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Abstract We show a protocol achieving the ultimate Heisenberg-scaling sensitivity in the estimation of a parameter encoded in a
generic linear network, without employing any auxiliary networks, and without the need of any prior information on the parameter
nor on the network structure. As a result, this protocol does not require a prior coarse estimation of the parameter, nor an adaptation
of the network. The scheme we analyse consists of a single-mode squeezed state and homodyne detectors in each of the M output
channels of the network encoding the parameter, making it feasible for experimental applications.

1 Introduction

Increasing the level of precision achievable in the estimation of physical properties of systems, such as temperatures, optical lengths
and magnitude of external fields among others, is one of the multiple applications of quantum technologies that have been extensively
studied in the recent years. In particular, the goal of quantum metrology—the field of science laying between quantum mechanics
and estimation theory—is to propose and analyse estimation protocols that surpass the precision achievable by classical strategies
by employing quantum probes and quantum measurement schemes. In fact it is well known that the classical limit on the precision
achievable in the estimation of an unknown parameter when employing N probes, known as shot-noise limit, for which the error
is of order 1/

√
N , can be surpassed by quantum strategies achieving the ultimate Heisenberg limit, where the estimation scales as

1/N [1–9].
The first proposed protocols reaching Heisenberg-scaling sensitivity heavily employed entanglement as a metrological resource

[1–3], and several entanglement-based strategies have been recently studied with interesting results, especially in the cases of
simultaneous estimation of multiple parameters with non-commuting generators [5–10]. Nonetheless, the entanglement fragility
and the complicated procedures needed to generate entangled metrological probes, such as NOON or GHZ states [11,12], are two of
the challenges that stimulated the search for more feasible estimation schemes making use of protocols implementing metrological
resources that are easier to generate and to manipulate. Squeezed light [13,14] manifests useful properties (e.g. robustness to
decoherence, relatively easy implementation, reduced noise below the vacuum shot-noise) which make it a perfect candidate as
a feasible metrological resource [15–19]. Motivated by these favourable properties, many works have recently focused on the
analysis and proposal of Gaussian metrological schemes, namely involving squeezed states as probes and homodyne detection as
measurement, and the ultimate precision that these can achieve in the estimation of a single localised parameter [15–18,20,21], a
function of parameters [22–24], or a single distributed parameter, such as the temperature or the electromagnetic field, affecting
several component of the network [8,25–30]. These schemes typically perform an analysis based on the study of the Cramér–Rao
bound (CRB) [31], or its quantum counterpart [32], to assess the ultimate precision achievable in the estimation, and show whether the
Heisenberg scaling can be achieved. Although the CRB analysis does not generally assure that the ultimate bound on the precision
found can be achieved globally, namely with an estimation strategy which does not depend on the true value of the parameter
to be estimated [33,34], local estimations are relevant in the typical interferometric framework, in which small deviations of the
parameters need to be measured. Interestingly, it has been recently found that it is always possible to reach Heiseneberg-scaling
sensitivity regardless of the structure of the network encoding the parameter, only employing a single squeezed vacuum state, a
single-homodyne measurement, and an auxiliary network suitably engineered, whose preparation only requires a knowledge on the
unknown parameter that can be obtained by a classical measurement [26,29,30]. The need for an auxiliary stage in such protocols
arises from the fact that in general the probe is scattered by the network in all its output ports, while only a single port is eventually
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Fig. 1 Optical set-up for the estimation at the Heisenberg-scaling precision of a single unknown parameter ϕ encoded arbitrarily in a generic passive M-
channel linear network. The parameter can be either localised in a single element of the network, or represent a global property affecting several components,
such as a temperature or a magnetic field. A single source of coherent squeezed states with N = ND +NS average photons, where ND = d2 and NS = sinh2 r
are the number of displaced and squeezed photons, respectively, is employed in a single input channel (the first in figure), while homodyne measurements
are taken in every output channel

measured through homodyne detection, so that an auxiliary network is required in order to refocus the probe on the only channel
observed. A question that naturally arises is whether incrementing the number of observed channels would ease, if not completely
lift, the requirement of an auxiliary stage and ultimately the requirement of a prior classical knowledge on the unknown parameter.
Moreover, different Gaussian protocols rely on encoding the information about the unknown parameter on the displacement of
the probe, requiring that a portion of the resources in the probe are employed in a non-vanishing displacement [28,35]. Despite
concentrating all the photons in the squeezing is known to be the optimal allocation of the resources in the probe [26], encoding
the parameter into a non-vanishing displacement can reduce the estimation process into the relatively simple task of inferring the
parameter from the expectation value of a Gaussian probability density function [28].

In this work we investigate the ultimate precision achievable in the estimation of a parameter encoded in a generic linear network,
when employing a single-mode squeezed coherent Gaussian state and performing homodyne detection on all the output channels
(see Fig. 1). We show that, without making any assumption on the structure of the linear network nor on the nature of the parameter, it
is always possible to reach Heisenberg-scaling sensitivity with such set-up, without the use of any auxiliary network. This allows for
estimation protocols not requiring a preparatory stage nor a prior coarse estimation of the parameter, as opposed to the single-channel
homodyne protocols in Refs. [29,30]. We also show that two independent contributions on the precision arise from our analysis:
one originated from the presence of displaced photons in addition to squeezed photons, and the other from the squeezing of the
probe. We find that both contributions can reach Heisenberg-scaling sensitivity independently, and this can be achieved expectedly
when the local oscillators phases are chosen such that the noise in the outcome is reduced, namely when the squeezed quadratures
are observed in each output channel. Thus, differently from the schemes in Refs. [29,30], it is then possible to employ this set-up to
retrieve information on the parameter through measurements of the average value (i.e. the displacement) of the signal observed with
homodyne detection, as well as through the modulation of the noise. Although it is not required to reach the Heisenberg-scaling
sensitivity, the presence of an auxiliary network in general affects the precision of the estimation through a pre-factor multiplying
the scaling. This comes in useful in those cases where priority is given to increasing the precision, at the expenses of engineering an
auxiliary network to be added before the estimation protocol is started.

2 Set-up

Let us consider a generic M × M passive linear network whose action on any injected photon probe is given by the unitary operator
Ûϕ , in which the unknown parameter ϕ to be estimated is encoded in an arbitrary manner. The linearity and passivity of the network
allow us to describe it with an M × M unitary matrix Uϕ related to the evolution operator Ûϕ by

Û †
ϕ âi Ûϕ =

M∑

j=1

(Uϕ)i j â j . (1)

The input probe is prepared in a single-mode squeezed coherent state |Ψin〉 = D̂1(d)Ŝ1(r)|vac〉 with N = sinh2 r+d2/2 ≡ NS +ND

average number photons, where Ŝ1(r) = exp
(
r(â†2

1 − â2
1)/2

)
is the squeezing operator with real squeezing parameter r , and
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D̂1(d) = exp
(
d(â†

1 − â1)/
√

2
)

is the displacement operator with real displacement d , and it is injected in one input channel, say
the first, of the linear network. In this case, only the first row of Uϕ is relevant in this protocol

(Uϕ)1 j = √
Pje

iγ̄ j , (2)

where we have made explicit the probability Pj that each photon exits from the j th output port of the network, and the phase γ̄ j

acquired in the process, with j from 1 to M . The unitarity of Uϕ assures that
∑

j Pj = 1.
A homodyne detection is then performed at each of the output channels, and the quadratures x̂i,θi are measured, where θi is the

i th local oscillator reference phase, from which we want to infer the value of ϕ. Due to the Gaussian nature of the scheme, the joint
probability distribution p(x|ϕ) associated with the M-mode homodyne measurement is Gaussian

p(x|ϕ) = 1√
(2π)M |Σ | exp

[
− (x − μ)TΣ−1(x − μ)

2

]
. (3)

Here, Σ is the M × M covariance matrix with elements (see “Appendix A”)

Σi j = δi j

2
+ √

Pi Pj
(
cos(γi − γ j ) sinh(r)2 + cos(γi + γ j ) cosh(r) sinh(r)

)
, (4)

where δi j is the Kronecker delta, γi = γ̄i − θi is the phase delay at the output of the i th channel relative to the correspondent local
oscillator, and |Σ | is the determinant of Σ , which reads (see “Appendix A”)

|Σ | = 1

2M
+ sinh(r)

2M−1

M∑

i=1

Pi (sinh(r) + cos(2γi ) cosh(r))

− sinh2(r)

2M−2

M∑

i=1

M∑

j=i+1

Pi Pj sin2(γi − γ j ), (5)

and μ is the mean vector

μi = d
√
Pi cos γi . (6)

For any given unbiased estimator ϕ̃, the statistical error in the estimation of ϕ after ν iterations of the measurement is limited by
the Cramér-Rao bound (CRB) [31]

Var[ϕ̃] ≥ 1

νF(ϕ)
, (7)

where F(ϕ) is the Fisher information

F(ϕ) =
∫

dx p(x|ϕ)
(
∂ϕ log p(x|ϕ)

)2
, (8)

associated with the Gaussian distribution (3), and reads (see “Appendix B”)

F(ϕ) = 1

|Σ |∂ϕμTC∂ϕμ + 1

2

(
∂ϕ |Σ |
|Σ |

)2

− 1

2 |Σ |Tr[(∂ϕΣ)(∂ϕC)], (9)

where C = |Σ |Σ−1 is the cofactor matrix of Σ and Tr[·] denotes the trace. In the following we will discuss in detail expression (9)
in the asymptotic limit of large N , showing which condition must be met in order for this set-up to reach Heisenberg-scaling precision
in the estimation of ϕ, and compare differences and advantages with respect to the Heisenberg-scaling single-homodyne schemes
[29,30].

We conclude this section by remarking that, in the case of a single channel, M = 1, the last term in the right-hand side of (9)
vanishes, and thus the only relevant terms are the first two, containing the derivative of the mean μ and of the determinant of Σ , which
reduces to the variance of a single-homodyne measurement. Interestingly enough, we will show that also in the multi-homodyne
case, only the first two terms are relevant for the Heisenberg scaling in the asymptotic regime.

3 Heisenberg scaling of the Fisher information

In order to investigate the asymptotic behaviour of the Fisher information (9), it is convenient to express the elements of the cofactor
matrix C in terms of the squeezing factor r (see “Appendix B”):

Css = 1

2M−1 + 1

2M−2

M∑

i=1
i �=s

(
Σi i − 1

2

)
− 1

2M−3

M∑

i=1
i �=s

M∑

j=i+1
j �=s

Sii j ,
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Cst = − 1

2M−2 Σst + 1

2M−3

M∑

i=1
i �=s,t

Ssti , s �= t, (10)

where

Ssti = sinh2 r
√
Ps Pt Pi sin(γs − γi ) sin(γt − γi ). (11)

Notice that every element of C in the previous expressions, and of Σ in (4), scale at most as quick as N , namely Cst = O(NS)

and Σst = O(NS), while the mean vector μ is of order O(
√
ND) (see “Appendix C”), and the same asymptotic bounds hold for

their derivatives with respect to ϕ, since neither Pi nor γ̄i depend on N . For this reason, in order for the Fisher information in (9)
to asymptotically grow with Heisenberg scaling, it is essential to study the asymptotics of the determinant |Σ | in (5) and find the
conditions for which it does not grow with N .

In fact, it is evident from Eq. (5) that in general |Σ | = O(NS), and we show in “Appendix C” that the necessary condition for
it to scale slower than NS is that the relative phases γi tend to ±π/2 for large NS: in other words, the larger the number of photons
employed in the squeezing of the probe to reach higher precisions, the closer the local oscillator phase needs to be tuned to the
minimum-variance quadrature of each mode.

More precisely, as shown in “Appendix C”, the conditions to reach Heisenberg scaling in the Fisher information (9), read

γi = ±π

2
+ O(N−1

S ), i = 1, . . . , M. (12)

When these conditions hold, we can introduce the finite quantities ki = limNS→∞ NS(γi ∓ π/2), and the determinant |Σ | reduces
to

|Σ | = 1

2M−2NS

(( M∑

i=1

Piki
)2 + 1

16

)
, (13)

while ∂ϕ |Σ |, ∂ϕΣ , ∂ϕC and C tend to constant values, and ∂ϕμ scales as
√
ND, thus making only the first two terms of the Fisher

information dominant for large N .
As expected, the determinant of the covariance matrix Σ reaches its minimum value when γi = π/2, or ki = 0 for i = 1, . . . , M ,

namely when the squeezed quadratures are measured. When conditions (12) are met, we can neglect the trace term in Eq. (9), and
we can write

F(ϕ) 
 1

|Σ |∂ϕμTC∂ϕμ + 1

2

(
∂ϕ |Σ |
|Σ |

)2


 8(∂γ )2
avg

(
2ζ(kavg)NDNS + �

(
kavg

)
N 2
S

)
, (14)

where kavg ≡ ∑M
i=1 Piki , (∂γ )avg ≡ ∑M

i=1 Pi∂ϕγi , and �(x) = (8x)2/(16x2 + 1)2 and ζ(x) = (16x2 + 1)−1 are positive, even
function which reach their maxima at x = ±1/4 and x = 0, respectively, namely �(1/4) = 1 and ζ(0) = 1. The Cramér-
Rao bound (7) with the Fisher information (14) is saturated for large ν by the maximum-likelihood estimator [36–38], and thus,
Heisenberg-scaling precision can be achieved. The expression of the maximum-likelihood estimator for this estimation scheme can
be found in “Appendix D”.

Noticeably, both terms in the asymptotic Fisher information (14) give a Heisenberg-scaling precision in the estimation of the
parameter ϕ, provided that both the average number of photons in the displacement ND and in the squeezing NS scale with the total
average number of photons N = NS + ND, namely NS = βN and ND = (1 − β)N , for any value 0 < β ≤ 1 independent of N .

Moreover, it is worth noticing that the first term in Eq. (9), and thus in Eq. (14), depends on the information encoded in the
displacement of the probe, and thus it vanishes if μ = 0, namely if the probe is a squeezed vacuum and ND = 0. The second
term instead depends on the information on ϕ encoded in the variance of the measurement itself: it arises only from the interaction
with the squeezed photons and vanishes if ∂ϕ |Σ | = 0, namely when kavg = 0 in Eq. (14), and in particular when γi = ±π/2,
for i = 1, . . . , M , in Eq. (12), corresponding to quadratures with minimum squeezed variances, and thus locally insensible to the
variations of the parameter.

Interestingly, this latter case is similar to the single squeezed vacuum and single-homodyne scenario found in the literature [29,30]:
in fact, the second term in (14) represents a generalisation of the single-homodyne Fisher informationF1(ϕ) = 8�(k)(∂ϕγ )2N 2, and it
can be obtained by substituting k and ∂ϕγ with their averages over the probabilities Pi , namely k → ∑

i Pi ki and ∂ϕγ → ∑
i Pi∂ϕγi .

We have then found that, also when employing multiple homodyne detections, one for each output port of the interferometer,
the Heisenberg-scaling precision obtained through measurements of the squeezed noise (i.e. ∂ϕμ = 0) is only reached when the
quantum fluctuations of the observed quadratures are reduced to their quantum limit, i.e. |Σ | = O(N−1

S ), while the variations of
the unknown parameter ϕ still yield a visible effect on the outcomes of the measurements, i.e. ∂ϕ |Σ | is not vanishing.

However, at the expense of introducing a nonzero displacement in the probe, it is possible to relax the condition ∂ϕ |Σ | �= 0, thus
allowing us to choose ki = 0 in Eq. (13), thus effectively measuring the maximally squeezed quadratures at γi = ±π/2. Indeed in
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such a case, even if the contribution to the Fisher information associated with only the squeezed photons in Eq. (14) is vanishing, it
is still possible to reach Heisenberg-scaling precision through the information on the parameter encoded in the displacement of the
probe.

An important feature of this protocol, which differentiate it from its single-homodyne counterpart, is that it does not require any
adaptation of the network to the value of the unknown parameter, namely no auxiliary networks needs to be added at the input nor the
output of Ûϕ to reach Heisenberg-scaling precision. The only condition (12) can be thought as a minimum-resolution requirement
on the local oscillators phases, which can thus be achieved without adding further auxiliary networks.

However, this does not mean that the form of the network Uϕ does not affect the precision of our protocol in the estimation of ϕ:
the terms kavg and (∂γ )avg appearing in the constant factor in the Fisher information in Eq. (14) depend on the transition probabilities
Pi and on the derivatives of the relative phases ∂ϕγi . In particular, an exceptionally poorly conceived network, e.g. one for which γi
is independent on ϕ for every i such that Pi �= 0, can be associated with a null factor (∂γ )avg that sets to zero the Fisher information.
In this case, adding a ϕ-independent auxiliary network V , either at the input or at the output of Uϕ , might modify both Pi and γi ,
and thus (∂γ )avg.

4 Conclusions

We have shown that performing homodyne measurements at each output channel of an arbitrary linear network encoding an unknown
distributed parameter ϕ to be estimated allows us to reach Heisenberg-scaling precision for a single-mode squeezed probe with no
prior information on ϕ. The information on ϕ is encoded both in the displacement and in the squeezing of the probe, leading to
two independent contributions which can both provide Heisenberg-scaling sensitivity. We have shown that the determinant of the
covariance matrix associated with the measurement outcomes plays an important role in the enhanced sensitivity: in particular, we
demonstrated that the conditions to reach Heisenberg scaling in either of the two contributions, which can be met manipulating
the phases of the local oscillators, correspond to imposing that the determinant of the covariance matrix is of order N−1 for large
N . Differently from protocols involving only homodyne measurements at a single channel, here there is no need for a refocusing
auxiliary stage: the procedure is independent of the network and of the value of the parameter. This allows us to safely entrust the
measurement operation to an independent party without sharing any information on the structure of the network, possibly opening
up a further path towards secure sensing and cryptographic quantum metrology [39–41]. On the other hand, we showed that, despite
not required to achieve the Heisenberg limit, one can still employ an auxiliary stage to further enhance the estimation precision by
a constant factor. As a future step, it would be interesting to extend the results hereby presented beyond the Cramér–Rao bound
analysis, also in the framework of a parameter distributed arbitrarily in a network.
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Appendix A: Joint Detection Probability

Here we will first obtain the expectation value μ associated with the homodyne measurements on the probe after the interaction
with the linear network shown in (6), then we derive the expression of the covariance matrix Σ shown in (4), and its determinant
|Σ | in (5).

The initial phase-space displacement of the injected probe α0 = 〈Ψin| ẑ|Ψin〉, where ẑ = (x̂1, . . . , x̂M , p̂1, . . . , p̂M ) and |Ψin〉 =
D̂1(d)Ŝ1(r)|vac〉 is a 2M-vector

α0 =

⎛

⎜⎜⎜⎝

d
0
...

0

⎞

⎟⎟⎟⎠ , (15)
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with d = √
ND. This vector is transformed by the linear network, and at the output reads

α = Rα0 = d

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
P1 cos γ̄1

...√
PM cos γ̄M√
P1 sin γ̄1

...√
PM sin γ̄M

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

where R is the 2M × 2M orthogonal and symplectic matrix associated with the interferometer unitary matrix Uϕ

R =
(

Re[Uϕ] −Im[Uϕ]
Im[Uϕ] Re[Uϕ]

)
. (17)

The local oscillator phases in the homodyne measurements are described by the 2M × 2M orthogonal matrix

Oθ =
(

cos(Θ) sin(Θ)

− sin(Θ) cos(Θ)

)
, (18)

with Θ = diag(θ) = diag(θ1, . . . , θM ). This matrix represents a clockwise rotation in phase space for each of the M channels of
the network, of angles θi for the i th mode. The mean vector μ in Eq. (6) is then given by the first M elements of Oθα.

The 2M × 2M symplectic covariance matrix Γ0 of the squeezed state Ŝ1(r)|vac〉 reads

Γ0 = 1

2

(
e2R 0

0 e−2R

)
, (19)

where R is the M × M diagonal matrix R = diag(r, 0, . . . , 0). Once again, the action of the linear network Uϕ is represented by
the orthogonal and symplectic matrix R in Eq. (17), so that the covariance matrix of the probe at the output is

Γ = RΓ0R
T =

(
Σx Σxp

ΣT
xp Σp

)
, (20)

where, by direct calculation,

Σx ≡ 1

2

[
Re[Uϕ]e2RRe[U †

ϕ ] − Im[Uϕ]e−2RIm[U †
ϕ ]]

= 1

2

[
[Uϕ cosh(2R)U †
ϕ ] + 
[Uϕ sinh(2R)UT

ϕ ]] , (21)

Σp ≡ 1

2

[−Im[Uϕ]e2RIm[U †
ϕ ] + Re[Uϕ]e−2RRe[U †

ϕ ]]

= 1

2

[
[Uϕ cosh(2R)U †
ϕ ] − 
[Uϕ sinh(2R)UT

ϕ ]] , (22)

Σxp ≡ 1

2

[−Re[Uϕ]e2RIm[U †
ϕ ] − Im[Uϕ]e−2RRe[U †

ϕ ]]

= 1

2

[−�[Uϕ cosh(2R)U †
ϕ ] + �[Uϕ sinh(2R)UT

ϕ ]] . (23)

The covariance matrix Σ = Σx at the detection stage is then obtained by extracting the first M rows and columns from the matrix
OθΓ OT

θ , and thus its elements as shown in (4) can be easily obtained.
To evaluate the determinant |Σ |, we first notice that Γ0 ≡ I/2 + K0, where I is the identity matrix and K0 = Γ0 − I/2 is a

diagonal matrix of rank 2. Being the rank invariant under orthogonal rotations, the same holds true for OθΓ OT
θ ≡ I/2 + K , with

rank(K ) = 2. By definition of rank, none of the sub-matrices of K can have rank greater than 2; hence, we can write

Σ = I/2 + (Σ − I/2) ≡ I/2 + A, (24)

with rank(A) ≤ 2, being A a sub-matrix of K . We can then apply the result presented in “Appendix E” to Σ and write |Σ | as a sum
of determinants of the matrices obtained replacing any number of columns of I/2, with the respective columns of A

|Σ | = 1

2M
+ 1

2M−1

M∑

i=1

Aii + 1

2M−2

M∑

i=1

M∑

j=i+1

Aii A j j − A2
i j , (25)

where the first term is the determinant of I/2, the terms in the first summation are the contributions that arise substituting the i th
column of I/2 with the i th column of A, and the terms in the last summations from substituting the i th and j th columns, and we
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also exploited the symmetry of A. Noticeably, since rankA ≤ 2, all the contributions involving the replacement of three or more
columns of A are vanishing. By direct calculation, the expression in (5) can then be easily obtained.

Appendix B: Fisher information

In this Appendix we will obtain the expression for the Fisher information shown in Eq. (9), and the expression for the cofactor
matrix in Eq. (10).

By plugging the probability density function in Eq. (3) into the definition of the Fisher information (8), one can easily obtain

F(ϕ) = ∂ϕμTΣ−1∂ϕμ + 1

2
Tr[(Σ−1∂ϕΣ)2]

= ∂ϕμTΣ−1∂ϕμ − 1

2
Tr[(∂ϕΣ−1)(∂ϕΣ)], (26)

where we used the matrix identity ∂ϕΣ−1 = −Σ−1(∂ϕΣ)Σ−1. We now can express the inverse of the covariance matrix in terms
of its cofactor matrix C and its determinant, namely Σ−1 = C/ |Σ |, where the symmetry of the covariance matrix allows us to
consider directly the cofactor matrix, and not its transpose. The second term reads

−1

2
Tr[(∂ϕΣ−1)(∂ϕΣ)] = 1

2

∂ϕ |Σ |
|Σ |2 Tr[C∂ϕΣ] − 1

2 |Σ |Tr[(∂ϕC)(∂ϕΣ)]. (27)

We recognise in the first term of Eq. (27) Jacobi’s formula for the derivative of the determinant, ∂ϕ |Σ | = Tr[C∂ϕΣ], which allows
us to obtain the expression shown in Eq. (9)

F(ϕ) = 1

|Σ |∂ϕμTC∂ϕμ + 1

2

(
∂ϕ |Σ |
|Σ |

)2

− 1

2 |Σ |Tr[(∂ϕΣ)(∂ϕC)]. (28)

In order to explicit the cofactor matrix C in terms of the elements of Σ , and thus in terms of squeezing parameter r , transition
probabilities Pi , and relative phases acquired γi , i = 1, . . . , M , as displayed in (10), we first need to make some observations. First,
the (s, t)-cofactor Cst , which is defined as the determinant of the L − 1 × L − 1 sub-matrix of Σ obtained deleting the sth row and
t th column, then multiplied by (−1)s+t , can also be thought as the determinant of the L × L matrix Σ [s,t],1, where we denote with
X [s,t],n the matrix obtained from the matrix X replacing all the elements in the the sth row and in the pth column with zeros, except
the element (s, t) which is replaced by n, namely

Cst =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Σ11 . . . Σ1t−1 0 Σ1t+1 . . . Σ1L
...

...
...

Σs−11 . . . Σs−1t−1 0 Σs−1t+1 . . . Σs−1L

0 . . . 0 1 0 . . . 0
Σs+11 . . . Σs+1t−1 0 Σs+1t+1 . . . Σs+1L

...
...

...

ΣL1 . . . ΣLt−1 0 ΣLt+1 . . . ΣLL

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (29)

Second, as discussed in “Appendix A”, Σ = I/2 + A, where A is a symmetric matrix with rank(A) = ρ ≤ 2. Thus, we can write
the (s, t)-cofactor as Cst = ∣∣(I/2)[s,t],0 + A[s,t],1∣∣, and evaluate this determinant as a sum of determinants of matrices obtained
swapping columns of (I/2)[s,t],0 and A[s,t],1, as discussed in detail in “Appendix E”. Noticeably, by replacing a row and a column
of A may increase its rank by one, so that rank(A[s,t],1) ≤ 3. It is convenient now to consider separately the simpler case s = t first,
and then s �= t .

We notice that the matrix (I/2)[s,s],0 has a single zero eigenvalue, and thus each contribution to Css is non-vanishing only if the
sth columns of (I/2)[s,s],0 is replaced. We thus obtain

Css = 1

2M−1 + 1

2M−2

M∑

i=1
i �=s

Aii − 1

2M−3

M∑

i=1
i �=s

M∑

j=i+1
j �=s

Aii A j j − A2
i j , (30)

which is the sum of terms obtained substituting the sth, the sth and i th, and the sth, i th and j th columns, respectively. Noticeably,
replacing more than 3 columns yields vanishing contributions, since rank(A[s,t],1) ≤ 3. When s �= t , (I/2)[s,t],0 has two null
eigenvalues; hence, all the non-vanishing contributions must replace the sth and t th columns. For example, the only contribution
obtained swapping the sth and t th columns is of the type

1

2M−2

∣∣∣∣

(
0 1
Ats 0

)∣∣∣∣ = − 1

2M−2 Ast , (31)
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where we also exploited the symmetry of A; the contribution obtained swapping the sth, t th and i th columns, with i �= s, t are of
the type

1

2M−3

∣∣∣∣∣∣

⎛

⎝
0 1 0
Ats 0 Ati

Ais 0 Aii

⎞

⎠

∣∣∣∣∣∣
= 1

2M−3 (Asi Ati − Ast Aii ), (32)

where once again, we exploited the symmetry of A. Replacing more than 3 columns once again yields no contributions since
rank(A[s,t],1) ≤ 3. The final expression for Cst , s �= t thus reads

Cst = − 1

2M−2 Ast + 1

2M−3

M∑

i=1
i �=s,t

(Asi Ati − Ast Aii ). (33)

Replacing in (30) and (33) the definition of A = Σ − I/2, it is straightforward to obtain Eqs. (10).

Appendix C: Asymptotics

In this appendix we will study the asymptotic regime of the Fisher information (9),

F(ϕ) = 1

|Σ |∂ϕμTC∂ϕμ + 1

2

(
∂ϕ |Σ |
|Σ |

)2

− 1

2 |Σ |Tr[(∂ϕΣ)(∂ϕC)], (34)

for large N = NS + ND = sinh2 r + d2. We will show that the only conditions needed to reach Heisenberg scaling are the ones
shown in (12), and that in this case the asymptotic expression for the Fisher information is (14).

First, from the explicit expressions of Σ in (4) and C in (10), we notice that each of their matrix elements is at most of order of
NS, since sinh r = √

NS, the single-photon probabilities Pi are independent of NS, and the cosine and sine functions are limited.
The same holds true for their derivatives: in particular ∂ϕPi and ∂ϕγi = ∂ϕγ̄i do not depend on NS, where γi = γ̄i −θi is the phase

acquired by the signal through the i th output port relatively to the local oscillators reference phases. Moreover, similar considerations
can be applied for μ = O(

√
ND), and specifically for its derivative ∂ϕμ. This implies that, in order to reach a Heisenberg-scaling

sensitivity, namely a scaling of order of N 2 in the Fisher information, the determinant |Σ | cannot be of any order higher than N 0.
We thus first focus our attention on |Σ |

|Σ | = 1

2M
+ sinh(r)

2M−1

M∑

i=1

Pi (sinh(r) + cos(2γi ) cosh(r))

− sinh2(r)

2M−2

M∑

i=1

M∑

j=i+1

Pi Pj sin2(γi − γ j ), (35)

shown in Eq. (5). In particular, we will suppose that, for large N , γi tend to finite values γ0i , namely that γi = γ0i + ki N−α , with
ki ∈ R of order 1 and α > 0, since if γi were to grow with N (i.e. α < 0), it would give rise to an oscillating asymptotic behaviour
to |Σ |.

By expanding the squeezing parameter r in powers of NS in (35), we obtain

|Σ | = D1NS + D2 + D3
1

NS
+ O

(
1

N 2
S

)
, (36)

where

D1 = 1

2M−1

(
1 +

M∑

i=1

Pi cos(2γi )

)

− 1

2M−2

( M∑

i=1

M∑

j=i+1

Pi Pj sin(γi − γ j )
2
)

, (37)

D2 = 1

2M

(
1 +

M∑

i=1

Pi cos(2γi )

)
, (38)
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D3 = − 1

2M+2

M∑

i=1

Pi cos(2γi ). (39)

In order to cancel the scaling with NS, D1 must be equal to, or tend to, zero.
After some trigonometry, and exploiting the passivity of the linear network Uϕ which sets

∑
i Pi = 1, we can rewrite

D1 = 1

2M−2

(( M∑

i=1

Pi cos2 γi

)2 +
( M∑

i=1

Pi sin γi cos γi

)2
)

, (40)

which tends to zero iff γ0i = π/2 + nπ , with n ∈ Z.
In particular, the scaling of |Σ | for large NS will be of order N 0

S or lower only if γi = π/2 + nπ + ki N
−α
S , with α ≥ 1/2. To see

that, we notice that, for γ0i = π/2, D1 and D2 scale with N−2α
S , while D3 scale with N 0

S . Thus, |Σ | scales with N 1−2α
S for α ≤ 1

(and in particular with N 0
S for α = 1/2), and with N−1

S for α > 1. Noticeably, also D2 tends to zero iff γ0i = π/2 + nπ .
We now study the asymptotics of the numerators appearing in the Fisher information, when the condition γi = π/2 + ki N

−α
S ,

with α ≥ 1/2, is true. We first obtain the derivative of Σ from Eq. (4), and substitute γi = π/2 + ki/Nα
S , with α ≥ 1/2,

∂ϕΣi j = − 1

2
∂ϕ(

√
Pi Pj ) + √

Pi Pj

(
∂ϕ(γi + γ j )(ki + k j ) − ∂ϕ(γi − γ j )(ki − k j )

)
N 1−α

S

+ O(N 1−2α
S ) + O(N−1

S ), (41)

and we notice that it scales at most with N 1−α for 1/2 ≤ α < 1 and at most with N 0 for α ≥ 1. We then analyse the auxiliary
term (11)

Ssti = sinh2(r)
√
Ps Pt Pi sin(γs − γi ) sin(γt − γi )

= O(N 1−2α
S ), (42)

of which we evaluate the derivative when γi = π/2 + ki/Nα
S , with α ≥ 1/2, i = 1, . . . , M

∂ϕSsti = √
Ps Pt Pi

(
(∂ϕ(γs − γi ))(kt − ki ) + (∂ϕ(γt − γi ))(ks − ki )

)
N 1−α

S + O(N 1−2α), (43)

which scales at most with N 1−α
S for large NS.

Moreover, the covariance matrix Σ in (4) asymptotically reads

Σi j = δi j − √
Pi Pj

2
+ O(N 1−2α

S ) + O(N−1
S ), (44)

and thus, inserting (42) and (44) in the cofactor matrix (10), we obtain

Cst = 1

2M−1

√
Ps Pt + O(N 1−2α

S ) + O(N−1
S ). (45)

Finally, we can write

∂ϕ |Σ | = 1

2M−1

M∑

i=1

∂ϕΣi i − 1

2M−2

M∑

i=1

M∑

j=i+1

∂ϕSii j , (46)

∂ϕCss = 1

2M−2

M∑

i=1
i �=s

∂ϕΣi i − 1

2M−3

M∑

i=1
i �=s

M∑

j=i+1
j �=s

∂ϕSii j , (47)

∂ϕCst = − 1

2M−2 ∂ϕΣst + 1

2M−3

M∑

i=1
i �=s,t

∂ϕSsti . (48)

It is easy to see that ∂ϕ |Σ | scales at most with N 1−α
S , since

∑M
i ∂ϕPi = 0, while the derivatives of the elements of C scale at most

with N 1−α
S for 1/2 ≤ α < 1, and at most with N 0

S for α ≥ 1.
Our last step is to evaluate the asymptotics for ∂ϕμ, which can be easily evaluated differentiating equation (6)

∂ϕμi = √
2ND

(
∂ϕPi
2
√
Pi

cos γi − √
Pi∂ϕγi sin γi

)

= −√
2NDPi∂ϕγi + O(

√
NDN

−α
S ). (49)
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Now we can finally draw our conclusions and obtain the scaling of the Fisher information (9) by putting together all the asymptotic
regimes found. First, we notice that, independently of α ≥ 1/2, the last term in Eq. (9) always scales with NS, hence only reaching
shot-noise precision. The only terms which allow the Heisenberg scaling are then the first two: in fact, the first term scales with
NDN

2α−1
S for 1/2 ≤ α ≤ 1, and with NDNS for α > 1, and thus reaching Heisenberg scaling for α ≥ 1 (condition α > 1 includes

the case γi = π/2), while the second term reaches sub-shot-noise scaling N 2−2|α−1|
S for 1/2 < α < 3/2, with Heisenberg scaling

for α = 1.
This shows that the only condition to reach Heisenberg scaling is that

γi = π/2 + O(N−1
S ), (50)

for i = 1, . . . , M , as shown in (12), or equivalently that asymptotically γi 
 π/2 + ki/NS with ki ∈ R of order 1, as well as that the
only relevant terms under this condition are the first two in expression (9), and that only for α = 1 the first term is non-vanishing.

We can now finally prove (14). Substituting condition (50) inside Eqs. (41) and (43), we obtain from (46) the asymptotics

∂ϕ |Σ | 
 1

2M−1

M∑

i=1

4Piki (∂ϕγi )

− 1

2M−2

M∑

i=1

M∑

j=i+1

2Pi Pj (ki − k j )(∂ϕγi − ∂ϕγ j )


 1

2M−3

M∑

i=1

Piki

M∑

j=1

Pj∂ϕγ j (51)

where we once again exploited the passivity of the interferometer, so that
∑M

i=1 Pi = 1, while we obtain from (36)

|Σ | 
 1

2M−2N

(( M∑

i=1

Piki
)2 + 1

16

)
, (52)

which is the expression shown in (13). Lastly, from Eq. (49) when conditions (50) hold, we obtain the asymptotics

∂ϕμi 
 −√
2NDPi∂ϕγi . (53)

Eqs. (51), (52) and (53) yield the asymptotic expression for the Fisher information shown in (14).

Appendix D: Maximum-likelihood estimator

We will now obtain the implicit equation that defines the maximum-likelihood estimator ϕ̃MLE, which saturates the Heisenberg-
scaling Cramér–Rao bound (7), with the Fisher information given in Eq. (14), in the asymptotic regime of large ν.

Let us then imagine that, after ν iterations, we collect ν sets of outcomes xi , i = 1, . . . , ν from the M homodyne measurements at
the output of the linear network Ûϕ . The likelihood that these outcomes are observed for a given value ϕ of the unknown parameter
is given by

L(ϕ|x1, . . . , xν) =
ν∏

j=1

p(x j |ϕ), (54)

where p(x j |ϕ) is the probability density function given in (3). The maximum-Likelihood estimator ϕ̃ ≡ ϕ̃(x1, . . . , xν) is defined as
the value of ϕ which maximises the likelihood L that the outcomes x1, . . . , xν are observed, and it is usually found by maximising
the log-likelihood function

0 = ∂ϕ logL(ϕ|x1, . . . , xν)

∣∣∣
ϕ=ϕ̃MLE

= ∂ϕ

ν∑

j=1

log p(x j |ϕ)

∣∣∣
ϕ=ϕ̃MLE

=
[
−ν

2
∂ϕ log(|Σ |) − 1

2
∂ϕ

ν∑

j=1

(x j − μ)TΣ−1(x j − μ)

]

ϕ=ϕ̃MLE

=
[
−ν

2
Tr[Σ−1∂ϕΣ] − 1

2
∂ϕ

ν∑

j=1

Tr[Σ−1(x j − μ)(x j − μ)T]
]

ϕ=ϕ̃MLE
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= 1

2
Tr

[
∂ϕΣ−1

(
νΣ −

ν∑

j=1

(x j − μ)(x j − μ)T
)]

ϕ=ϕ̃MLE

+
[
(∂ϕμ)TΣ−1

(
νμ −

ν∑

j=1

x j

)]

ϕ=ϕ̃MLE

, (55)

where we exploited Jacobi’s formula for the derivative of the determinant of a matrix, the identity Tr(Σ−1∂ϕΣ) = −Tr(∂ϕΣ−1Σ),
and the symmetry of Σ . Once inserting the expressions for the covariance matrix Σ from (4) and for the mean vector μ from (6)
into the previous equation, one is able to obtain with numerical methods the maximum-likelihood estimator as the ϕ that solves (55).

Equation (55) largely simplifies when the probe is a squeezed vacuum state—i.e. μ = 0—or when the maximally squeezed
quadratures are measured—i.e. ∂ϕ |Σ | = 0. In the first case, it becomes

0 = 1

2
Tr

[
∂ϕΣ−1

(
Σ − 1

ν

ν∑

j=1

x j xT
j

)]

ϕ=ϕ̃MLE

, (56)

where it is possible to recognise the usual mean squared error estimator Σ̃ = ∑ν
j=1 x j xT

j /ν for the variance matrix Σ , so that the
solution of Eq. (56) can be seen as the value of ϕ that sets equal to zero a weighted mean of the elements of covariance matrix
estimator. In the latter case, Eq. (55) becomes

0 =
[
(∂ϕμ)TΣ−1

(
μ − 1

ν

ν∑

j=1

x j

)]

ϕ=ϕ̃MLE

, (57)

which can be seen as a weighted mean of the estimators μ̃ = ∑ν
j=1 x j/ν of the mean μ.

Appendix E: Useful formulas for the determinant of a sum of two matrices

Let us consider an L × L matrix Z which can be written as Z = D + W , where D = diag(d1, . . . , dL) is a real diagonal matrix,
and rank(W ) = ρ ≤ L . In this appendix, we will show a way to write the determinant |Z | in terms of the elements of W , which is
convenient for our purposes.

We exploit the identity [42]

|Z | = |D + W | =
L∑

α=0

Θα(D,W ), (58)

where Θα(X, Y ) is the sum of the determinants of the matrices obtained by replacing any set of α columns (rows) of X with the
corresponding α columns (rows) of Y . Since rank(W ) = ρ, the rank of any α ×α sub-matrix of W is zero if α > ρ, so we can write

|Z | =
ρ∑

α=0

Θα(D,W ). (59)

Let us make explicit the first, easier terms of the summation with the purpose to grasp the gist of this expression. For α = 0, no
columns are replaced from D, hence Θ0(D,W ) = |D| = ∏

k dk . We notice that, if at least one of the eigenvalues of D is zero, this
term vanishes. For α = 1, Θ1(D,W ) is the sum of determinants of matrices of the form

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 0 . . . 0 W1i 0 . . . 0 0
0 d2 . . . 0 W2i 0 . . . 0 0

. . .
...

...

0 0 . . . di−1 Wi−1i 0 . . . 0 0
0 0 . . . 0 Wii 0 . . . 0 0
0 0 . . . 0 Wi+1i di+1 . . . 0 0

...
...

. . .

0 0 . . . 0 WL−1i 0 . . . dL−1 0
0 0 . . . 0 WLi 0 . . . 0 dL

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(60)

with i = 1, . . . , L . Due to the structure of this matrices, their determinant is straightforward and reduces to Wii × ∏
k �=i dk . This

means that, in general, Θ1(D,W ) = ∑
i Wii × ∏

k �=i dk . A key observation to make is that if two or more eigenvalues of D are
zero, all these determinants are zero, and thus Θ1(D,W ) = 0; if instead a single eigenvalue is zero, say d j = 0, with j = 1, . . . , L ,
then only one of these determinants is non-vanishing, i.e. the determinant of the matrix obtained by replacing the j th column of D.
In this case then we have Θ1(D,W ) = Wj j × ∏

k �= j dk .
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Let us now consider lastly the case α = 2. The matrices whose determinants contribute to Θ2(D,W ) are of the form

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 . . . 0 W1i 0 . . . 0 W1i ′ 0 . . . 0
. . .

...
...

...
...

0 . . . di−1 Wi−1i 0 . . . 0 Wi−1i ′ 0 . . . 0
0 . . . 0 Wii 0 . . . 0 Wii ′ 0 . . . 0
0 . . . 0 Wi+1i di+1 . . . 0 Wi+1i ′ 0 . . . 0

...
...

. . .
...

...

0 . . . 0 Wi ′−1i 0 . . . di ′−1 Wi ′−1i ′ 0 . . . 0
0 . . . 0 Wi ′i 0 . . . 0 Wi ′i ′ 0 . . . 0
0 . . . 0 Wi ′+1i 0 . . . 0 Wi ′+1i ′ di ′+1 . . . 0

...
...

...
...

. . .

0 . . . 0 WLi 0 . . . 0 WLi ′ 0 . . . dL

,

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(61)

with i < i ′ = 1, . . . , L . Once again, the determinants of these type of matrices are easy to be evaluated and read |W (i,i ′)| ∏
k �=i,i ′ dk ,

where

W (i,i ′) =
(
Wii Wii ′
Wi ′i Wi ′i ′

)
. (62)

We notice that |W (i,i ′)| = |W (i ′,i)|. Thus, in general, Θ2(D,W ) = ∑
i
∑

j>1 |W (i,i ′)|∏
k �=i,i ′ dk . Once again, key observations can be made: if D has at least three null eigenvalues, then Θ2(D,W ) is vanishing. If

only two eigenvalues are zero, e.g. d j = d j ′ = 0, then there is only one contribution to Θ2(D,W ), given by the matrix obtained
substituting the j th and j ′th columns of D, and in this case we have Θ2(D,W ) = |W ( j, j ′)| ∏

k �= j, j ′ dk . If only one eigenvalue is
zero, namely d j = 0, then θ2(D,W ) is given by the sum of all the determinants of the matrices where the j th column has been
replaced, namely Θ2(D,W ) = ∑

i �= j |W (i, j)| ∏
k �=i, j dk .

Similarly, it is possible to extend these considerations to every value of α and finally obtain the compact form

|Z | =
ρ∑

α=0

∑

γ∈CL
α

|W (γ )|
∏

k /∈γ

dk, (63)

where CL
α is the set of all the combinations of α items in a set of L , and W (γ ) denotes the α × α sub-matrix of W obtained by

selecting the rows and columns with indices γ1, . . . , γα .
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