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Abstract Sensor networks, communication and financial networks, web and
social networks are becoming increasingly important in our day-to-day life.
They contain entities which may interact with one another. These interac-
tions are often characterized by a form of autocorrelation, where the value of
an attribute at a given entity depends on the values at the entities it is inter-
acting with. In this situation, the collective inference paradigm offers a unique
opportunity to improve the performance of predictive models on network data,
as interacting instances are labeled simultaneously by dealing with autocorre-
lation. Several recent works have shown that collective inference is a powerful
paradigm, but it is mainly developed with a fully-labeled training network. In
contrast, while it may be cheap to acquire the network topology, it may be
costly to acquire node labels for training. In this paper, we examine how to ex-
plicitly consider autocorrelation when performing regression inference within
network data. In particular, we study the transduction of collective regression
when a sparsely labeled network is a common situation. We present an algo-
rithm, called CORENA (COllective REgression in Network dAta), to assign
a numeric label to each instance in the network. In particular, we iteratively
augment the representation of each instance with instances sharing correlated
representations across the network. In this way, the proposed learning model
is able to capture autocorrelations of labels over a group of related instances
and feed-back the more reliable labels predicted by the transduction in the
labeled network. Empirical studies demonstrate that the proposed approach
can boost regression performances in several spatial and social tasks.
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1 Introduction

With recent advances in pervasive computing trends, network data are be-
coming ubiquitous in our daily life. Examples include hypertext documents
connected via hyperlinks, people connected via communication or social links,
genes connected via co-regulation.

Regardless of where we encounter them, networks can be represented as
graphs. They consist of entities (nodes), which may be connected with one
another by links. The nodes in a network are generally of the same type and
the links between nodes express various explicit relations. Information on the
nodes is provided as a set of properties (attributes), whose values are asso-
ciated with each node in the network. The links reflect the relation or de-
pendence between the properties of the nodes. This is typically referred to as
autocorrelation, that is, a cross-correlation of an attribute with itself (Cressie,
1993).

Autocorrelation is generally defined as deterministic or probabilistic depen-
dence between the values of the same attribute on related instances (Epperson,
2000). This definition mirrors the way of thinking pares cum paribus facillime
congregantur (“Like easily associates with Like” - Cicero). Autocorrelation is
apparent in a wide variety of everyday situations, including spatial domains
and social domains (Stojanova et al, 2012). In spatial domains, spatial autocor-
relation is the cross-correlation of values of an attribute strictly due to their
relatively close locations on a two-dimensional surface. Spatial autocorrela-
tion exists when there is a systematic spatial variation in the values of a given
property. This variation can exist in two forms, called positive and negative
spatial autocorrelation (Legendre, 1993). In the positive case, the value of an
attribute at a given location tends to be similar to the values of that attribute
in nearby locations. This means that if the value of some attribute is low at
a given location, the presence of spatial autocorrelation indicates that nearby
values are also low. Conversely, negative spatial autocorrelation is character-
ized by dissimilar values at nearby locations. Goodchild (1986) remarks that
positive autocorrelation is seen much more frequently in practice than nega-
tive autocorrelation in geophysical variables. This is justified by Tobler’s first
law of geography, according to which “everything is related to everything else,
but near things are more related than distant things” (Tobler, 1970). In social
domains, autocorrelation is recognized in the homophily principle, that is, the
tendency of nodes with similar values to be linked with each other (McPherson
et al, 2001). Homophily is observable, for example, in social networks where
it is defined as the tendency of individuals to associate and bond with oth-
ers who re similar (friendship). Actually, homophily shows that people’s social
networks are homogeneous with regard to many sociodemographic, behavioral,
and intra-personal characteristics.

In this paper, we propose to perform regression inferences in network data
by taking autocorrelation into account. We consider the scenario of sparsely
labeled networks and describe a collective inference approach as an effective
means to take autocorrelation into account. We illustrate an iterative con-
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vergence algorithm that allows us to represent data instances as nodes of a
network, learn the link structure of the nodes by modeling the autocorrelation
of the descriptive information (node attributes) and predict node labels collec-
tively with the goal of transduction. A regression model is iteratively learned
from a partially labeled network. Accordingly to the philosophy of collective
inference, the form of this model accounts for the autocorrelation of the labels
of linked nodes. Accordingly to the philosophy of transductive inference, the
model is learned, in order to reduce the inference error when predicting the
labels for the remaining unlabeled network.

The paper is organized as follows. The next section clarifies the motiva-
tion and the actual contribution of this paper. Section 3 reports relevant re-
lated work. Section 4 describes the proposed algorithm. Section 5 describes the
datasets, the experimental setup and reports the results. Finally, in Section 6
some conclusions are drawn and some future work is outlined.

2 Motivations and contributions

Collective inference is a fundamental approach to predictive inference in net-
work domains (Getoor and Taskar, 2007). Traditional algorithms label data
instances individually, regardless of the correlations or statistical dependencies
that are prevalent in network data sets. In contrast, algorithms that reason
collectively predict labels of linked instances simultaneously (Macskassy, 2007;
Neville and Jensen, 2007; Macskassy and Provost, 2007; Gallagher et al, 2008;
Sen et al, 2008). However, most work with collective inference performs learn-
ing using a fully-labeled training network. Unfortunately, in many situations
gathering this information is tedious or expensive, and labeling large portions
of the instances is infeasible (McDowell and Aha, 2012). In fact, this labeling
may involve substantial human time and attention. On the other hand, learn-
ing with only a few such labels can lead to very poor performance (Shi et al,
2011b). In response, a few researchers (Bilgic et al, 2010; Shi et al, 2011b;
McDowell and Aha, 2012) have recently investigated the collective inference
paradigm in a partially labeled network, in order to produce the highest per-
formance with the minimum number of labels.

The problem of learning with both labeled and unlabeled information is
not novel. Two main settings have been proposed in the literature: the semi-
supervised setting and the transductive setting (Seeger, 2001). The former is
a type of inductive learning, since the learned function is used to make predic-
tions on any possible example. The latter asks for less - it is only interested in
reducing the inference error for the given set of unlabeled data, without im-
proving the overall quality of the learned model. Since transduction needs no
general hypothesis, it appears to be an easier problem than (semi-supervised)
induction. McDowell and Aha (2012) have recently described the benefits of
applying both these learning settings in two different network scenarios. Semi-
supervised inference can be performed in across-network learning (Stojanova
et al, 2012; McDowell and Aha, 2012), where a model is learned on one network
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and then applied to a new disconnected network, with the goal of generalizing
to other networks in the same domain. In contrast, transductive inference can
be performed in within-network learning (Appice et al, 2009a; Steinhaeuser
et al, 2011), where a model is learned on a partially labeled network and then
applied to predict the class labels in the remainder of the network (i.e. the
unlabeled portion).

The network scenario that we address in this work is the within-network,
with some nodes labeled and some nodes unlabeled. Labels are numeric, sparse
and scarce across the network. We consider the node attributes in a tight con-
nection to the network structure. Thus connections (links in the network)
between the data in the labeled/unlabeled set are used to deal with the auto-
correlation property when generating the descriptive information included in
the regression model. Therefore, in order to predict the value of the labels, be-
sides the descriptive information we use the connections (links in the network)
to the related/similar entities.

In this paper we have considered a number of challenges. First, in network
domains, where instances exhibit the property of autocorrelation, the form of
a regression model may depend on more than just the attributes of the in-
stance itself. Thus, we consider the set of descriptive attribute values of the
instance, as well as descriptive attribute values and labels of the linked in-
stances. We define and compare several aggregation schema, in order to take
linked instances into account. They are used to augment the nodes’ attributes
with new relational attributes. These new attributes model the autocorrela-
tion of the linked values of the descriptive information, as well as of the labels.
Second, it is difficult to learn accurate joint models from sparsely labeled net-
works. If learning methods ignore the unlabeled portion of the network, the
model learned on one network can be applied to disconnected networks, with
the goal of generalizing to other networks. However, in this situation, there
may not be enough connectivity to learn the correlations accurately. Thus,
we decide to incorporate the unlabeled portion of the network. This is done
according to the principles of trasductive inference settings (Vapnik, 1998) -
we predict labels, in order to reduce the inference error on the remaining un-
labeled network, without improving the overall quality (e.g. generality) of the
learned model. Third, it is difficult to estimate the reliability of predicted la-
bels when collective inference is applied to numeric labels. We investigate the
use of local measures of autocorrelation, in order to award labels which are pre-
dicted as part of a local pattern of autocorrelation. In particular, we consider
local indicators of autocorrelation that return one value for each predicted
label; this value expresses the degree to which that label is part of a cluster
(i.e. the label is surrounded by similar labels). Fourth, the network structure
reflecting the autocorrelation of the properties of the nodes is often hidden in
the data instances. We investigate the computation of a dissimilarity measure,
in order to determine this structure and inject it into the presented collective
inference process. Nodes with similar descriptive values are recognized as part
of a cluster and connected by links.
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The algorithm presented in this paper is based on the preliminary work
by Loglisci et al (2014). In our previous work, we proposed a collective re-
gression algorithm that deals with the property of autocorrelation in spatial
domains only - instances were assigned to spatial locations which were repre-
sented with spatial coordinates (e.g. latitude and longitude). We determined
the network structure by using the spatial dimension of data only - instances
closer in space were linked to each other, without accounting for correlations
of descriptive information. We left out the case of sparsely labeled networks.
The work presented here significantly extends the previous one in the following
directions:

– Motivation for this work is given, both from the theoretical and application
perspective.

– An extensive discussion of related work in Collective Inference is given.
– We generalize the algorithm to any network - the network structure is now

determined by accounting for autocorrelation of descriptive information of
instances.

– We consider the network regression task in a transductive formulation by
exploring the case of sparsely labeled networks.

– We present new experiments on additional datasets, including real data
about social networks that empirically confirm the considerations reported
on the autocorrelation and show how our algorithm is able to reduce the
prediction error by accounting for autocorrelation in network data.

– We now report experiments with sparsely labeled networks that illustrate
how our algorithm adequately accounts for the effect of autocorrelation for
regression goals in the case of the few labels that are known.

3 Related works

In this section, we review related studies on collective inference in network
data. This learning paradigm has attracted significant attention in relational
data mining (Jensen et al, 2004a). Network data is one typical type of relational
data, while collective inference algorithms can exploit dependencies between
instances. This makes collective inference one of the most favorable learning
approaches for network data sets. Nevertheless, most work describes collective
algorithms for network classification problems, while it overlooks regression
problems.

Several collective classification approaches have been developed for a wide
variety of real world applications, e.g. hyperlinked document classification and
social network analysis. They can be roughly grouped into global algorithms
and local algorithms (Sen et al, 2008). Global algorithms aim to train a classi-
fier that seeks to optimize a global objective function often based on a Markov
random field. They use Loopy belief propagation (Weiss, 2001; Taskar et al,
2002; Neville and Jensen, 2007; Sen et al, 2008) and Mean-field relaxation
labeling (Weiss, 2001; Sen et al, 2008). These algorithms are usually compu-
tationally expensive, which limits their applicability to large-scale, real-world
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network data. Local algorithms employ an iterative process whereby a local
classifier predicts labels for each node, by using attributes of the nodes and
relational attributes derived from the linked nodes. This type of approach in-
volves an iterative process to update the labels and the relational attributes
of the linked nodes, e.g. iterative convergence based approaches (Neville and
Jensen, 2000; Getoor, 2005) and Gibbs sampling approaches (Jensen et al,
2004b). Both approaches are often combined with cautious inferences (Mc-
Dowell et al, 2009).

The iterative convergence approaches are investigated in many studies
(Neville and Jensen, 2000; Bilgic et al, 2007; McDowell et al, 2007; Fang et al,
2013). They account for the autocorrelation of labels and compute the label
of a node depending on the labels of all its neighbors. In particular, iterative
convergence approaches express a node by combining the node attributes and
the relational attributes constructed by using the labels of all the neighbors
of the node. The relational attributes can be computed by using an aggrega-
tion function over the neighbors, such as count, mode and proportion. Based
on the node descriptive attributes and the relational attributes, an iterative
convergence algorithm trains a classifier and iteratively updates the predic-
tions of all nodes, by using the predictions for nodes with unknown labels.
This process continues until the algorithm converges. Saha et al (2012) have
recently described an iterative convergence algorithm to deal with multi-label
classification problems. McDowell and Aha (2013) have shown that the ac-
curacy of collective classification performed with both iterative convergence
approaches and Gibbs sampling approaches may be increased by including,
for each node, the descriptive attributes of the neighboring nodes as rela-
tional attributes. They conclude that using relational attributes built on both
descriptive attributes and labels often produces the best accuracy. Finally, col-
lective classification has been recently investigated in combination with active
learning (Bilgic et al, 2010; Rattigan et al, 2007; Kuwadekar and Neville, 2011;
Saha et al, 2014), as well as semi-supervised and transductive learning (Xiang
and Neville, 2008; Shi et al, 2011a; McDowell and Aha, 2012).

Although collective classification has been widely investigated, collective
regression has attracted a little attention. Chopra (2008) has defined a rela-
tional factor graph framework for performing regression in relational data. A
single factor graph is used to capture dependencies among individual attributes
of data instances, as well as dependencies among attributes associated with
multiple data instances. The proposed models are learned with collective infer-
ences by resorting to latent variables, in order to capture hidden inter-sample
dependencies. However, these models are not formulated for the network set-
tings. A few other approaches have been developed for the network regression
task, but without resorting to the collective inference paradigm. Appice et al
(2009b) described a transductive network regression algorithm developed in
the co-training style. The algorithm is used within-network, in order to pre-
dict numeric labels of a sparsely labeled network. Two regression models are
learned: the former using the descriptive attributes, the latter using the rela-
tional attributes constructed from the descriptive attributes. During an itera-
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tive learning process, a regression model is used to label the unlabeled nodes
for the other model. The autocorrelation of a label with labels of neighbor
nodes is not explicitly accommodated when predicting the new labels. It is
only used to estimate the reliability of predicted labels. In contrast, a super-
vised algorithm is illustrated by Stojanova et al (2012). It computes a final
model that can be used across-network. The descriptive information (node at-
tributes) and the network structure are used during the training phase, while
only the descriptive information is used in the testing phase, where the network
structure is disregarded, all testing examples are unlabeled and the network
is not given. The autocorrelation of the labels is measured on nodes that are
interconnected in the training network, but the model is not constrained by
the structure of the training network.

4 Within-network collective regression

This section is devoted to the description of the algorithm CORENA that
performs collective regression inferences in network data. CORENA inputs
the nodes of a partially labeled network and predicts unknown targets by op-
erating in two phases. First, it performs inferences on the autocorrelation of
the descriptive data, in order to determine the link structure of the network.
Then it uses an iterative convergence approach, in order to perform accurate
collective inferences of the unknown targets. In the iterative phase, CORENA
builds relational attributes that account for the property of autocorrelation
of an attribute with itself over linked nodes. This produces an augmented
vector of the descriptive attributes for each node. Similarly to McDowell and
Aha (2013)’s work, the relational attributes are built from both the descrip-
tive attributes and the target attribute associated with the nodes. Differently
from McDowell and Aha (2013), relational attributes are built, in order to
address a regression problem rather than a classification one. It is noteworthy
that the relational descriptive attributes are computed once and for all before
starting collective inferences. They are synthesized from the descriptive values
which do not change during the iterative learning process. In contrast, the
relational target attributes are updated at each new iteration, as new infer-
ences on the linked targets can be made during the learning process. Finally,
autocorrelation-aware reliability measures are considered, in order to identify
the targets that are predicted with high reliability and feed them back into
the network, in order to inform subsequent inferences about linked nodes. In
the following, we first describe the network setting and the regression problem
(Section 4.1), then we illustrate the algorithm that yields the collective regres-
sion inference within network data (Section 4.2). Finally, we analyze the time
complexity of the presented algorithm (Section 4.3).

4.1 Network setting and regression problem
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Assume we are given a dataset D = (V,X, Y, ω), where V is a node set, each
x ∈ X is a vector of m descriptor (continuous or discrete) attributes for a
node v ∈ V , each y ∈ Y is a (possibly unknown) numeric target for v and ω is
a dissimilarity threshold (ω ∈ ℜ+). We are also given a set of known targets
Y L for nodes V L ⊂ V (labeled node set), such that Y L = {y|v ∈ V L}, while
targets of V U = V − V L (unlabeled node set) are unknown.

In this formulation, we assume the existence of a link structure that is
implicit in the autocorrelation property of the data. A node u ∈ V can be
linked to a node v ∈ V if the dissimilarity between the linked nodes is less
than ω. In this way, given a mechanism to measure the dissimilarity between
two nodes, we are able to derive a link structure E ⊆ V ×V ×ℜ+ from (V, ω),
such that E = {⟨u, v, d⟩|u, v ∈ V, d = diss(u, v) and d ≤ ω}. The pair (V,E)
defines a network data setting for the regression problem formulation.

The regression problem is to receive full information (including labels)
on the nodes of V L, partial information (without labels) on the nodes of V U

(V U = V −V L), as well as the link structure E and predict the target values of
V U . It is noteworthy that this setting is the original distributional-free trans-
ductive setting proposed by Vapnik (1998),1 which requires both the known
set and the unknown set to be sampled from the node set V , without replace-
ment. This means that, unlike the standard inductive setting, the nodes in
the known (and unknown) set are supposed to be correlated, based on the
existence of a link which (transitively) connects them.

4.2 The algorithm

The collective inference process is illustrated in Figure 1. CORENA inputs
a node set V and the dissimilarity threshold ω. According to the problem
formulation reported in Section 4.1, V comprises the labeled node set V L and
the unlabeled node set V U (with V = V L∪V U ). The set V L (see the red nodes
in Figure 1) is spanned on both the descriptive space X and the target space
Y , while V U (see the blue nodes in Figure 1) is spanned on the descriptive
space X. CORENA computes a link structure E based on both V and ω (see
phase 1 in Figure 1) and uses the network data (V,E), in order to output the
targets Ŷ U predicted for the unlabeled node set V U (see phase 2 in Figure 1).

4.2.1 Building the link structure

CORENA resorts to a dissimilarity-based approach, in order to build a link
structure that depicts the property of autocorrelation through strongly corre-
lated, linked nodes. This is done with the final aim of reducing the prediction

1 Vapnik introduced an alternative transductive setting which is distributional, since both
known set and unknown set are assumed to be drawn independently and identically from
some unknown distribution. As shown in Vapnik (1998)(Theorem 8.1), error bounds for
learning algorithms in the distribution-free setting apply to the more popular distributional
transductive setting. This justifies our focus on the distributional-free setting.
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Fig. 1 The block diagram of the two-phase collective regression process performed by
CORENA. In phase 1, CORENA determines the link structure of a partially labeled net-
work. In phase 2, CORENA uses an iterative convergence approach, in order to collectively
infer the unknown targets of the network.

error when collective inferences are performed on autocorrelation-aware linked
nodes. It is based on the hypothesis that the autocorrelation of targets will be
manifested jointly with the autocorrelation of descriptive values. Under this
hypothesis, we look for the autocorrelation structure of the linked, frequently
unknown, targets by measuring the similarity of the known descriptor values
associated with.2 The procedure is as follows: we build the link structure E
from the node set V spanned on the descriptive space X. We construct links
that connect nodes measuring the nearest descriptive values over the node set.
We assign a dissimilarity weight to each link, in order to measure the strength
of the computed dissimilarity. The strength of the correlation between linked
nodes can be estimated as the inverse of the power dissimilarity computed be-
tween the descriptive vectors associated with the nodes, so that the lower the
dissimilarity weight, the higher the correlation strength of the link. In this pa-
per, we use the Euclidean distance as a dissimilarity measure. The dissimilarity
is computed after normalizing the values of each descriptive attribute X ∈ X
in the interval [0,1]. For each candidate pair of nodes (u, v) ∈ V × V, u ̸= v,
the dissimilarity weight d = EuclideanDistance(u, v) is computed. The link
(u, v, d) is added to E iff d ≤ ω.

4.2.2 Iterative convergence approach

2 It is noteworthy that this phase can be overlooked when links are apriori defined in the
input network data.
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Algorithm 1 Iterative Convergence Approach(V L, V U , E) 7→ V̂ U

Require: V L : the labeled node set spanned on X× Y
Require: V U : the unlabeled node set spanned on X
Require: E : the edge structure defined on V × V ×ℜ+

Ensure: V̂ U : the node set V U labeled with the predicted targets Ŷ U

1: iteration← 0
2: XN ←buildingRelationalAttributes(V L ∪ V U , E,X)

3: V̂ U ← labeling(V U , learnRegressionModel(V L,X × XN × Y )) {Create a copy of V U

whose nodes are labeled with the targets predicted by the learned regression model}
4: YN ←buildingRelationalAttributes(V L ∪ V̂ U , E, Y )
5: repeat
6: V̂ U

new ← labeling(V U , learnRegressionModel(V L,X×XN×YN×Y )) {Create a copy
of V U whose nodes are labeled with the targets predicted by the learned regression
model}

7: noChange← 0
8: for u ∈ V U do
9: oldR = computeReliability(getLabel(u, V̂ U ), V L)

10: newR = computeReliability(getLabel(u, V̂ U
new), V L)

11: if newR > oldR then
12: labeling(V̂ U , u, getLabel(u, V̂ U

new))
13: else
14: noChange← noChange+ 1
15: end if
16: end for
17: iteration← iteration+ 1
18: YN ←buildingRelationalAttributes(V L ∪ V̂ U

new, E, Y )
19: until (iteration = maxIt or noChange ≥ minNoChange)

CORENA resorts to an iterative convergence approach, in order to collec-
tively determine the unknown targets of V U . The algorithm (see Algorithm 1)
comprises an initialization phase and an iterative phase.

The initialization phase (Algorithm 1, lines 2-4) consists of three steps:

1. For each node in both the labeled and unlabeled set (u ∈ V ), for each
descriptive attribute (X ∈ X), we build the associated relational attributes
XN (Algorithm 1, line 2).

2. We learn a regression model from the labeled node set V L spanned on
X×XN × Y . This model is used to initialize the unknown targets of V U .
Predicted targets are now stored in V̂ U (Algorithm 1, line 3).

3. For each node in both the labeled and unlabeled set (u ∈ V ), for the target
attribute (Y ), we build the associated relational attributes YN (Algorithm
1, line 4).

In steps (1) and (3), we build the relational attributes by resorting to one
of the attribute schemata described in Section 4.2.3.

The iterative phase is produced with the main loop (Algorithm 1, lines
5-19). We keep to the collective theory and look for new inferences that use
“reliable” targets from previous inferences. The iterative phase consists of
three steps:

1. We learn a new regression model from the labeled node set V L, as it is
spanned on the attribute space X×XN ×YN ×Y . This model is used to
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infer new targets for the unlabeled set V U . These new targets are stored
in V̂ U

new (Algorithm 1, line 6).
2. For each node of the unlabeled node set V U , both the reliability of the

target estimated at the previous iteration (and stored in V̂ U ) and the reli-
ability of the target estimated in the current iteration (and stored in V̂ U

new)
are calculated. Reliability is quantified with a measure of local autocorre-
lation (see details in Section 4.2.4). For each node, the most reliable target
is that maintained in V̂ U for the next iteration (Algorithm 1, lines 8-16).

3. The relational target attributes YN are updated according to new reliable
targets injected into V̂ U (Algorithm 1, line 4).

This iterative inference can stop in two cases. The maximum number of
iterations maxIt is reached or the number of predicted targets unchanged with
respect to the previous iteration is greater than minNoChange. Both maxIt
and minNoChange are user-defined parameters.

4.2.3 Computing relational attributes

Considering a base attribute A, we introduce three construction schemata ac-
cording to which we can build a vector of relational attributes AN associated
with A. The base attribute A can be either a descriptor attribute (A ∈ X)
or the target attribute (A = Y ). In both cases, the constructed relational at-
tributes are used to augment descriptive vectors associated with nodes of the
network. All the schemata investigated in this study construct new descrip-
tive attributes for the regression problem, by computing some summarization
statistics of the base attribute A. New attributes contribute to handling the
autocorrelation of the base attributes over local neighborhoods of the network
data.

Definition 1 (Neighborhood) Let (V,E) be a network, u be a node (u ∈ V )
and ν be the neighborhood radius (ν ∈ ℜ+). The neighborhood N(u) is a sub-
set of V (N(u) ⊆ V ) that includes all nodes v ∈ V , such that: distance(u, v) ≤
ν, where the distance(·, ·) is defined as follows:

distance(u, v) =


d if (u, v, d) ∈ E

d+ distance(z, v) if ∃(u, z, d) ∈ E

and ∃ path(z, v, E)

∞ otherwise

. (1)

According to Formula 1, we distinguish three cases: (1) u and v are di-
rectly linked, meaning there is a link between them (2) u and v are tran-
sitively linked, meaning there is a path between them and (3) u and v are
disconnected, meaning there is no path between them. In the first case, we
output the dissimilarity weight associated with the direct link. In the second
case, we output the sum of dissimilarity weights calculated over the least-cost
path. This is computed with Dijkstra’s algorithm (Dijkstra, 1959), which is a
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graph search algorithm that solves the single-source shortest path problem for
a graph with non-negative edge path costs, producing a shortest path tree. In
the third case, the dissimilarity is infinity.

Attribute Schema Var1 Given the base attribute A, we build two new rela-
tional attributes, AN(mean) and AN(stDev), based on A. Both attributes are
computed by aggregating A over the neighborhoods constructed with radius
ν = ω throughout the network. Let u be a node, AN(u,mean) is computed as
the weighted mean of the values of A falling in the neighborhood N(u), that
is:

AN(u,mean) =

∑
v∈N(u)

λ(u, v)× val(A)

∑
v∈N(u)

λ(u, v)
, (2)

where λ(u, v) = 1
distance(u,v) with distance(·, ·) computed as reported in For-

mula 1, and val(A) is the value of the attribute A for the node v. aN(u, stDev)
is the standard deviation of the values of A falling in the neighborhood N(u).

Attribute Schema Var2 By following the idea investigated by Ohashi and
Torgo (2012), as well as Appice et al (2013), we use two neighborhoods, N1(u)
with radius ν = Ω and N2(u) with radius ν = 2Ω, respectively. Given the
base attribute A, we compute five new relational attributes, AN(mean, 1) and
AN(mean, 2), AN(stDev, 1), AN(stDev, 2) and AN(speed). For each node u,
AN(u,mean, 1) and AN(u,mean, 2), AN(u, stDev, 1) and AN(u, stDev, 2)
are calculated as described in Var1 by using N1(u) (for AN(u,mean, 1) and
AN(u, stDev, 1)) and N2(u) (for AN(u,mean, 2) and AN(u, stDev, 2)) re-
spectively as neighborhood units of analysis. AN(speed) is calculated, in order
to represent the speed at which values of A change when stepping back from
u over the network. Formally, this is computed as follows:

AN(u, speed) =
AN(u,mean, 1)

AN(u,mean, 2)
. (3)

Attribute Schema Var3 Given the base attribute A that assumes d distinct
values, we build d new relational attributes. These attributes represent the
frequency histogram of A, as it is computed on the neighborhoods constructed
with radius ν = ω throughout the network. In practice, we build one relational
attribute for each distinct value of A. Let u be a node, val be a distinct value
of A, AN(u, val) is computed as the frequency of val over the neighborhood
N(u). We note that if A is a numeric attribute, we discretize this attribute be-
fore computing the relational attributes associated with it. The discretization
is done by resorting to the equal frequency discretization algorithm.
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4.2.4 Measuring reliability of targets

We measure the reliability of the targets predicted at each iteration, in order
to select reliable targets that are fed back to the training network for the next
iteration. Intuitively, reliable targets should manifest the property of autocor-
relation, so that similar targets can be plausibly propagated to linked nodes.
The higher the autocorrelation of a target with linked targets, the more reli-
able the target in the network. Two local measures of autocorrelation, namely
the Anselin Local Moran’s Index LMI (Arthur, 2008) and the standardized
Getis and Ord local GI∗ (Anselin, 1995), are used. Both are originally de-
fined in spatial statistics. They are used in the analysis on sensor networks
(Appice and Malerba, 2014), but can be easily adapted to a general-purpose
network data setting. They return one numeric value per node. This value
denotes the degree of autocorrelation of a value over linked nodes. For each
unlabeled node, we compute the measure of local autocorrelation for both the
target predicted in the present iteration and the target output at the previous
iteration. The more reliable targets are conserved for the next iteration. In
this study, we compute the autocorrelation of a predicted target with respect
to the real targets of the originally labeled node set (V L).

The Anselin Local Moran’s Index LMI is used in spatial statistics to dis-
tinguish between local patterns of positive autocorrelation and negative auto-
correlation. In this study, we compute this measure, in order to quantify the
reliability of the target Ŷ predicted at the unlabeled node u ∈ V U . Formally,

LMI(u) =

(
(u(Ŷ )− Y )

m2

) ∑
v∈V L

(
λ(u, v)× (val(Y )− Y )

)
, (4)

where u(Ŷ ) is the target predicted at the node u, Y and m2 are respectively
the mean and the second moment of the targets in the labeled set V L, λ(u, v) =

1
distance(u,v) with distance(·, ·) computed as reported in Formula 1. A positive

value for LMI(u) indicates that u(Y ) is linked to similar values (positive
autocorrelation). A negative value for LMI(u) indicates that u(Y ) is linked
to dissimilar values (negative autocorrelation). The higher the LMI(u), the
more reliable the predicted target u(Ŷ ).

The standardized Getis and Ord local GI∗ is used in spatial statistics to
identify objects that are part of clusters of high/low values. Contrary to LMI,
this measure assumes positive autocorrelation, while it does not capture the
presence of negative autocorrelation. It is computed as follows:

GI ∗ (u) =

 ∑
v∈V L,u ̸=v

λ(u, v)u(Ŷ )− Y Λ(u)


√√√√√ m2

n−1

n
∑

v∈V L,v ̸=u

λ(u, v)2 − Λ(u)
2

,

(5)
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where Λ(u) =
∑

v∈V L,u ̸=v

λ(u, v) and n in the cardinality of V L. The interpreta-

tion of GI∗ is different from that of LMI: a significant positive value indicates
that the predicted target is a high value linked to high values, while a signif-
icant negative value indicates that the predicted value is a low value linked
to low values. Therefore, the higher the absolute value of GI∗(u), the more
reliable the predicted target u(Ŷ ).

4.3 Time complexity analysis

Let nL be the number of labeled nodes (i.e. nL = |V L|), nU be the num-
ber of unlabeled nodes (i.e. nU = |V U |), such that n = nL + nU , e be the
number of links (i.e. e = |E|), m be the number of descriptive attributes
(i.e. m = |X|) and l be the average number of links coming from a node.
The computational complexity of CORENA depends on the cost of build-
ing the link structure E from the node set V , as well as the cost of per-
forming collective inferences over the network data (V,E). The time cost of
building the link structure E is O(n2m) as the Euclidean distance is com-
puted on the descriptive vectors of each pair of nodes of V . The time cost
of performing the iterative convergence learning process in fact depends on
the complexity of: (1) determining the dissimilarity weights of the least-cost
paths between each pair of (transitively) linked nodes (see Formula 1),3 (2)
building the vectors of the relational descriptive attributes XN , (3) learning
a regression model, (4) predicting the unknown targets Ŷ U and measuring
the reliability of predicted targets and (5) constructing the vector of the re-
lational target attributes Y N . Additionally, steps 3-5 are iterated per maxIt
number of times, in the worst case. More specifically, the determination of
the low-cost paths from one node to all nodes of a network has a time cost
O(e+n log n) when the implementation of Dijkstra’s algorithm is used based on
a min-priority queue implemented by a Fibonacci heap. On the other hand, the
construction of the vector of relational descriptive attributes associated with
a base attribute has a time cost O(l), with the attribute schema Var1, O(l2),
with the attribute schema Var2 and O(l log l + l), with the attribute schema
Var3, assuming an optimal algorithm is used for sorting when the equal fre-
quency discretization is performed. The discovery of a regression model has
a time cost O(L), where L depends on the base learning algorithm used in
this phase. Finally, the evaluation the reliability of the predicted targets has
a time cost O(nU × nL). Therefore, the time cost of the entire process is

O

 n2︸︷︷︸
E

+n(e+ n log n)︸ ︷︷ ︸
low cost path

+ml2︸︷︷︸
XN

+maxIt×

 L︸︷︷︸
base regression

+nU × nL︸ ︷︷ ︸
reliability

+ l2︸︷︷︸
Y N


.

3 The dissimilarity weights associated with the least-cost paths can be pre-computed
before starting the iterative learning. As they depend on the descriptive values, they do not
change over the collective inferences.
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Table 1 Data description. For each dataset we report the domain of the attributes, the
number of nodes - n, the number of descriptive attributes - m

Domain N M
LAB Spatial 52 5
NWE Spatial 970 6
MS Spatial 420 6
MF Spatial 420 6

NOAA-clwvi Spatial 270 34
NOAA-pr Spatial 270 34
Movies Social 415 13
VideoL Social 752 9

5 Experimental evaluation and discussion

CORENA is written in Java and evaluated in several real-world data sets.
Experiments are run on an Intel DualCore CPU @2.00GHz desktop running
Windows 7 Professional. Before we proceed to present empirical results, we
describe both the network data used and the experimental settings.

5.1 Network data

In this experimental evaluation, we use eight real data collections, acquired
from spatial and social domains. The characteristics of the datasets are sum-
marized in Table 1. In each data collection, a number of descriptive attributes,
as well as the numeric target, which will be discussed in detail below, are as-
sociated with the nodes. In spatial domains, nodes are spatial. They are rep-
resented by geographic coordinates (latitude and longitude), so that they are
at some geographic distance apart in space. In this situation, we extend the
set of descriptive attributes of each node with the geographic coordinates of
the node. This allows us to account for the spatial dimension of data when
computing the dissimilarity measure diss() and determining the links of the
network structure.

The Intel Berkeley Lab dataset (LAB) (Intel Berkeley Lab, 2004) col-
lects in-door measurements of humidity, light and voltage values (descriptive
attributes) and temperature (target) transmitted every 31 seconds from 54
sensors deployed in the Intel Berkeley Research lab, between February 28th
and April 5th 2004. The network is built by considering the sensors as nodes.
The attributes associated with the nodes are computed as the mean of values
measured between February 28th and March 21st, 2004.

The North-West Census dataset (NWE) contains census data provided
by the 1998 Census and collected in the European project SPIN! (May and
Savinov, 2003). The dataset includes measures of deprivation level in the ward
(the census unit), including index scores such as the Jarman Underprivileged
Area score, Townsend score, Carstairs score and the Department of the Envi-
ronment score (descriptive attributes), as well as the percentage of mortality
(target). The network is built by considering the 970 wards as nodes.
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The datasets SIGMEA MS and SIGMEA MF (MS and MF) (Demšar
et al (2005)) are derived from one multi-target dataset containing measure-
ments of pollen dispersal (crossover) rates from two lines of plants (target): the
transgenic male-fertile (MF) and the non-transgenic male-sterile (MS) lines of
oilseed rape. The descriptive attributes are the cardinal direction and distance
of the sample point from the center of the donor field, the visual angle between
the sample plot and the donor field, the shortest distance between the plot and
the nearest edge of the donor field. Both networks are built by considering the
817 sampling points as nodes.

The NOAA data are collected for climatology studies (Simons, 2011). Here
we consider two datasets, namely NOAA-clwvi and NOAA-pr. They are
derived from the content of the condensed water in the clouds (target) and the
precipitation flux (target) respectively. In both datasets, we use 31 descriptive
attributes concerning meteorology, heat flux, pressure, temperature and wind.
Data are measured daily from 270 stations distributed worldwide. The network
is built by considering the stations as nodes. The attributes associated with
the nodes are computed as the mean of values measured between October and
November, 2000.

The Movies dataset contains movie ratings given to movies by users of
the online movie recommender service Movielens, collected during the period
1997-1998 (Grouplens, 1998). Specifically, for each movie, the dataset con-
tains the IMDB movie identifier, genre, country, movie director and filming
location, as well as all/top/audience critics ratings: average scores, numbers
of reviews/fresh scores/rotten scores from the Rotten Tomatoes film review
aggregator. The target is all the critics’ ratings: all other rating data are not
included in the analysis. Similarly to Stojanova et al (2012), we are interested
in pairs of movies that are ranked together by a single user, where the se-
lected users rated at least 20 movies. The network structure has 500 nodes
corresponding to the movies (labeled with their properties).

The VideoL dataset contains the ECML PKDD 2011 Discovery Chal-
lenge data (Antulov-Fantulin et al, 2011). The data are related to the con-
tent of VideoLectures.net, a free and open access multimedia repository of
video lectures, mainly on research and educational topics. The target is the
total number of views of lectures published online, where pairs of lectures
are viewed together (not necessarily consecutively) with at least two distinct
cookie-identified browsers. The descriptive attributes include several proper-
ties of a lecture, such as the type, category, author and language of the lecture,
as well as the recording and publishing dates of the lecture. Similarly to Sto-
janova et al (2012), we use the complete data from the Challenge for 2009.
The network structure has 754 nodes containing the lectures along with their
properties.
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5.2 Experimental setup

5.2.1 Evaluation metrics

We evaluate the accuracy performance of several variants of CORENA and
compare it to that of some competitor algorithms. The evaluation is performed
on the collection of datasets described above. The accuracy is measured in
terms of the RMSE and estimated by using the inverse 10-fold cross validation
(Malerba et al, 2009). For each trial, the compared algorithms are trained on a
single (labeled) data instance and tested on the hold-out nine data instances,
forming the unlabeled set. This experimental design, that uses small training
set sizes, allows us to validate the transductive approach.

5.2.2 Compared algorithms

In all experiments, we use M5’ (Wang and Witten, 1997) as a base learner.4

It is noteworthy that this choice does not exclude the possibility of using any
other regression method as a base learner of our transductive approach. We
run CORENA by setting minNoChange equal to half the size of the unlabeled
node set and maxIt equal to 15.

We first evaluate the accuracy of CORENA using different variable schemata,
reliability measures and dissimilarity thresholds. This comparative study aims
to understand the impact of these parameters on the accuracy of the transduc-
tive process. In our experiments, the variable schema ranges between Var1,
Var2 and Var3 (see details in Section 4.2.3), while the reliability measure
ranges between LMI and GI* (see details in Section 4.2.4). We consider 10
bins in the equal-frequency discretization of Var3. We select the dissimilarity
threshold ω (see details in Section 4.1) depending on the connectivity degree we
intend to test in the network. This selection is done by exploring a set of can-
didate thresholds with a grid search procedure. The search is tailored, in order
to determine approximately the lowest value of ω that allows us to build a con-
nected network with each node linked to at leastMinLinks nodes. We evaluate
CORENA by setting MinLinks as a percentage (MinLinks% = 30%, 45%)
of the entire node set size.

Then we compare the accuracy performance of CORENA to that of the
base learner M5’, to the network regression algorithm NCLUS (Stojanova et al,
2012), as well as to its traditional ancestor CLUS (Blockeel et al, 1998). For this
comparison, we consider the several variants of CORENA tested in this study,
while the default parameter configuration is considered for the competitors.

5.2.3 Statistical comparison

In order to compare the predictive capabilities of the learned models, we use
the non-parametric Wilcoxon two-sample paired signed rank test (Orkin and

4 We use the Java implementation of M5’ included in the WEKA toolkit (Witten and
Frank, 2005). We consider the default configuration setup with the pruning option enabled.
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Drogin (1990)). To perform the test, we assume that the experimental results of
the two algorithms compared are independent pairs {(q1, r1), (q2, r2), . . . , (qn, rn)}
of sample data. We then rank the absolute value of the differences qi− ri. The
Wilcoxon test statistics WT+ and WT− are the sum of the ranks from the
positive and negative differences, respectively. We test the null hypothesis H0:
“no difference in distributions” against the two-sided alternative H1: “there is
a difference in distributions”. Intuitively, when WT+ ≫ WT− and vice versa,
H0 is rejected. WhetherWT+ should be considered “much greater than”WT−

depends on the significance level considered. The null hypothesis of the statis-
tical test is that the two populations have the same continuous distribution.
Since, in our experiments, qi and ri are Avg.MSEs, WT+ ≫ WT− implies
that the second method (R) is better than the first (Q). In all experiments
reported in this empirical study, the significance level used in the test is set at
0.05.

5.3 Results and discussion

Table 2 reports the average RMSE of the several variants of CORENA, the
base learner M5’, as well as the competitors NCLUS and CLUS. The accuracy
of CORENA is evaluated by varying the variable schema, the reliability mea-
sure and the connectivity threshold percentage. The analysis of these results
lead to several considerations.

First, we analyze the accuracy performance of CORENA along the variable
schemataVar1,Var2 andVar3. We observe thatVar3 shows, in general, bet-
ter accuracy performance (e.g. the lowest error) than Var1 and Var2. In par-
ticular, Var3 outperforms both Var1 and Var2 in 6 out of 8 trials with LMI
and MinLinks% = 30%, 5 out 8 trials with GI* and MinLinks% = 30%, 5
out of 8 trials with LMI and MinLinks% = 45% and 7 out of 8 trials with
GI* and MinLinks% = 45%. The reason for this result can be found in the
information which is represented by the relational attributes constructed. Both
Var1 and Var2 build relational attributes by calculating basic statistics such
as mean and standard deviation. Therefore, constructed attributes summarize
linked data without paying great attention to how the target values are differ-
ently distributed among the single nodes. In contrast, Var3 builds relational
attributes that describe the histogram of the target values over the linked data.
In this way, constructed attributes are able to quantify possible changes in the
distribution of target values. Final considerations concern the fact that so-
cial networks (Movies and VideoL) often perform a “higher” drop of accuracy
than spatial networks when either Var1 or Var2 are used in place of Var3
(see 3154 (Var2) vs 1.36(Var3) with Movies, LMI and MinLinks% = 30%,
1599 (Var2) vs 1.37(Var3) with Movies, GI* and MinLinks% = 30%, 1971
(Var1) vs 751(Var3) with VideoL, LMI and MinLinks% = 30%, 2058
(Var1) vs 758(Var3) with VideoL, GI* and MinLinks% = 30%, 2.54 (Var2)
vs 1.324(Var3) with Movies, LMI and MinLinks% = 45%, 2.75 (Var2)
vs 1.321(Var3) with Movies, GI* and MinLinks% = 45%, 2873 (Var2)
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vs 690(Var3) with VideoL, LMI and MinLinks% = 45%, 1279 (Var2) vs
696(Var3) with VideoL, GI* and MinLinks% = 45%). This may depend
on the fact that the variable constructors of both Var1 and Var2 have been
inspired by the data aggregation indicators efficaciously used by Ohashi and
Torgo (2012), as well as Appice et al (2013), but in spatial and spatio-temporal
domains only. They probably work in an improper manner in social domains.

Second, we analyze the influence of the reliability measures LMI and GI*
on the accuracy performance of CORENA. We observe that LMI generally
outperforms GI*. In particular, LMI outperforms GI* in 6 out of 8 tri-
als with VAR1 and MinLinks% = 30%, 6 out of 8 trials with VAR2 and
MinLinks% = 30%, 8 out of 8 trials with VAR3 and MinLinks% = 30%,
7 out of 8 trials with VAR1 and MinLinks% = 45%, 7 out of 8 trials
with VAR2 and MinLinks% = 45% and 5 out of 8 trials with VAR3 and
MinLinks% = 45%. Both reliability measures are based on the computation
of local indicators of autocorrelation, that is, Anselin’s Local Moran Index
(LMI) and Getis and Ord Local Index (GI*), respectively. We ascribe the
best performance of LMI in this study to the ability of Anselin’s Local Moran
Index to detect both positive and negative autocorrelations. Getis and Ord Lo-
cal Index does not capture the presence of negative autocorrelations, while it
can distinguish clusters of high and low values. However, this study shows
that knowing if a label is part of a cluster of high/low value is subordinate to
knowing if the label is part of a cluster (positively autocorrelated with linked
labels) or if it is an outlier (negatively autocorrelated with a linked node).

Third, we analyze the influence of the connectivity threshold percentage
MinLinks%. We observe that the accuracy performance of CORENA is often
improved when augmenting the number of links over the network (i.e. when
increasing MinLinks%). In particular, CORENA with MinLinks% = 45%
outperforms CORENA with MinLinks% = 30% in 5 out of 8 trials with
VAR1 and LMI, 6 out of 8 trials with VAR2 and LMI, 4 out of 8 trials with
VAR3 and LMI, 4 out of 8 trials with VAR1 and GI*, 6 out of 8 trials with
VAR2 and GI* and 6 out of 8 trials with VAR3 and GI*. It is noteworthy
that augmenting the connectivity threshold percentage, more and more nodes
are linked to each other over the network. In any case, similarity-aware weights
are associated with the nodes, thus we are able to quantify the real strength of
the correlation between the linked nodes. Our study shows that learning by ac-
counting for weights associated with links allows CORENA to be robust in the
presence of possible links relating uncorrelated nodes. To complete the analy-
sis of how the network connectivity influences the learning process, we analyze
the ratio of the computation time of CORENA when MinLinks% = 45% to
the computation time of CORENA when MinLinks% = 30%. The results,
collected here for the several variants of CORENA, are plotted in Figures
2(a)-2(h). They show that the higher the connectivity over the network, the
slower, in general, the learning process. We can also observe that the magni-
tude of this trend changes with the network, but it is stable if analyzed either
along the variable schema or along the reliability measure. In any case, this
analysis highlights that the trade-off between accuracy and efficiency is an
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open issue in networked collective inference. The emerging research problem,
that requires further investigation in the future, is that of determining the
minimum connectivity over the network, in order to gain the highest accuracy
by spending the lowest computation time.

(a) LAB (b) NWE (c) MS

(d) MF (e) NOAA-clwvi (f) NOAA-pr

(g) Movies (h) VideoL

Fig. 2 Analysis of the computation time of CORENA along MinLinks%: the ratio of
the computation time of CORENA when MinLinks% = 45% to the computation time of
CORENA when MinLinks% = 30%.

Finally, we analyze the accuracy performance of CORENA compared to
that of both the baseline learner M5’ and the competitors NCLUS and CLUS.
Results show that there is always one variant of CORENA that performs
better than the baseline learner (without collective inference), as well as the
competitors. The only exception is the dataset NWE when the network is com-
puted with MinLinks% = 45%. In this case, all variants of CORENA perform
slightly worse than the base learner, although sligtly better than the competi-
tors. This analysis is confirmed by the results of the pairwise Wilcoxon signed
rank test reported in Tables 3 - 5, which compare the accuracy performance
of CORENA to that of M5’, NCLUS and CLUS. In particular, statistical test
results in Table 3 confirm that collective inference gains accuracy by improv-
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ing, in general, the base learner. On the other hand, results in Tables 4 and
5 show that CORENA is usually (statistically) better than its competitors
NCLUS and CLUS, especially when the variable schema VAR3 is used, in
order to construct the relational variables. This result is particularly interest-
ing for NCLUS, as this is the competitor that explicitly addresses a network
regression problem.

6 Conclusion

Many regression problems involve network data that exhibit the property of
autocorrelation. Techniques for collective inference allow us to naturally handle
the property of autocorrelation by increasing the learning accuracy in network
data problems. However, they usually require a fully labeled network and apply
to classification problems. On the contary, we address the problem of regression
and consider the case of sparsely labeled networks. This is an important task
as demonstrated by the use of real world datasets.

The network setting that we address is the transductive one. We use both
the descriptive and the target information of the labeled node set, the de-
scriptive information of the unlabeled node set, as well the link structure of
the network, in order to determine collectively the numeric targets of the un-
labeled part of the network. We describe an iterative convergence algorithm
that accounts for the property of autocorrelation in both the descriptive space
and the target space, in order to derive the link structure of the network,
synthesize new descriptive relational attributes and estimate the reliability of
the predicted targets. The regression model is iteratively learned from the la-
beled node set that is spanned on the descriptive space, augmented with the
relational attributes. At each iteration, the most reliable targets are injected
into the network and used to update the relational attributes associated with
them, as well as the regression model.

We evaluate the accuracy of our approach in an extensive set of real world
problems of network regression in the areas of spatial and social networks.
Empirical evaluation investigates the influence of the variable schema, the re-
liability measure and the link structure on the performances of the presented
algorithm. In addition, it compares the performance of our algorithm to that
of traditional regression algorithms (M5’, CLUS), which disregard the network
structure, as well as a network regression algorithm (NCLUS), which accounts
for network structure and autocorrelation as well. Results show that our algo-
rithm outperforms competitors, although our approach gains higher accuracy
when the relational attributes are computed by resorting to the frequency
aggregator (variable schema Var3) and the reliable targets are identified by
resorting to the Anselin Local Moran Index of autocorrelation (reliability mea-
sure LMI). Finally, we observe that the empirical evaluation reveals that
augmenting the number of linked nodes over the network generally produces
higher accuracy of predicted targets, although this at the expense of the time
cost.
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Several directions for further work still are to be explored. The trade-off
between accuracy and efficiency is an open issue that requires further investi-
gation, in order to apply this algorithm to big data problems. The link struc-
ture is actually determined according to a global, user-defined threshold. The
automated, local determination of this parameter deserves immediate atten-
tion. The local estimation should allow us to handle sparsely dense networks.
In a similar fashion, one might consider selecting an appropriate autocorrela-
tion measure for the reliability estimation, as well as an appropriate variable
schema for the relational attribute construction. Finally, it would be interest-
ing to investigate solutions of active learning when selecting the nodes to be
labeled over the network.
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Table 2 Average RMSE (estimated by inverse 10-fold CV): CORENA vs M5, NCLUS and
CLUS. Results for NWE are multiplied by 103. The lowest error is in bold. (*) denotes
the variable schema with the lowest error for CORENA, when both the reliability measure
and the percentage minLinks% are selected. ω denotes the similarity threshold as it is
computed by performing the grid search on the set of candidate thresholds with the selected
MinLinks%.
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Table 3 Pairwise Wilcoxon signed rank test comparing accuracy performance (RRMSE) of
CORENA to that of M5’. + means that CORENA is better than M5’ (i.e. WT+ > WT-),
- means that M5’ is better than CORENA (i.e. WT+ < WT-). (++) and (–) report results
in the case H0 (hypothesis of equal performance) is rejected at the 0.05 significance level.

CORENA MinLinks% = 30% MinLinks% = 45%
vs LM GI* LM GI*
M5’ Var1 Var2 Var3 Var1 Var2 Var3 Var1 Var2 Var3 Var1 Var2 Var3
LAB ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
NWE - - + - - + - - - - - -
MS - - + - - - - - + - - -
MF - + + - + + + - - + + -

NOAA-clwvi + + + + + + + + + + + +
NOAA-pr - - + - - - + + + - - +
Movies ++ - ++ ++ - ++ ++ ++ ++ ++ ++ ++
VideoL + + + + + ++ + + ++ + - ++

Table 4 Pairwise Wilcoxon signed rank test comparing accuracy performance (RRMSE)
of CORENA to that of NCLUS. + means that CORENA is better than NCLUS (i.e. WT+
> WT-), - means that NCLUS is better than CORENA (i.e. WT+ < WT-). (++) and
(–) report results in the case H0 (hypothesis of equal performance) is rejected at the 0.05
significance level.

CORENA MinLinks% = 30% MinLinks% = 45%
vs LM GI* LM GI*

NCLUS Var1 Var2 Var3 Var1 Var2 Var3 Var1 Var2 Var3 Var1 Var2 Var3
LAB ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
NWE + + ++ + + ++ ++ + + + + +
MS - – ++ - – ++ ++ ++ ++ ++ ++ ++
MF - + ++ - + ++ ++ ++ ++ ++ ++ ++

NOAA-clwvi ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
NOAA-pr ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
Movies ++ – ++ ++ – ++ ++ ++ ++ ++ ++ ++
VideoL - - + - - + + - ++ + - ++

Table 5 Pairwise Wilcoxon signed rank test comparing accuracy performance (RMSE) of
CORENA to that of CLUS. + means that CORENA is better than CLUS (i.e. WT+ >
WT-), - means that CLUS is better than CORENA (i.e. WT+ < WT-). (++) and (–) report
results in the case H0 (hypothesis of equal performance) is rejected at the 0.05 significance
level.

CORENA MinLinks% = 30% MinLinks% = 45%
vs LM GI* LM GI*

CLUS Var1 Var2 Var3 Var1 Var2 Var3 Var1 Var2 Var3 Var1 Var2 Var3
LAB ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
NWE ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
MS - - + - - + + + + + + +
MF - + + - + + + + + + + +

NOAA-clwvi ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
NOAA-pr ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
Movies ++ - ++ ++ - ++ ++ ++ ++ ++ ++ ++
VideoL - - + - - + + - ++ + - ++


