, due to the rarity of the disease, many 

studies were small and had some concern for bias, including lack of study specified administrative censoring 
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dates. Finally, due to the small sample sizes, the standard errors of the Cox regression coefficients of the 

individual studies could not be accurately estimated, hence, smaller studies were combined for the 

purposes of the trial level analysis.     

 

Overall, the evidence presented here suggests that, when considered in conjunction with evidence from 

experimental studies, findings from our analyses may be sufficient to recommend use of proteinuria as a 

surrogate endpoint in interventions that work by similar mechanism evaluated in the current analysis, in 

early phase clinical trials for new therapies with different mechanisms of actions and for exploratory 

analyses (e.g., subgroup analyses with limited power for the clinical endpoint). Use of early change in 

proteinuria could facilitate studies of new treatments for IgA nephropathy, but such short term studies 

should be followed with subsequent post-approval confirmation of the treatment effect on the clinical 

endpoint and for accumulation of  safety data. 
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Table 1:  Characteristics of Study and Study Groups 
 

Study 
Number 

N % 
Female 

Age 
(mean ± SD) 

Urine Protein, 
median * 
(25th, 75th) 

eGFR, 
 (mean ± SD) 

Events N (%) F/U, years 
(mean ± SD) 

ESRD Doubling 
Scr 

Deaths Compo- 
site 

 

RAS Blockade vs. Control 
A1 106 71.7 40.0±9.1 1.58 (1.1, 2.6) 75.6±29.2 3 (2.8) 7 (6.6) 0 8 (7.6) 2.75±0.60 
A2 44 38.6 31.6±11.5 1.70 (1.1, 2.4) 98.1±26.5 15 (34.1) 6 (13.6) 0 15(34.1) 7.84±3.95 

Fish oil 
B1 66 16.1 46.4±13.4 1.56 (0.7, 2.6) 41.8±14.1 10 (15.2) 10 (15.2) 0 14 (21.2) 2.35±1.09 
B2 89 25.8 38.8±13.6 2.00(1.2, 3.4) 66.4±21.6 15 (16.9) 1 (1.12) 2 (2.2) 16 (18.0) 3.00±1.08 

Immunosupression 
C1 34 29.4 44.8±11.3 1.00 (0.6, 2.7) 62.2±18.9 2 (5.9) 2 (5.9) 1 (2.9) 3 (8.8) 3.20±0.86 
C2 18 11.1 38.2±13.9 2.28 (1.5, 2.9) 49.1±30.0 3 (16.7) 0 0 3 (16.7) 1.50±0.84 
C3 183 27.3 39.0±12.6 2.00 (1.5, 2.7) 74.0±24.7 9 (4.9) 14 (7.7) 3 (1.6) 17 (9.3) 5.92±2.01 
C4 43 18.6 42.0±11.7 2.50 (1.5, 4.0) 28.0±7.1 18 (41.9) 9 (20.9) 0 18 (41.9) 4.29±1.68 

Steroids 
D1 83 30.1 38.6±11.7 1.90 (1.4, 2.4) 87.2±21.6 7 (8.4) 14 (16.9) 0 14 (16.9) 7.93±3.26 
D2 94 30.8 33.8±11.1 1.66 (1.4, 2.5) 91.2±23.8 8 (8.5) 15 (16.0) 0 15 (16.0) 4.44±1.93 
D3 70 60.0 36.4±11.5 1.36 (1.0, 2.6) 98.5±22.3 4 (5.7) 5 (7.1) 0 5 (7.1) 6.35±2.01 

Pooled Analyses 
A 150 62.0 37.5±10.5 1.59 (1.1, 2.5) 82.2±30.2 18 (12.0) 13 (8.7) 0 23 (15.3) 4.25±3.16 
B 155 21.3 42.0±14.0 1.81 (1.1, 3.3) 55.9±22.4 25 (16.1) 11 (7.1) 2 (1.3) 30 (19.4) 2.77±1.06 
C 278 25.2 40.1±12.5 2.00 (1.4, 2.9) 63.9±28.1 32 (11.5) 25 (9.0) 4 (1.4) 41 (14.8) 5.07±2.19 
D 247 38.9 36.2±11.6 1.7 (1.3, 2.5) 91.8±23.0 19 (7.8) 34 (13.8) 0 34 (13.8) 6.15±2.88 

Each study is referred to by an alphanumeric code. Each letter refers to treatment comparisons, and each number refers 
to the individual studies. A is Renin-angiotensin system blockade versus control, B is fish oil, C is immunosuppression, 
and D is steroids. See Supplement table 3 for the study name for each study number and Supplement Table 4 for the 
description of the studies. Urine Protein is measured in g/day.  
Abbreviations: N, sample size; SD, standard deviation, eGFR, estimated glomerular filtration rate (in mL/min per 1.73m2);  
ESRD, end-stage renal disease; Scr, serum creatinine; F/U, follow up 
*All but one study measured urine protein excretion using 24 hour urine collections, and this study estimated it using 
urine protein to creatinine ratio in spot urines.   
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Table 2: Association of change in urine protein at 9 months on clinical endpoints  
 

Study Number or 
Subgroup 

Sample 
Size 

# of 
Events 

Adjusted for baseline UP Fully Adjusted 

   
HR (95% CI) P-value HR (95% CI) P-value 

A1 106 8 0.22 (0.07, 0.75)  0.02 0.19 (0.02, 1.47)  0.1 

A2 44 15 0.39 (0.17, 0.90)  0.03 0.43 (0.15, 1.19)  0.1 

B1 66 14 0.31 (0.15, 0.65)  0.002 0.22 (0.10, 0.47)  <0.001 

B2 89 16 0.52 (0.27, 0.99)  0.05 0.18 (0.05, 0.62)  0.01 

C1 34 3 0.46 (0.16, 1.33)  0.2 
 

  

C2 18 3 0.03 (0.00, 1.92)  0.1 
 

  

C3 183 17 0.46 (0.30, 0.72)  0.001 0.47 (0.31, 0.73)  0.001 

C4 43 18 0.39 (0.22, 0.68)  0.001 0.39 (0.22, 0.69)  0.001 

D1 83 14 0.48 (0.27, 0.87)  0.02 0.55 (0.32, 0.96)  0.04 

D2 94 15 0.20 (0.10, 0.41)  <0.001 0.19 (0.09, 0.42)  <0.001 

D3 70 5 0.22 (0.05, 0.95)  0.04 
 

  

Overall 830 128 0.40 (0.32, 0.48)  <0.001 0.40 (0.32, 0.49)  <0.001 

Treatment type             

RASB 150 23 0.32 (0.17, 0.61)  0.001 0.30 (0.14, 0.66)  0.003 

Fish oil 155 30 0.39 (0.24, 0.64)  <0.001 0.22 (0.12, 0.39)  <0.001 

Immunosupression 278 41 0.46 (0.33, 0.62)  <0.001 0.48 (0.35, 0.65)  <0.001 

Steroids 247 34 0.35 (0.23, 0.52)  <0.001 0.37 (0.24, 0.55)  <0.001 

Urine Protein Categories           

<1 88 5 0.22 (0.05, 0.91)  0.04 
 

  

1-2  368 35 0.43 (0.29, 0.64)  <0.001 0.46 (0.32, 0.68)  <0.001 

> 2  374 88 0.38 (0.29, 0.50)  <0.001 0.39 (0.29, 0.51)  <0.001 

Estimated GFR Categories           

eGFR < 45  154 45 0.44 (0.31, 0.61)  <0.001 0.46 (0.32, 0.65)  <0.001 

eGFR 45-90 422 66 0.33 (0.24, 0.46)  <0.001 0.34 (0.25, 0.48)  <0.001 

eGFR > 90 254 17 0.42 (0.24, 0.75)  0.003 0.47 (0.25, 0.89)  0.02 

Blood Pressure Categories           

SBP < 140 and DBP < 
90 

534 75 0.42 (0.32, 0.55)  <0.001 0.40 (0.31, 0.53)  <0.001 

SBP > 140 or DBP > 
90 

296 53 0.35 (0.25, 0.49)  <0.001 0.40 (0.28, 0.55)  <0.001 

Each study is referred to by an alphanumeric code. Each letter refers to treatment comparisons, and each 
number refers to the individual studies. A is Renin-angiotensin system blockade versus control, B is fish oil, C is  
immunosuppression, and D is steroids. See Supplement table 3 for the study name for each study number and 
Supplement Table 4 for the description of the studies. Urine Protein is measured in g/day. Blank cells indicate that 
the model did not converge. 
Abbreviations: UP, urine protein; HR, hazard ratio; CI, confidence interval; GFR, glomerular filtration rate (in  
mL/min per 1.73m2); SBP, systolic blood pressure (in mmHG); DBP, diastolic blood pressure (in mmHG).  
Fully adjusted models include treatment assignment, study, baseline urine protein, age, sex, race, estimated GFR 
and blood pressure. Hazard ratios are reported for 50% decline in urine protein 

 



   
23  

Table 3: Treatment effect on the composite endpoint, with and without adjustment for change in urine protein and the 
proportion of treatment effect, adjusted for covariates 
 

Study 
Number 

N pts  
(# events) 

Unadjusted for Change in UP Adjusted for Change in UP 

PTE (CI) Parameter 
Estimate 

HR (95% CI) P-value 
Parameter 
Estimate 

HR (95% CI) P-value 

A2 44 (15)  -1.27 0.28 (0.07, 1.19)  0.09 -1.41 0.24 (0.04, 1.36)  0.1 -11 (-51,28) 
B2 89 (16)  -1.19 0.30 (0.08, 1.13)  0.08 -0.68 0.50 (0.14, 1.80)  0.23 43 (-24,109) 
C4 43 (18)  0.76 2.13 (0.89, 5.09)  0.09 0.56 1.76 (0.59, 5.22)  0.3 25 (-85,136) 
D1 83 (14)  -2.86 0.06 (0.01, 0.49)  0.01 -2.11 0.12 (0.01, 1.18)  0.07 26 (-6,58) 
D2 94 (15)  -2.61 0.07 (0.02, 0.25)  <0.001 -2.88 0.06 (0.01, 0.23)  <0.001 -10 (-59,38) 
Overall 830 (128)  -1.03 0.36 (0.24, 0.53)  <0.001 -0.92 0.40 (0.26, 0.60)  <0.001   10 (-10,31) 
Treatment type 

RASB 150 ( 23)  -1.42 0.24 (0.08, 0.74)  0.01 -1.27 0.28 (0.08, 1.01)  0.05 11 (-19,41) 
Steroids 247 ( 34)  -2.25 0.11 (0.05, 0.23)  <0.001 -1.60 0.20 (0.08, 0.49)  <0.001 29 (6,53) 

Each study is referred to by an alphanumeric code. Each letter refers to treatment comparisons, and each number 
refers to the individual studies. A is Renin-angiotensin system blockade versus control, B is fish oil, C is 
immunosuppression, and D is steroids. See Supplement table 4 for the study name for each study number and  
Supplement Table 5 for the description of the studies.  
Abbreviations: N, sample size; UP, urine protein; HR, hazard ratio; CI, confidence interval. PTE, Proportion of  
treatment effect. 
PTE = (1 – α/ß)% where α is the parameter estimate for treatment effect under the model without change in urine 
protein and ß the parameter estimate for treatment effect under the model with change in urine protein. Models are 
adjusted for baseline urine protein, eGFR, race, age, and gender. PTE is traditionally computed for studies with 
significant treatment effect on the clinical endpoint but because of the small sample size in most studies included 
here, for descriptive purposes we computed for studies in which the treatment effect on the clinical outcome 
approached statistical significance (P-value< 0.10).    
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Table 4: Treatment effect on change in urine protein, adjusted for baseline urine protein 
 

Study Number or 
Subgroup 

  

Sample 
Size 

  

Treatment effect on 
proteinuria 

Treatment effect on clinical 
endpoints 

GMR (95% CI) P-value HR  (95% CI)  P-value 

A1 106 0.60 (0.46, 0.77) <0.001 0.39 (0.08, 1.95) 0.3 

A2 44 0.73 (0.56, 0.94) 0.02 0.43 (0.13, 1.47) 0.2 

B1 66 1.39 (0.87, 2.22) 0.2 0.80 (0.27, 2.38) 0.7 

B2 89 0.77 (0.56, 1.05) 0.1 0.22 (0.06, 0.80) 0.02 

C1 34 1.27 (0.69, 2.34) 0.5 0.42 (0.03, 6.30) 0.5 

C2 18 1.09 (0.60, 1.98) 0.8 0.34 (0.03, 3.96) 0.3 

C3 183 1.00 (0.76, 1.32) 0.9 0.82 (0.31, 2.19) 0.7 

C4 43 1.18 (0.65, 2.12) 0.6 1.07 (0.37, 3.11) 0.9 

D1 83 0.38 (0.27, 0.53) <0.001 0.07 (0.01, 0.53) 0.01 

D2 94 0.50 (0.37, 0.68) <0.001 0.11 (0.03, 0.51) 0.004 

D3 70 0.68 (0.46, 1.02) 0.1 0.13 (0.01, 2.01) 0.1 

Overall 830 0.76 (0.68, 0.85) <0.001 0.37(0.25, 0.55) <0.001 

Treatment type  

RASB 150 0.63 (0.51, 0.76) <0.001 0.36 (0.14, 0.94) 0.04 

Fish oil 155 1.00 (0.76, 1.31) 0.9 0.44 (0.20, 0.95) 0.04 

Immunosupression 278 1.07 (0.86, 1.34) 0.5 0.69 (0.35, 1.35) 0.3 

Steroids 247 0.50 (0.41, 0.60) <0.001 0.14 (0.07, 0.34) <0.001 

Urine Protein Categories  

<1  66 0.90 (0.64, 1.36) 0.7 1.47 (0.16, 13.65) 0.7 

1.0- 2.0 368 0.68 (0.57, 0.80) <0.001 0.22 (0.09, 0.54) 0.001 

> 2.0 374 0.80 (0.67, 0.95) 0.01 0.40 (0.25, 0.64) 0.0002 

Estimated GFR Categories  

eGFR< 45 154 0.96 (0.71, 1.29) 0.8 0.66 (0.35, 1.24) 0.3 

eGFR 45-90  422 0.81 (0.69, 0.96) 0.01 0.30 (0.17, 0.53) <0.001 

eGFR> 90  254 0.59 (0.49, 0.72) <0.001 0.07 (0.01, 0.56) 0.01 

Blood Pressure Categories  

SBP < 140 & DBP < 90 534 0.72 (0.62, 0.83) <0.0001 0.33 (0.19, 0.56) <0.001 

SBP > 140 & DBP > 90 296 0.83 (0.68, 1.02) 0.08 0.42 (0.23, 0.76) 0.004 

Each study is referred to by an alphanumeric code. Each letter refers to treatment comparisons, and each 
number refers to the individual studies. A is Renin-angiotensin system blockade versus control, B is fish oil, 
C is immunosuppression, and D is steroids. See Supplement table 3 for the study name for each study 
number and Supplement Table 4 for the description of the studies. Urine Protein is measured in g/day.   
Abbreviations: GMR, geometric mean ratio, HR, hazard ratio; eGFR, estimated glomerular filitration rate; 
SBP, systolic blood pressure (in mmHG); DBP, diastolic blood pressure (in mmHG). 
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Figure Legend 

Figure 1: Trial-level Assessment of Validity of Proteinuria as a Surrogate Endpoint 

HKVIN: Hong Kong study using valsartan in IgA nephropathy, MMF: mycophenolic mofetil, AZA: 
azathioprine, D(dose): Donadio (dose), D(plc): Donadio (placebo) 

Dots are the observed treatment effects on the clinical outcome (vertical axis) and change in urine protein 
(horizontal axis) for each study or study group. Colors indicate intervention. Red, Renin-angiotensin system 
blockade; yellow, fish oil; green, immunosupression; purple, steroids   Treatment effects on the clinical 
outcome are expressed as hazard ratios.  Treatment effect on urine protein was computed as the change in 
log urine protein (follow-up – baseline) in the treatment vs the control groups.  The treatment effect 
estimate was exponentiated to obtain the geometric mean ratio of the change in urine protein for the 
treatment vs control arm.  A number less than 1 indicates a larger reduction in proteinuria in the treatment 
than in the control group. 
 
The brown regression line is the regression line from the Bayesian analyses summarizing the prediction of 
the true treatment effects on the clinical outcome from the true treatment effects on the change in urine 
protein. The gray lines indicate the confidence band around the regression line. Overall the slope is 2.15 
with 95% Bayesian credible intervals  range from 0.10 to  4.32) with R2 of 0.91, 95% Bayesian credible 
intervals  range from (0.47 to  1.0, indicating that, for  a given treatment effect on urine protein, the 
treatment effect on the clinical outcome is expected to  be double the treatment effect on urine protein 
when the respective treatment effects are expressed on the log hazard ratio and log geometric mean 
scales.   The Bayesiancredible intervalsl around the slope was wide  but did not cross 0, suggesting there is a 
significant positive relationship between the treatment effects on urine protein and on the clinical 
endpoint. 
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