
 1 

CAN USE OF ULTRASOUNDS IN RED WINEMAKING INCREASE POLYPHENOL 1 

EXTRACTION FROM GRAPE SKINS IRRESPECTIVE OF THE CULTIVAR?  2 

 3 

Giuseppe Gambacortaa,*, Antonio Trania, Rossana Punzia, Cristina Fascianoa, Raffaele Leob, 4 

Giuseppe Fracchiollab, Michele Facciaa 5 

a Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, I-70126, Bari, Italy 6 

b Industrie Fracchiolla, SP 133 Km 1.200, I-70010, Adelfia, Italy 7 

 8 

ABSTRACT 9 

The aim of this study was to investigate whether ultrasound treatment used in winemaking on grape 10 

cultivars with different ripening times improves the extraction of phenolic compounds. The 11 

cultivars used were Primitivo (early ripening), Nero di Troia (medium-late) and Aglianico (late), all 12 

grown in southern Italy. The trial used four pilot plants consisting of 200-L submerged cap stainless 13 

steel horizontal rotary wine fermenters. De-stemmed Primitivo grapes were directly subjected to the 14 

ultrasound treatment, whereas de-stemmed Nero di Troia and Aglianico grapes were processed after 15 

dilution with previously extracted juice (1:1 w/v). Our results showed that ultrasound improved the 16 

extraction of flavonoids (+15%), total polyphenols (+10%) and proanthocyanidins (+100%) in 17 

Primitivo, had little effect on Nero di Troia, and actually increased all phenol classes for Aglianico. 18 

The main outcome of this research is that the effect of ultrasound treatment seems to be cultivar-19 

dependent, and that ultrasound could therefore be useful in winemaking with Primitivo and 20 

Aglianico. 21 

 22 

Industrial relevance: The use of ultrasounds in winemaking could increase the extraction of phenols 23 

from grapes, improving the sensory quality and health benefits of wine due to the higher content of 24 

nutraceuticals. The ultrasound generator and transducer can easily be included in existent traditional 25 

winemaking processes as an "add on" technology, without distorting the processing lines. This 26 
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innovation reduces the environmental impact of winemaking, involving lower energy consumption 27 

and reduced processing times, and it improves the quality of wines so that they can be more easily 28 

marketed. 29 
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1. Introduction 38 

Grapes are a source of phenolic compounds, which play an important role both in plant physiology 39 

and for human health. Phenols work in various reactions to protect cells against abiotic stresses like 40 

UV-light, or against biotic stresses such as attacks by predators and pathogens (Weisshaar & 41 

Jenkins, 1998; Winkel-Shirley, 2002). Moreover, many phenolic compounds, such as resveratrol, 42 

quercetin and rutin, have been reported as having biological activities, including cardio-protective, 43 

anti-inflammatory, anti-carcinogenic, antiviral and antibacterial properties, attributed mainly to 44 

their antioxidant and antiradical activity (Frankel, German, Kinsella, Parks, & Kanner, 1993; King, 45 

Bomser, & Min, 2006; Santos-Buelga & Scalbert, 2000; Teissedre, Frankel, Waterhouse, Peleg, & 46 

German, 1996). 47 

In oenology, phenols are very important molecules, because they contribute to the wine’s sensory 48 

properties, such as colour, flavour, astringency and bitterness. Anthocyanins and flavan-3-ols are 49 

flavonoids and are very important for the quality of red wine. Anthocyanins are responsible for 50 

colour, and flavan-3-ols, the so-called condensed tannins or proanthocyanidins, are responsible for 51 

astringency and bitterness (Gawel, 1998; Peleg, Gacon, Schlich, & Noble, 1999), and for their role 52 
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in long-term colour stability (Somers, 1971; Vivar-Quintana, Santos-Buelga, & Rivas-Gonzalo, 53 

2002). It is well known that anthocyanins are located in grape skins, whereas flavans-3-ols are 54 

located in skins and in seeds. These compounds are extracted from grapes at the 55 

maceration/fermentation stage of winemaking. The phenolic composition of red wine is affected by 56 

different factors, such as the grapevine genome, winemaking technology and ageing conditions 57 

(Baiano, Terracone, Gambacorta, & La Notte, 2009; Gambacorta et al., 2011a; Gambuti, Rinaldi, 58 

Ugliano, & Moio, 2013; Gambuti et al., 2016; González-Neves, Gil, & Barreiro, 2008; Pérez-59 

Lamela, García-Falcón, Simal-Gándara, & Orriols-Fernández, 2007). As far as winemaking 60 

technologies are concerned, in recent years ultrasound-assisted extraction has been tested to 61 

enhance the content and composition of the phenolic compounds in red wines.  62 

In particular, ultrasound treatments are used to increase the extraction of polyphenols and volatiles 63 

from grape skins during maceration, and to accelerate and enhance aging. Ultrasound efficacy is 64 

linked to the formation of small bubbles that then collapse, generating kinetic energy that destroys 65 

the cell walls of vegetable tissues in aqueous systems. This process is known as cavitation, and its 66 

effects are mainly mechanical at frequencies of up to 20 kHz, and chemical at higher frequencies 67 

(Mason, Paniwnyk, & Lorimer, 1996). Several studies have recently explained the effects on colour 68 

and flavour of the use of ultrasound at different stages of the winemaking process (Bates & Patist, 69 

2010; El Darra, Grimi, Maroun, Louka, & Vorobiev, 2013; Ferraretto, Cacciola, Ferran Batllò, & 70 

Celotti, 2013; Ferraretto & Celotti, 2016). The increase in tannins and anthocyanin concentration, as 71 

results of US application, gives wines with better aging potential (Coletta et al., 2013; García 72 

Martín & Sun, 2013). One of the most important changes during aging is a progressive increase and 73 

stabilization of the colour due to copigment anthocyanin complexes and the formation of both 74 

tannin–tannin and anthocyanin–tannin complexes (Boulton, 2001). Masuzawa, Ohdaira, and Ide 75 

(2000), found that the polymerization of polyphenolic compounds in red wine was promoted by 76 

ultrasound at low sound pressure levels. 77 
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The aim of this study was to evaluate the effectiveness of ultrasound treatment on wine grape 78 

cultivars grown in southern Italy, which have different ripening times: Aglianico, Nero di Troia and 79 

Primitivo. 80 

 81 

2. Materials and methods 82 

2.1. Grape sampling  83 

The research was conducted in September-October 2014 on Primitivo (early ripening), Nero di 84 

Troia (medium-late ripening) and Aglianico (late ripening) grape cultivars from three different 85 

vineyards in southern Italy. Primitivo from the Gioia del Colle area (Puglia Region) was harvested 86 

on 19th September, Nero di Troia from the Corato area (Puglia Region) was harvested on 1st October, 87 

and Aglianico from the Avellino area (Campania Region) was harvested on 4th November. 88 

Approximately 1,000 kg of grapes were hand-picked for each cultivar, packed in 20 kg perforated 89 

plastic boxes and transferred to Agricole Pietraventosa winery at Gioia del Colle for the 90 

winemaking trials. 91 

 92 

2.2. Winemaking 93 

The grapes were processed using four "Gioiello" pilot plants, consisting of 200-L stainless steel 94 

horizontal rotary wine fermenters with a submerged cap (Industrie Fracchiolla, Adelfia, Italy). Two 95 

of the fermenters, were equipped when necessary with an ultrasonic delivery system consisting of a 96 

Sonic Digital LC 1500 SD 25-P ultrasonic generator (25 kHz frequency, 1500 W power output) and 97 

Sonopush HD Double Twin 1500 titanium transducer (WEAL, Milan, Italy). The schematic 98 

drawing of the fermenter fitted with the ultrasonic delivery system is shown in Fig. 1. The power 99 

indicated on the display of the ultrasound generator was 100% when the fermenter was loaded with 100 

water. 101 

Primitivo was the first cultivar to be vinified, and was also used for setting up the ultrasound 102 

parameters and the screening effectiveness of this technique in comparison with an alternative 103 
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technology already in use (cryomaceration). Grapes were de-stemmed and divided into four aliquots 104 

(approximately 250 kg each), then vinified using four different technologies: traditional maceration 105 

(P-C, control), cold pre-fermentative maceration (P-CM, cryomaceration), pre-fermentative 106 

ultrasound maceration (P-UBF) and post-fermentative ultrasound maceration (P-UAF), as described 107 

in Table 1. During ultrasound treatments, the display of the ultrasound generator indicated that the 108 

power of the delivery system decreased to 30%. This may be explained by the large quantity of 109 

skins which collected around the transducer, thus acting as a "screen" reducing the propagation of 110 

the ultrasound waves. Consequently, the experimental protocol was modified: in particular, 111 

ultrasounds were applied only in pre-fermentation, and the solid/liquid ratio was reduced in order to 112 

increase power. This was done by diluting de-stemmed grapes with juice of the same cultivar in the 113 

ratio of 1:1 (w:v). It was impossible to repeat winemaking with Primitivo because no grapes were 114 

available, but the modified ultrasound protocol was used with the other two cultivars: Nero di Troia 115 

and Aglianico. Specifically, approximately 85 kg of de-stemmed grapes were diluted with 85 L of 116 

juice (obtained with a manual wine-press), and vinified by traditional (NT-C, Nero di Troia control; 117 

A-C, Aglianico control) and pre-fermentation ultrasound maceration (NT-U, Nero di Troia 118 

ultrasound; A-U, Aglianico ultrasound), as described in Table 1. The trials were done in duplicate 119 

using the four pilot plants described above (2 controls + 2 ultrasounds for each cultivar). The 120 

reduction in the solid/liquid ratio limited the decrease of the power of the ultrasonic delivery system 121 

(the value indicated on the display was 60%). At the end of maceration (7 days), free-run wine was 122 

unloaded from the fermenter, and the pomace was transferred into the hand press to recover press-123 

run wine by gentle pressing. Free-run and press-run wines were blended and transferred into 200-L 124 

stainless steel vats. One week later, the wines were transferred to other stainless steel vats in order 125 

to remove gross lees. After six months, the wines were finally bottled without any post-treatment, 126 

and then analysed. 127 

 128 

2.3. Chemical analysis 129 
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For each cultivar, a representative 300-berry sample was picked from the top, middle and bottom of 130 

bunches taken from the perforated plastic boxes at the winery. A sub-sample of 150 berries (divided 131 

into three 50-berry replicates) was submitted to chemical analysis, while the remaining 150 berries 132 

were used to analyse phenols. The berries were pressed and the juice obtained was analysed for 133 

total soluble solids (TSS, °Brix), pH and titratable acidity (TA, g/L tartaric acid), according to EEC 134 

2676 standard procedure (EEC, 1990).  135 

The chemical characteristics of wines were assessed by determining ethanol (E, % v/v), pH, 136 

titratable acidity (TA, g/L), volatile acidity (VA, g/L acetic acid), malic acid (MA, g/L) and lactic 137 

acid (LA, g/L), dry reduced extract (DRE, g/L) and ashes (g/L) using an AutoAnalyzer FOSS 138 

WineScan FT 120 FT-MIR spectrometer (FOSS, Padua, Italy). 139 

 140 

2.4. Analysis of phenolic compounds 141 

2.4.1. Extraction from skins 142 

From each lot of 150 berries, 90 were selected and divided into three sub-samples (30 berries per 143 

replicate), then subjected to extraction of phenols according to the method of Di Stefano and 144 

Cravero (2001) with some modifications. Briefly, skins were manually separated from the pulp, 145 

gently dried on filter paper and then macerated in 75 mL of ethanol/water/HCl solution (70/30/1 146 

v/v) for 24 h at room temperature in the dark. Then, the extract was filtered through filter paper and 147 

immediately analysed. 148 

 149 

2.4.2. Assessment of phenol composition 150 

Phenol composition of skin extracts and wines was determined according to Di Stefano and Cravero 151 

(2001), whereas the colour indices (CI, colour intensity; T, tonality) were assessed according to the 152 

Glories procedure (1984), using an UV-visible spectrophotometer (Beckman Coulter DU 800, 153 

USA). Detailed procedures for the analysis of flavonoids (F), anthocyanins (A), total polyphenols 154 



 7 

(TP), proanthocyanidins (P) and flavans reactive with vanillin (FRV) of grape skin extracts and 155 

wines have been reported in a previous work (Gambacorta et al., 2011b). 156 

 157 

2.4.3. HPLC-PAD anthocyanin analysis 158 

Anthocyanins were analysed by HPLC using a Waters 600 E instrument (Waters, PA, USA), 159 

consisting of a quaternary pump, a photodiode array detector and an injection valve with a 20-L 160 

loop. Separation used a NovaPack column (150 x 3.9 mm, 4 m particle size), 10% formic acid and 161 

acetonitrile as the mobile phase. The operative conditions and tentative identification of 162 

anthocyanins are reported in a previous work (Coletta et al., 2013).  Results were expressed as mg/L 163 

of malvidin-3-O-glucoside equivalent. 164 

 165 

2.5. Antioxidant activity 166 

Antioxidant activity (AA) was measured using ABTS [2,2′-azino-bis(3- ethylbenzothiazoline-6-167 

sulfonic acid)] assay as reported by Trani, Verrastro, Punzi, Faccia and Gambacorta (2016). The 168 

results were expressed as mol/L TEAC (Trolox equivalent antioxidant capacity). 169 

 170 

2.6. Statistical analysis 171 

All measurements were carried out in triplicate, and results were expressed as means ± SD 172 

(standard deviation). Statistical analysis was performed using IBM SPSS software v 19. Significant 173 

differences between technologies for each cultivar were determined using one-way ANOVA with 174 

post-hoc analysis using the HSD Tukey test. 175 

 176 

3. Results and discussion 177 

3.1. Qualitative characteristics of grapes 178 

The chemical characteristics and phenolic composition of grapes are reported in Table 2. Aglianico 179 

showed the highest TSS value and the strongest acidic structure, as indicated by the lowest pH and 180 
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the highest TA. The strong acidic structure of Aglianico could be related to the altitude of the 181 

vineyard (about 600 m a.s.l.) and to climatic conditions. As expected, Nero di Troia had the poorest 182 

acidic structure, since this is a peculiar characteristic of the cultivar when it is fully ripe 183 

(Gambacorta et al., 2011a; Lovino, Baiano, Pati, Faccia, & Gambacorta, 2006). Regarding the 184 

phenolic composition, Primitivo had the highest F and P values, and the lowest TP and AA values; 185 

Nero di Troia had the highest TP, FRV, FRV/P ratio and AA values, and the lowest A value; 186 

Aglianico contained the most F, A and AA and the least FRV. Anthocyanin composition is reported 187 

in Table 3. The three cultivars presented different anthocyanin contents and compositions, 188 

confirming that the anthocyanin profile is typical of each cultivar, although the concentration of 189 

single anthocyanins may change as a consequence of environmental and pedoclimatic conditions 190 

and vineyard management (Gambacorta et al., 2011a; Gonzáles-Neves et al., 2004; Lovino, Baiano, 191 

Pati, Faccia, & Gambacorta, 2006; Revilla, Garcia-beneytez, Cabello, Martin-Ortega, & Ryan, 192 

2001; Tamborra & Esti, 2010).  Aglianico was the richest in anthocyanins, followed by Primitivo (-193 

11%) and Nero di Troia (-24%). Regarding anthocyanin composition, Aglianico contained the 194 

highest percentage of non-acylated forms (81.9%), followed by Primitivo (73.4%) and Nero di 195 

Troia (49.9%). Of the non-acylated forms, malvidin-3-O-glucoside was the most prevalent, 196 

accounting for 57.3% of the total for Aglianico, 49.4% for Primitivo and 31.6% for Nero di Troia. It 197 

is noteworthy that Nero di Troia contained a relatively large amount of malvidin acylated forms 198 

such as trans-malvidin-3-O-coumarylglucoside, malvidin-3-O-acetylglucoside and malvidin-3-O-199 

caffeylglucoside, which accounted for 22.9%, 12.7% and 3.1% of the total, respectively. This could 200 

be explained as a genetic expression of the cultivar. Primitivo’s anthocyanin profile was 201 

intermediate between Aglianico and Nero di Troia, except for greater quantities of cyanidin-3-O-202 

glucoside, peonidin-3-O-glucoside and peonidin-3-O-coumarylglucoside. In general, these results 203 

indicate that there are great differences between the phenol profiles of the three cultivars.  204 

 205 

3.2. Characteristics of Primitivo wines in relation to technologies 206 
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The chemical characteristics, phenolic composition and colour indices of Primitivo wines are 207 

reported in Table 3. Cryomaceration (P-CM) and ultrasound treatments, both in pre- (P-UBF) and 208 

post-fermentation (P-UAF), slightly enhanced the ethanol content by nearly half a degree compared 209 

with the control. P-CM wine had the highest TA, confirming data reported for Primitivo wines from 210 

the Manduria area of Puglia (Baiano, Terracone, Gambacorta, & La Notte 2009). The technologies 211 

used did not influence VA, because this depends on grape quality and correct management of the 212 

winemaking process. It is noteworthy that malolactic fermentation was almost completed in wine 213 

deriving from the ultrasound treatment in pre-fermentation, was in progress in P-C wine, and did 214 

not start in P-UAF and P-CM wines. P-CM wine had the highest values of DRE and ashes. 215 

With regard to phenolic composition, cryomaceration led to F, A, TP, FRV and P enrichment in 216 

comparison with the control wine. These results agree in part with those reported by Coletta et al., 217 

(2013) for Negroamaro wines. In contrast, ultrasound treatments before and after fermentation 218 

increased F (+15%), TP (+10%) and P (+100%), but had no effects on A and FRV. The greatest 219 

effect of sonication was that it reduced the FRV/P ratio by 50%, due to the greater extraction of 220 

proanthocyanidins. A low FRV/P ratio indicates a predisposition to chromatic and tannic 221 

stabilization of wine (Suriano, Alba, Tarricone, & Di Gennaro, 2015). This result is relevant, since 222 

it suggests that ultrasound could accelerate the colour stabilization of wine, thus allowing early 223 

marketing of the product. Cryomaceration led to a smaller reduction in the FRV/P ratio than 224 

ultrasonic treatment (-13%). As observed for TP, AA also increased with both cryomaceration and 225 

ultrasound treatment. This was expected, since it is well known that phenols are strictly correlated 226 

with antioxidant activity (Fernández-Pachón, Villaño, García-Parrilla, & Troncoso, 2004). With 227 

regard to colour indices, the technological variables increased colour intensity, but did not have any 228 

effect on tonality. Ultrasound after fermentation was more effective than traditional winemaking 229 

(+21%), cryomaceration (+15%), and ultrasound before fermentation (+4%).  230 

Anthocyanin composition is reported in Table 4. From a quantitative point of view, cryomaceration 231 

promoted a greater extraction of anthocyanins (+22%) than for the control, in accordance with the 232 
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results of spectrophotometric analysis (Table 3). The anthocyanin increase in cryomacerated wine is 233 

a controversial topic in the literature (Álvarez, Aleixandre, García, & Lizama, 2006; Gambacorta et 234 

al., 2011a; Gil-Munõz et al., 2009; Gómez-Míguez, González-Miret, & Heredia, 2007; González-235 

Neves, Gil, Favre, & Ferrer, 2012; Reynolds, Cliff, Girard, & Kopp, 2001; Soto Vásquez, Río 236 

Segade, & Orriols Fernández, 2010), and our results suggest that the effectiveness of 237 

cryomaceration in anthocyanin extraction is cultivar-dependent. Ultrasound used in pre-238 

fermentation had no effect, but caused a reduction in post-fermentation (-37%). This disagrees with 239 

results previously reported for Negramaro wine (Coletta et al., 2013), according to which 240 

ultrasound increased total anthocyanins, and this may suggest that anthocyanin extraction is also 241 

cultivar-dependent for ultrasound treatment. With regard to anthocyanin composition, the profile 242 

observed was typical of Primitivo cultivar (Baiano, Terracone, Gambacorta, & La Notte 2009; 243 

Suriano, Alba, Tarricone, & Di Gennaro, 2015; Trani, Verrastro, Punzi, Faccia, & Gambacorta, 244 

2016). The differences detected between grapes and wines are related both to the different 245 

molecular structure of each anthocyanin and to the degradation reactions that occur during 246 

winemaking (González-Neves, Gil, & Barreiro, 2008; Gambacorta et al., 2011a). In particular, 247 

wines contained a lower proportion of acylated forms than grapes (13.3-17.1% vs. 26.6%), and the 248 

greatest reduction was observed for coumarate forms (7.6-8.6% vs. 21%). Regarding the effect of 249 

technology, cryomaceration determined a lower extraction of non-acylated forms than the control, 250 

while the effect of ultrasound treatment was negligible. 251 

 252 

3.3. Characteristics of Nero di Troia and Aglianico wines in relation to ultrasound 253 

The chemical characteristics, phenolic composition and colour indices of Nero di Troia and 254 

Aglianico wines produced using the modified ultrasound protocol are reported in Table 5. The 255 

treatment favoured an E increase for both cultivars, and an increase in DRE and ashes for Aglianico. 256 

As expected, the addition of juice to de-stemmed grapes reduced the concentration of phenols in 257 

both experimental and control wines. The amounts detected in our samples were much lower than 258 
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those reported in a previous work on traditionally-made wines using the same cultivars 259 

(Gambacorta et al., 2011b). Ultrasound had poor effects on phenol extraction for Nero di Troia, as 260 

indicated by the slight increase in TP (+5%) and slight decrease in P (-6%), and by the absence of 261 

changes in other compounds. This may be due to this cultivar’s tough skin, which could have 262 

reduced the release of polyphenols. In contrast, when ultrasound was applied to Aglianico, it 263 

promoted high levels of phenol extraction, except for FRV. The lower level of FRV extraction in 264 

connection with the higher level of P extraction led to a significant decrease in the FRV/P ratio (of 265 

approximately 12%). This must be considered a positive result, because a low FRV/P ratio favours 266 

the colour stabilization of wine (Suriano, Alba, Tarricone, & Di Gennaro, 2015). Ultrasound also 267 

led to increased antioxidant activity in both wines, although it was statistically significant only in 268 

Aglianico (+12%). Regarding the colour indices, the treatment increased CI only for Aglianico 269 

(+20%), whereas no effect was observed on T for both cultivars.  270 

Anthocyanin composition is reported in Table 7. As expected, and in accordance with 271 

spectrophotometric analysis, ultrasound increased anthocyanin extraction for both cultivars, 272 

although to different extents (+4% for Nero di Troia and +20% for Aglianico). As previously 273 

observed for Primitivo, the anthocyanin composition of wine was also different from the 274 

corresponding grapes. For Nero di Troia, the non-acylated and acetate forms increased (64% vs. 275 

49.9% and 24.2% vs. 18.1%, respectively) and coumarate forms decreased (10.2% vs. 26.9%), 276 

while for Aglianico non-acylated forms did not significantly change, acetate forms increased (about 277 

10% vs. 3.3%) and coumarate forms decreased (5.5-6.4% vs. 13%). Finally, the anthocyanin profile 278 

remained unchanged in both cultivars, suggesting that sonication had only a quantitative effect. 279 

Overall, the results showed that the effect of ultrasound treatment on chemical-physical and phenol 280 

parameters is cultivar-dependent, and that Aglianico was the most sensitive cultivar to this 281 

treatment. 282 

 283 

 284 
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4. Conclusion 285 

The results of this study demonstrate that both cryomaceration and ultrasound treatment applied to 286 

de-stemmed Primitivo grapes improve the extraction of some phenolic compounds, decreasing the 287 

FRV/P ratio. As a consequence, both technologies can be recommended for this cultivar, in order to 288 

favour wine colour stabilization. The results for Nero di Troia and Aglianico suggest that the effect 289 

of ultrasound is cultivar-dependent under our experimental conditions. In conclusion, the main 290 

outcome of this work is that the usefulness of ultrasound in red winemaking should be thoroughly 291 

tested on single cultivars. Our study shows that good results can be obtained when ultrasound is 292 

applied to Primitivo and Aglianico, which appeared more sensitive to cavitation. 293 

 294 
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Legend to figure 418 

Fig. 1 - Schematic drawing of the fermenter equipped with the ultrasonic delivery system. 419 

  420 
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Table 1 446 

Winemaking 

technology 
Action 

P-C 

Seven days 'maceration at 25°C. Addition of potassium metabisulphite 

(20 g/100 kg); yeast (Saccharomyces cerevisiae var. Bayanus, 

Mycoferm CRU 05, 20 g/100 kg, Everintec, Pramaggiore, Italy); yeast 

activator (preparation based on ammonium sulphate, diammonium 

phosphate, chemically inert filter and as dispersing agent, Vitamin B1, 

Enovit, 20 g/100 kg, AEB); O2, 10 mg/L/day after 2 days from the 

beginning of fermentation; yeast activator, 20 g/100 kg after 3 days 

from the beginning of fermentation; without any further oenological 

treatment.  

P-CM 
As P-C, but with the cooling of de-stemmed grapes until 5°C using 

cooling jacket, and maintenance of the sample at 5°C for 48 h. 

P-UBF 
As P-C, but with 2 h of ultrasound treatment before the start of 

fermentation as the drum rotated.  

P-UAF 
As P-C, but with 2 h of ultrasound treatment at the end of fermentation 

as the drum rotated. 

NT-DC* As P-C, but using about 85 kg of de-stemmed grapes + 85 L of juice.  

NT-DU* 
As NT-DC, but with 2 h of ultrasound treatment before the start of 

fermentation as the drum rotated.   

A-DC* As NT-DC. 

A-DU* 
As A-DC, but with 2 h of ultrasound treatment before the start of 

fermentation as the drum rotated.   

P-C, Primitivo control; P-CM, Primitivo cryomaceration; P-UBF, Primitivo ultrasound before 447 
fermentation; P-UAF, Primitivo ultrasound after fermentation; NT-DC, Nero di Troia diluted 448 
control; NT-DU, Nero di Troia diluted ultrasound; A-DC, Aglianico diluted control; A-DU, 449 
Aglianico diluted ultrasound. *Two winemaking replicates. 450 

  451 
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Table 2 452 

Parameters Primitivo Nero di Troia Aglianico 

TSS (°Brix) †19.4±0.01c 20.2±0.01b 21.9±0.02a 

pH 3.35±0.01b 3.45±0.01a 2.92±0.02c 

TA (g/L of juice) 7.08±0.04b 5.22±0.04c 11.71±0.08a 

F (mg/kg) 2988±136a 2725±115b 2986±110a 

A (mg/kg) 1670±54b 1519±72c 1920±45a 

TP (mg/kg) 1662±57c 2019±29a 1809±78b 

FRV (mg/kg) 755±22b 1046±66a 510±31c 

P (mg/kg) 1578±102a 1230±86b 1118±114b 

FRV/P 0.48 0.85 0.46 

AA (mol/kg) 3579±297b 5777±519a 5772±355a 

TSS, total soluble solids; TA, titratable acidity; F, flavonoids: as (+)-catechin; A, 453 
anthocyanins: as malvidin-3-O-glucoside; TP, total polyphenols: as gallic acid; FRV, 454 
flavans reactive with vanillin: as (+)-catechin; P, proanthocyanidins: as cyanidin chloride; 455 
AA, antioxidant activity. †In rows, data followed by different letters indicate statistically 456 
significant differences at P < 0.05. 457 

  458 
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Table 3 459 

Compounds Primitivo Nero di Troia Aglianico 

Dp †33.8±7.9b 35.2±0.1b 69.8±11.3a 

Cy 12.8±1.6a 8.7±1.8b 5.8±1.2c 

Pt 45.0±10.4b 31.3±1.4c 68.5±10.5a 

Pn 62.3±8.7a 24.4±0.5c 32.6±5.4b 

Mv 316.2±37.1b 171.4±14.7c 411.0±49.7a 

Dp-Ac 1.9±0.3b 8.8±0.4a 2.0±0.1b 

Pt-Ac 5.7±0.7c 13.6±0.5a 7.8±0.8b 

Pn-Ac 2.2±0.3b 6.9±1.2a 0.9±0.1c 

Mv-Ac 12.7±1.0b 68.8±4.6a 13.2±0.5b 

cis-Mv-Cm 3.3±0.1a 3.7±0.4a 0.7±0.1b 

Mv-Cf 9.4±0.6b 16.8±1.4a 8.1±0.7b 

Pt-Cm  5.1±0.2b 6.5±0.5a 3.4±0.1c 

Pn-Cm  21.2±0.3a 11.7±1.3b 7.1±0.8c 

trans-Mv-Cm 105.2±4.4b 124.3±9.8a 82.3±3.5c 

Total anthocyanins 639.7±44.4b 542.6±33.9c 717.4±75.6a 

Dp, delphinidin-3-O-glucoside; Cy, cyanidin-3-O-glucoside; Pt, petunidin-3-O-460 
glucoside; Pn, peonidin-3-O-glucoside; Mv, malvidin-3-O-glucoside; Dp-Ac, 461 
delphinidin-3-O-acetylglucoside; Pt-Ac, petunidin-3-O-acetylglucoside; Mv-Ac, 462 
malvidin-3-O-acetylglucoside; Dp-Cm, delphinidin-3-O-coumarylglucoside; cis-Mv-463 
Cm, cis-malvidin-3-O-coumarylglucoside; Mv-Cf, malvidin-3-O-caffeylglucoside; Pt-464 
Cm, petunidin-3-O-coumarylglucoside; Pn-Cm, peonidin-3-O-coumarylglucoside; 465 
trans-Mv-Cm, trans-malvidin-3-O-coumarylglucoside. †In rows, data followed by 466 
different letters indicate statistically significant differences at P < 0.05. 467 
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Table 4 469 

Parameters P-C P-CM P-UBF P-UAF 

E (% v/v) †12.54±0.01d 13.27±0.01a 13.00±0.01c 13.15±0.01b 

pH 3.50±0.01a 3.47±0.02a 3.48±0.01a 3.41±0.01b 

TA (g/L) 5.81±0.01c 6.60±0.03a 5.65±0.03d 6.50±0.02b 

VA (g/L) 0.35±0.01b 0.37±0.01b 0.43±0.01a 0.35±0.01b 

MA (g/L) 1.33±0.01c 3.23±0.04a 0.23±0.01d 2.61±0.03b 

LA (g/L) 0.70±0.02b ND 1.16±0.02a 0.02±0.01c 

DRE (g/L) 28.0±0.1b 29.2±0.2a 27.5±0.1c 29.2±0.1a 

Ashes (g/L) 2.92±0.01b 3.03±0.04a 2.78±0.01c 2.75±0.03c 

F (mg/L) 1316±11c 1616±94a 1472±121b 1534±66b 

A (mg/L) 387±12b 452±24a 392±20b 385±21b 

TP (mg/L) 1512±73d 1815±53a 1606±30c 1677±34b 

FRV (mg/L) 429±25bc 636±11a 458±15b 415±25c 

P (mg/L) 725±44d 1221±24c 1508±20a 1457±15b 

FRV/P 0.59 0.52 0.30 0.28 

AA (mol/L) 8822±260c 10330±389a 9465±349b 10230±332a 

CI (pathlength 1 mm) 1.01±0.01d 1.15±0.02b 1.05±0.01c 1.22±0.03a 

T (pathlength 1 mm) 0.56±0.01a 0.55±0.01a 0.54±0.01a 0.55±0.01a 

P-C, Primitivo control; P-CM, Primitivo cryomacerated; P-UBF, Primitivo ultrasound before fermentation; 470 
P-UAF, Primitivo ultrasound after fermentation. E, ethanol; TA, titratable acidity: as tartaric acid; VA, 471 
volatile acidity: as acetic acid; MA, malic acid; LA, lactic acid; DRE, dry reduced extract; F, flavonoids: as 472 
(+)-catechin; A, anthocyanins: as malvidin-3-O-glucoside; TP, total polyphenols: as gallic acid; FRV, flavans 473 
reactive with vanillin: as (+)-catechin; P, proanthocyanidins: as cyanidin chloride; CI, colour intensity; T, 474 
tonality. ND, not detected. †In rows, data followed by different letters indicate statistically significant 475 
differences at P < 0.05. 476 
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Table 5 478 

Compounds P-C P-CM P-UBF P-UAF 

Dp †3.8±0.2b 4.7±0.2a 3.9±0.2b 2.6±0.1c 

Cy 1.1±0.1a 1.1±0.1a 1.0±0.1ab 0.8±0.1b 

Pt 6.4±0.5b 8.0±0.1a 6.4±0.1b 4.6±0.1c 

Pn 6.6±0.4b 8.8±0.6a 7.0±0.3b 4.4±0.2c 

Mv 57.4±4.1b 65.7±1.6a 56.3±0.8b 40.6±0.2c 

Dp-Ac 1.1±0.1b 2.0±0.1a 1.7±0.3a 2.0±0.1a 

Pt-Ac 0.8±0.1ab 0.9±0.1a 0.6±0.1b 0.5±0.1b 

Pn-Ac ND 0.4±0.1a 0.3±0.1a ND 

Mv-Ac 2.2±0.1b 2.8±0.1a 2.1±0.1b 1.6±0.1c 

cis-Mv-Cm 0.6±0.1a 0.5±0.1a 0.6±0.1a 0.6±0.1a 

Mv-Cf 1.2±0.1a 0.7±0.2b 0.6±0.1b 1.2±0.2a 

Pt-Cm  1.1±0.1a 0.9±0.2a 0.5±0.1b ND 

Pn-Cm  ND 1.5±0.1a 1.3±0.1a 0.8±0.1b 

trans-Mv-Cm 4.6±0.1c 6.2±0.2a 4.9±0.1b 3.4±0.1d 

Total anthocyanins 86.9±6.1b 106.5±2.6a 88.3±2.2b 63.2±0.1c 

P-C, Primitivo control; P-CM, Primitivo cryomacerated; P-UBF, Primitivo ultrasound before 479 
fermentation; P-UAF, Primitivo ultrasound after fermentation. Dp, delphinidin-3-O-glucoside; Cy, 480 
cyanidin-3-O-glucoside; Pt, petunidin-3-O-glucoside; Pn, peonidin-3-O-glucoside; Mv, malvidin-3-O-481 
glucoside; Dp-Ac, delphinidin-3-O-acetylglucoside; Pt-Ac, petunidin-3-O-acetylglucoside; Mv-Ac, 482 
malvidin-3-O-acetylglucoside; Dp-Cm, delphinidin-3-O-coumarylglucoside; cis-Mv-Cm, cis-483 
malvidin-3-O-coumarylglucoside; Mv-Cf, malvidin-3-O-caffeylglucoside; Pt-Cm, petunidin-3-O-484 
coumarylglucoside; Pn-Cm, peonidin-3-O-coumarylglucoside; trans-Mv-Cm, trans-malvidin-3-O-485 
coumarylglucoside. ND, not detected. †In rows, data followed by different letters indicate statistically 486 
significant differences at P < 0.05. 487 
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Table 6 489 

Parameters NT-DC NT-DU A-DC A-DU 

E (% v/v) †11.82±0.05b 12.39±0.07a 12.73±0.05y 13.07±0.08x 

pH 3.51±0.03a 3.52±0.03a 3.07±0.03x 3.07±0.02x 

TA (g/L) 5.73±0.07a 5.51±0.06b 8.98±0.06x 9.07±0.07x 

VA (g/L) 0.23±0.01a 0.24±0.03a 0.24±0.02x 0.26±0.03x 

MA (g/L) 2.79±0.05a 2.59±0.06b 4.56±0.08x 4.62±0.07x 

LA (g/L) ND ND ND ND 

DRE (g/L) 25.7±0.3a 25.8±0.3a 27.7±0.3y 28.8±0.5x 

Ashes (g/L) 2.91±0.04a 2.95±0.03a 2.33±0.04y 2.45±0.05x 

F (mg/L) 1553±23a 1508±26a 1248±22y 1437±32x 

A (mg/L) 375±18a 388±20a 338±15y 398±25x 

TP (mg/L) 1873±35b 1975±47a 1182±50y 1343±46x 

FRV (mg/L) 875±35a 835±37a 923±33x 861±27y 

P (mg/L) 2208±41a 2072±36b 1487±20y 1574±26x 

FRV/P 0.40 0.40 0.62 0.55 

AA (mol/L) 10500±283a 10819±605a 8415±435y 9433±260x 

CI (pathlength 1 mm) 0.66±0.03a 0.67±0.02a 1.25±0.03y 1.50±0.05x 

T (pathlength 1 mm) 0.56±0.02a 0.56±0.03a 0.47±0.03x 0.45±0.04x 

NT-DC, Nero di Troia diluted control; NT-DU, Nero di Troia diluted ultrasound; A-DC, Aglianico 490 
diluted control; A-DU, Aglianico diluted ultrasound. E, ethanol; TA, titratable acidity: as tartaric acid; 491 
VA, volatile acidity: as acetic acid; MA, malic acid; LA, lactic acid; DRE, dry reduced extract; F, 492 
flavonoids: as (+)-catechin; A, anthocyanins: as malvidin-3-O-glucoside; TP, total polyphenols: as 493 
gallic acid; FRV, flavans reactive with vanillin: as (+)-catechin; P, proanthocyanidins: as cyanidin 494 
chloride; CI, colour intensity; T, tonality. ND, not detected. †In rows, data followed by different letters 495 
(a,bNero di Troia, x,yAglianico) indicate statistically significant differences at P < 0.05. 496 
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Table 7 498 

Compounds NT-DC NT-DU A-DC A-DU 

Dp 5.2±0.3a 5.6±0.2a †5.7±0.3y 6.9±0.5x 

Cy 0.4±0.1a 0.5±0.2a 0.4±0.1x 0.5±0.1x 

Pt 6.9±0.6a 7.2±0.4a 6.8±0.5y 8.7±0.4x 

Pn 2.3±0.3a 2.5±0.2a 2.9±0.4y 3.8±0.5x 

Mv 48.2±0.6b 49.9±0.4a 50.6±0.7y 59.0±0.8x 

Dp-Ac 1.5±0.2a 1.5±0.3a 5.9±0.4y 6.9±0.4x 

Pt-Ac 2.0±0.2a 2.0±0.3a 0.3±0.1y 0.8±0.2x 

Pn-Ac 1.4±0.3a 1.5±0.3a 0.1±0.1x 0.2±0.1x 

Mv-Ac 19.3±0.6a 19.8±0.3a 1.6±0.2x 2.0±0.3x 

cis-Mv-Cm 0.3±0.1a 0.3±0.1a 0.9±0.2x 1.1±0.2x 

Mv-Cf 1.4±0.3a 1.5±0.3a 1.3±0.3y 2.3±0.4x 

Pt-Cm  1.1±0.1a 1.2±0.3a 0.4±0.1x 0.3±0.1x 

Pn-Cm  0.9±0.2a 1.1±0.1a 0.1±0.1x 0.3±0.1x 

trans-Mv-Cm 7.7±0.8a 7.9±0.6a 3.0±0.5y 4.5±0.6x 

Total anthocyanins 98.4±1.1b 102.4±2.0a 80.2±1.7y 96.9±2.3x 

NT-DC, Nero di Troia diluted control; NT-DU, Nero di Troia diluted ultrasound; A-DC, Aglianico 499 
diluted control; A-DU, Aglianico diluted ultrasound. Dp, delphinidin-3-O-glucoside; Cy, cyanidin-3-500 
O-glucoside; Pt, petunidin-3-O-glucoside; Pn, peonidin-3-O-glucoside; Mv, malvidin-3-O-glucoside; 501 
Dp-Ac, delphinidin-3-O-acetylglucoside; Pt-Ac, petunidin-3-O-acetylglucoside; Mv-Ac, malvidin-3-502 
O-acetylglucoside; Dp-Cm, delphinidin-3-O-coumarylglucoside; cis-Mv-Cm, cis-malvidin-3-O-503 
coumarylglucoside; Mv-Cf, malvidin-3-O-caffeylglucoside; Pt-Cm, petunidin-3-O-504 
coumarylglucoside; Pn-Cm, peonidin-3-O-coumarylglucoside; trans-Mv-Cm, trans-malvidin-3-O-505 
coumarylglucoside. †In rows, data followed by different letters (a,bNero di Troia, x,yAglianico) indicate 506 
statistically significant differences at P < 0.05. 507 
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