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Revisiting the out of Africa event
with a deep-learning approach
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Summary
Anatomically modern humans evolved around 300 thousand years ago in Africa. They started to appear in the fossil record outside of

Africa as early as 100 thousand years ago, although other hominins existed throughout Eurasia much earlier. Recently, several studies

argued in favor of a single out of Africa event for modern humans on the basis of whole-genome sequence analyses. However, the single

out of Africa model is in contrast with some of the findings from fossil records, which support two out of Africa events, and uniparental

data, which propose a back to Africa movement. Here, we used a deep-learning approach coupled with approximate Bayesian compu-

tation and sequential Monte Carlo to revisit these hypotheses from the whole-genome sequence perspective. Our results support the

back to Africa model over other alternatives. We estimated that there are two sequential separations between Africa and out of African

populations happening around 60-90 thousand years ago and separated by 13-15 thousand years. One of the populations resulting from

the more recent split has replaced the older West African population to a large extent, while the other one has founded the out of Africa

populations.
Introduction

Recent fossil record analysis suggests that Homo sapiens ap-

peared around 300 thousand years ago (kya) in Africa.1

This hypothesis is corroborated by genetic data,2 which

estimated the deepest split between modern human popu-

lations at a similar time point. Although fossil records

advocate the occurrence of multiple out of Africa (OOA)

events for modern humans,3 recent genetic studies re-

vealed that all modern non-African populations tested so

far fit a model with a single OOA event that happened

less than 100 kya.4–6 This conclusion indicates that earlier

OOA migrations, documented by archaeological records,

might have not left a substantial contribution to modern

human populations, with a possible exception of this

model suggested in Papuan populations (two out of Africa

model).7 While the single OOA model is generally sup-

ported by both autosomal and uniparental data,8–10 some

observations may reflect a more complex scenario. For

example, uniparental data show that most of the hap-

logroups found in OOA populations have a younger time

to the most recent common ancestor (tMRCA) than those

found in Africa, with the notable exception of the sister Y

haplogroups D and E. Haplogroup D can be found in iso-

lated populations in Asia (i.e., Andamanese, Tibetan, Japa-

nese, etc.), while haplogroup E is ubiquitous in sub-Sa-

haran African populations. These two haplogroups

coalesce together before coalescing with any other hap-

logroup found in OOA populations.10,11 This observation

might be explained by a back to Africa migration involving

a population harboring the haplogroup E10 or a simple out
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of Africa with haplogroup E remaining in Africa but hap-

logroup D and other OOA haplogroups coming out of Af-

rica together.12 Furthermore, some genetic analyses sug-

gest that the separation between Africa and OOA

populations might not be a single split event but rather

that it was constituted by structure and admixture between

populations.13–16

Testing these hypotheses (single out of Africa, back to Af-

rica, and two out of Africa) is challenging because of the

strong bottleneck of non-African populations,17–19 differ-

ential amount and source of archaic introgression,4,20,21

and several migrations within Africa.2,16 The lack of

ancient genomic data older than 15 kya22 from Africa

makes it difficult to address this issue from an ancient

DNA perspective. However, neural networks (NNs) have

been shown to be extremely powerful to disentangle

such complex scenarios.20

In the last few decades, the development of efficient and

powerful computing infrastructure allowed us to gain

substantial progress in the machine learning field, espe-

cially for computationally demanding algorithms such as

NN23,24 and Bayesian methods.25,26 NN has been demon-

strated to be a useful tool for specific types of tasks, such

as classification or natural language processing.23–25,27

However, NN requires a large amount of data as a training

set. In some cases, this limitation can be overcome via the

use of simulated data. Given that the modern tools allow

for efficient simulation of large sets of synthetic genetic

data,28,29 NN is already adopted in population genomics

for interpretation of the genomic data in terms of underly-

ing demography20,30,31 and positive selection.32,33
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However, unlike classical approaches, it is still challenging

to measure the significance of a prediction performed by

NN given that it is a black-box approach. Approximate

Bayesian computation (ABC) can be used to weigh the

accuracy of a NN-based prediction from the data

itself without knowing the maximum likelihood func-

tion.20,30,34 However, ABC may face the ‘‘curse of dimen-

sionality’’ problem when high dimensional input data or

summary statistics are used.35 It performs less efficiently

when the harnessed summary statistics do not capture

enough information. Here, we used NN to reduce the

dimensionality of the original summary statistics and to

produce highly informative secondary summary statistics,

which is used as input by ABC to perform statistical anal-

ysis. Sequential Monte Carlo (SMC, also known as the par-

ticle filter method)36 is used to recursively predict posterior

distribution from a prior. In every step, likelihood weight is

calculated for each prior sample. Low likelihood samples

are discarded, and new samples are resampled from a

continuous distribution. In classical SMC, higher probabil-

ity was given to newer samples, which have higher weights

in resampling steps. The likelihood weights are calculated

for all these samples and the cycle repeats until conver-

gence is reached. SMC has a strong resemblance to genetic

algorithms.37 It has been shown that ABC estimation can

be further improved by the use of SMC,38–40 but to date

they have not been used together with NN.

Here, we present an improved version of ABC-DL (approx-

imate Bayesian computation with deep learning)20 along

with ABC-DLS (approximate Bayesian computation with

deep learning and sequential Monte Carlo method), which

allows us to infer the most likely scenario among different

competing demographic models as well as to estimate their

parameter values with high precision. Our approach relies

on an NN trained on simulated genetic data under the

models being tested. However, it has three key improve-

ments compared to other similar approaches. First, the use

of the hdf541 data format and tensor flow42 allows for

extremely large training datasets. Second, the conventional

NN approach is improvedwith ABC, which helps to provide

statistical support for theNNprediction and to obtain poste-

rior distribution for the model parameter values. Third,

inspired by previous works,38 we applied a modification of

the SMC36 approach to iterate the whole procedure. This al-

gorithm improved the prediction accuracy substantially

compared to previously implemented methods.20,43 We

apply this method to test the three OOAmodels mentioned

above.
Material and methods

Real data
We have downloaded the high-coverage 1000 Genomes44 vcf files

producedby theCoriell Institute forMedical Research.We randomly

selected five individuals to represent Africa, Europe, and East Asia

originating at Yoruba from Ibadan, Nigeria (YRI), Utah residents

with European origin (CEU), and Chinese Han from Beijing (CHB)
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populations (15 individuals in total). As an alternative dataset, we

have also downloaded the high-coverageHumanGenomeDiversity

Project (HGDP) vcf files45 and randomly selected five Yoruba (YRI),

five French (FRN), and five Han Chinese (HAN) individuals repre-

senting Africa, Europe, and East Asia (Table S1). Unless mentioned

otherwise, the results presented here were obtained on the first data-

set. In order to avoid introducing any bias by the including only a

subset ofmixing archaichumansdue toavailabilityof suchgenomes

and mixing ancient genome with the modern humans, we decided

not to use any ancient genome. Moreover, it is suggested that both

Neanderthal and Denisova sequences, which are available, are

distantly related with the introgressed populations,46,47 suggesting

an even more complicated model. As our primary objective is with

the OOA event and to give all archaic populations the same treat-

ment (because African archaic populations are not yet sequenced),

they are treated as ghost populations in our simulations. We treated

eachdataset independentlyandkeptonlybi-allelic single-nucleotide

polymorphisms (SNPs) with genotype calls present in every individ-

ual and lifted thegenomicpositions toGRCh37coordinatesbyusing

Picard tools. Next, we used two alternative filtering approaches: (1)

filteringout genes andCpG islands (formoredetails, please seeMon-

dal et al., 201920) and (2) applying amappabilitymask coming from

SNPable13 for the 1000 Genomes dataset in Table S2. Filtering strat-

egy 1 will be preferable to 2 in the case that the information of

CpG islands andgenesare available. In theabsenceof those informa-

tion (for example non-human genetic data), our method can still

reproduce similar result with filtering strategy 2. All the filtering

was performed with vcftools and bcftools.48,49 The vcf file was con-

verted to joint unfolded site frequency spectrum (SFS) via an in-

house code with scikit allel.50 For unfolded SFS, we need to know

ancestral allele and derived allele for the real data (for simulation, it

is alreadyknown).Weused1000Genomeancestral allele alignments

of fasta files to polarize the alleles to ancestral and derived. When

ancestral allele information is not present for a given SNP, we have

removed that SNP from our analysis.

Genotype to site frequency spectrum
The SFS from the three populations (Africa, Europe, and East Asia)

was computed as a tridimensional tensor from the sequenced or

simulated data and further transformed into an array to be used

as input by the NN. SFS is the total number of segregating sites

for a given derived allele count present in each population.

SFSði; j; kÞ¼
Xn

m¼1

(
1; if s1 ¼ i and s2 ¼ j and s3 ¼ k:
0; otherwise:

Where i, j, and k are the numbers of derived alleles count per SNP

in pop1, pop2, and pop3, respectively, and n is the total number of

segregating SNPs.

The whole SFS was represented as a row. We multiplied all the el-

ements of the real SFS by a constant (frac) to make it comparable

with the length of simulated regions if those do not match. For

example, we multiplied the real SFS by 100/647 (or 0.1546) if we

simulate a 100 megabase pair (Mb) region per simulation and

the real data is coming from 647Mb region (after filtering). In gen-

eral, it is possible to use any summary statistics for our approach.

We used SFS for our choice of summary statistics because it is

straightforward to obtain and informative enough.17,51

Simulations
All the simulations were done in msprime.29 We simulated 100,

500, 1,500 or 3,000 1 Mb genomic regions per run (depending
ember 4, 2021



Table 1. Prior parameters range used for producing the site frequency spectrum (SFS)

Parameters OOA_S OOA_B OOA_M

N_A 5,000–25,000 5,000–25,000 5,000–25,000

N_AF 10,000–150,000 10,000–150,000 10,000–150,000

N_EU 10,000–150,000 10,000–150,000 10,000–15,0000

N_AS 10,000–150,000 10,000–150,000 10,000–150,000

N_EU0 500–5,000 500–5,000 500–5,000

N_AS0 500–5,000 500–5,000 500–5,000

N_B 500–5,000 500–5,000 500–5,000

N_BC N/A 500–40,000 N/A

N_AF0 N/A 500–40,000 N/A

N_MX N/A N/A 500–40,000

N_B0 N/A N/A 500–40,000

T_FM (ky) 2–5 2–5 2–5

T_FS (ky) 0.1–10 0.1–10 0.1–10

T_DM (ky) 10–50 10–50 10–50

T_EU_AS (ky) 5–30 5–30 5–30

T_NM (ky) 5–50 5–50 5–50

T_XM (ky) 5–120 5–120 5–120

T_Mix (ky) N/A 5–50 5–50

T_Sep (ky) N/A 5–50 5–50

T_B (ky) 5–270 5–220 5–220

T_AF (ky) 5–700 5–700 5–700

T_N_D (ky) 330–450 330–450 330–450

T_H_A (ky) 120–250 120�250 120–250

T_H_X (ky) 450–700 450–700 450–700

Mix (%) N/A 5–95 5–95

NMix (%) 1–3 1–3 1–3

DMix (%) 0–2 0–2 0–2

XMix (%) 0–10 0–10 0–10

FMix (%) 0–10 0–10 0–10

N/A means not applicable and ky means kilo or thousand years.
on the analysis step) for five individuals per population (African,

European, and East Asian). For each run, we used a uniform recom-

bination rate of 10�8 per base pair (bp) per generation (because SFS

is not affected by the local recombination rate52) and a mutation

rate of 1.45 3 10�8 per bp per generation53 while sampling demo-

graphic parameters from a uniform distribution within prior

ranges shown in Table 1. We also alternatively used a

mutation rate of 1.253 10�8 per bp per generation (only for Table

S3).54,55 We assumed generation time of 29 years.56 Most of our

simulations for SFS were done on multiple of 1 Mb regions, except

Table S4 (which was produced by multiple of 25 Kb regions) and

when we created mock SFS to test our DLS approach (simulation

parameters coming from Tables 2, S5, and S6). To make the

mock SFS similar to real data (which has a length of 647Mb region

after filtering), we simulated three 200 Mb regions and one 47 Mb

region together to create a single SFS under a givenmodel. We also
The American Jour
simulated on multiple of 25 Kb regions (Table S4) to check

whether the length of simulated regions can bias our result. 1

Mb regions were chosen for most of the simulated regions’ length

because it is faster to produce.

Inmsprime, admixtures were represented asMassMigration (the

fraction of a population replaced by another population in a single

generation). In contrast, constant migrations under island models

(where applicable) were represented as Migrationrate (the fraction

of recipient population replaced by migrants from another popu-

lation per generation).

The ABC-DLS analysis is efficient enough to be done on a single

computer. The main bottleneck of the whole approach is the pro-

duction of the simulated data. Msprime is fast, but the total

amount of data, which needs to be simulated for the NN, is some-

times difficult to produce on a single computer (especially for

parameter estimation). Thus, we have used a snakemake pipeline
nal of Human Genetics 108, 2037–2051, November 4, 2021 2039



Table 2. Posterior range for parameters of model B

Parameters Mean CI Events (kya)

N_A 14,526 14,404–14,595 N/A

N_AF 26,436 25,535–28,595 N/A

N_EU 94,437 88,320–104,955 N/A

N_AS 127,071 112,953–138,256 N/A

N_EU0 1,838 1,794–1,922 N/A

N_AS0 760 739–776 N/A

N_BC 16,744 11,108–26,850 N/A

N_B 2,026 1,984–2,096 N/A

N_AF0 35,773 33,296–38,019 N/A

T_DM (ky) 18 17.7–18.4 18 (17.7–18.4)

T_EU_AS (ky) 15.1 14.7–15.6 33.1 (32.5–33.6)

T_NM (ky) 5.2 5–5.8 38.3 (37.6–39)

T_XM (ky) 15.7 14.5–16.3 48.7 (47.6–49.8)

T_Mix (ky) 15.1 14.1–16.5 48.2 (46.8–49.5)

T_Sep (ky) 9.8 8.6–11.3 57.9 (56.1–59.8)

T_B (ky) 13.4 12.7–13.7 71.3 (69.4–73.3)

T_AF (ky) 200.4 197.2–202.1 271.7 (268.6–274.8)

T_N_D (ky) 448.1 442–450.9 448.1 (442–450.9)

T_H_A (ky) 248.1 240.6–252.1 696.2 (688.9–703.4)

T_H_X (ky) 675.9 648.5–700.9 675.9 (648.5–700.9)

Mix (%) 91.14 90.28–91.57 N/A

NMix (%) 2.99 2.95–3 N/A

DMix (%) 0.67 0.61–0.72 N/A

XMix (%) 5.29 4.02–6.22 N/A

CI is the confidence interval of 2.5%–97.5% of respective parameters. ky means kilo years and kya means kilo or thousand years ago from now. ky here represents
the time interval of the event and kya represents the estimated time that event happened from now. The relation between events and time intervals can be found
in Table S10. N/A, not applicable.
to produce the SFS on the cluster.57 All the simulations with corre-

sponding parameters were saved in a comma-separated value

(CSV) file, which was then used by different approaches (approx-

imate Bayesian computation via random forest [ABC-RF], ABC-

DL, and ABC-DLS).
ABC-DL
Wehave implemented an improved version of ABC-DL20 (here on-

ward, we call this implementation DL, and the implementation

that additionally uses SMC [called DLS] is described below) by us-

ing state-of-the-art machine learning packages in python.We used

TensorFlow with Keras backend42 for building the NN and abc

package for implementing ABC.58 The use of hdf5 format41

enabled us to analyze the whole dataset without loading into

the memory. This allows us to train the NN on extremely large

simulated datasets.

Parameter estimation with DL

Here, we describe parameter estimation by using NN and ABC. We

ran a total of 60,000 different simulations, each producing 3,000

of 1 Mb regions (3 Gb [gigabase pair] in total, roughly equal to
2040 The American Journal of Human Genetics 108, 2037–2051, Nov
the length of the human genome). Every line of the NN input is

one such simulation performed under a given demographic model

with the columns representing SFS elements and the parameters

used for that simulation are used as known output. We ran param-

eter estimation by using this information and retrieve the param-

eters predicted on observed data for a given model. We used the

known parameters as output for training the NN (y), and we

used the SFS as input (x). Thus, we can think of the NN as a

non-linear model for predicting the parameters from the SFS. We

kept out 10,000 random lines for the testing dataset and ABC anal-

ysis, and the rest were used for training the NN. Both SFS and

parameter values were normalized per column with MinMax

scaler (from scikit-learn)59 so that each data entry is within

0 and 1.

We used four hidden layers of a dense NN (Figure S1) with acti-

vation relu (from Keras package). These are basic building blocks

for NNs. We used the linear layer (from Keras package) for the

output layer with the same number of units as the number of pa-

rameters. We used the masking layer (from Keras package) at the

beginning to remove cells with zero values from the learning algo-

rithm. This was done so that NNs do not learn the absence of data.
ember 4, 2021



Then we used Gaussian noise injection (from Keras package) of

0.05 to introduce some noise (Figure S1) to reduce overfitting

because this will force the NN learn the true parameters even

though the SFS is slightly distorted (or noisy). We used logcosh

as a loss function and Nadam for the optimizer (both from Keras

package). Although we have used other more classical approaches

(i.e., mean square error, stochastic gradient descent, etc.), we

found this combination to be better suited for our approach.

The NN ran through the training dataset several times (epochs)

to increase accuracy. We used EarlyStopping (from Keras package)

on loss coming from validation dataset with the patient of 100.

This stopped the epoch cycle in case there was no improvement

for the last 100 epochs (meaning the NN reached a convergence

for the current data). We used the ModelCheckpoint (from Keras

package) of the lowest loss result on validation data, as the last

epoch is not guaranteed to have the lowest loss on validation

data. We also used ReduceLROnPlateau (from Keras package) of

factor 0.2 to reduce the learning rate if we reached minima for

several epochs (ten by default). Learning rate too low at the start

makes the NN learn slow, but in the later stage, high learning

rate performs worse than lower learning rate.

After training is done, we used the testing dataset to predict the

parameter from the SFS, which was then used for cross-validation

tests and parameter prediction via loclinear from ABC58 with the

tolerance of 0.01. The whole approach is presented in a flowchart

(Figure S2).

Model selection with DL

Here, we describe model selection by using NN and ABC. Unless

stated otherwise, we simulated 2,000 simulations for each of the

three demographic models tested (see full description of demo-

graphic models below). We simulated all the models for 3 Gb re-

gions to make it equal for different approaches and finally scale

the real data accordingly. This approach is preferable because we

can train the NN only once for different length of real data. To

test whether our scaling approach and the length of simulated

region are not creating any biases, we also simulated an only

647 Mb region (equal to our filtering strategy 1) with the multi-

ple of 25 Kb regions without using scaling in Table S4. The re-

sulting CSV files (one per model) are used together as input

for model selection. Model selection was repeated ten times

both for DL and DLS. We found that if the results have high ac-

curacy (posterior probability on observed data is >95% for the

correct model), all the ten runs are essentially equal (which is

expected).

We used SFS as input (x) for the NN and the model category as

output (y) and removed the parameters values because they are

not needed for this step. We used MinMax scaler from sklearn59

only on the SFS data as above, and the names of the models are

converted to one-hot encoding by pandas.Categorical (from

pandas package) and Keras.utils.to_categorical (from Keras pack-

age). After concatenating files coming from all the competing

models, we shuffled the rows by a custom code.60 We left out

around 1,000 random rows per model to test the power of NN

(as a testing dataset) and for ABC analysis and used the rest to train

the NN (as a training dataset). The rest of the approach is as

described above (see parameter estimation with DL). We also

tested these models with a much higher number of simulations

(50,000 for training and 10,000 for testing and ABC analysis),

but because we did not find any substantial differences in the re-

sults, we used 2,000 simulations (1,000 for training and 1,000

for testing and ABC analysis) per model throughout this study.
The American Jour
We used two hidden layers of the dense NN with the activation

relu (Figure S1). We used the softmax layer (from Keras package)

for the output layer with the same number of units as the number

of trained models. We added the masking layer and a noise injec-

tion layer as above. We used a 1% dropout layer (from Keras pack-

age) within every dense layer to make it more robust. We used cat-

egorical_crossentropy for the loss function and adam for the

optimizer (both from Keras package).

After the training was done, we used the testing dataset to pre-

dict models from the simulated SFS, which we then used to

perform the cross-validation test by using ABC with the tolerance

of 0.033 (which converts to 100 samples) in case of three models

and 0.0066 (which converts to 100 samples) in case of 15 models

via rejection (from abc package). We applied the model selection

by abc.postpr (from abc package) to the real data. See a schematic

representation in Figure S2.
ABC-DLS
Our implementation of the ABC-DLmethodwas further improved

by using the SMC approach,36 which opens up a new way to make

inferences for similar cases (here onward, we call this implementa-

tion DLS). Although SMC has lots of different implementation

and can be quite complex, we used a simpler version of SMC

here. In our implementation, we only selected the top 5% of

best samples coming from every cycle of ABC and discarded the

rest. The ranges of the parameter values were estimated from these

top samples and new samples were drawn from the uniform distri-

butions for these new posterior ranges. To introduce mutations in

the algorithm, we increased the posterior range by 1% in every cy-

cle. As a result, the simulated SFS, which is used as input for the

NN, becomes more and more similar to real or observed SFS with

every iteration of the algorithm.

Parameter estimation with DLS

This method uses the standard parameter estimation strategy of

DL (described above) together with the modified SMC algorithm

used for recursion.

For parameter estimation, we used the rejection method in ABC

with a tolerance of 0.05 as the rejection method always generates

posterior within the prior range. We obtained the posterior range

by taking the minimum and the maximum values from the ABC

output. This range was then used as a prior range for the next iter-

ation. This cycle is repeated until decrease for all parameters is

more than 0.95, suggesting it has reached convergence.

decrease¼ Posteriormax � Posteriormin

Priormax � Priormin

If the decrease is more than 95% for a parameter, the new posterior

estimation is rejected for that parameter. Instead, we take the prior

range of this step, expand it by 1% of its width and use it as a prior

again. We used this strategy to prevent the posterior from shrink-

ing or collapsing unless NN has found some accurate prediction

for the parameter (decrease < 95%) and reduces the probability

of missing the correct parameter value due to stochastic effect in

a single cycle.

Posteriormin ¼ Priormin � ðPriormax � PriorminÞ31%

2

Posteriormax ¼ Priormax þ ðPriormax � PriorminÞ31%

2
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A B C

Figure 1. The simplistic schema of the models
(A–C) Simple out of Africa (model S) (A), back to Africa (model B) (B), and out of Africa mixed (model M) (C). Please consult Table 1 for
more details of time parameters (in y axis)and Table S10 for the interdependencies of those parameters. AFR is African, EUR is European,
and ASN is East Asian. X is African archaic, N is Neanderthal, and D is Denisova.
Simulations from every step were stored and re-used in subsequent

cycles if their parameter values fell inside the new prior range. A

flow chart of this strategy can be found in Figure S2C.

We used 10,000 simulations as a training dataset and 10,000

simulations for testing. The NN model is exactly as before (as

used in DL, Figure S1). To make it more efficient, we started with

simulating a total length of 100 Mb (each simulated region being

1 Mb long), and then we increased the total length stepwise (i.e.,

0.5, 1.5, and 3 Gb). The priors for 100 Mb regions are the same

as presented in Table 1. The final posterior (after convergence

reached) of the run with 100 Mb is used as a prior for 0.5 Gb simu-

lation and so on. We multiplied the observed SFS by frac accord-

ingly to scale it to the simulated region length.

After the convergence was reached with 3 Gb in total, we final-

ized by running 50,000 training and 10,000 testing simulations

with the DL method by using loclinear (from abc package) with

the tolerance of 0.01. The flowchart of the method is represented

in Figure S3.

Model selection with DLS

Here, we describe model selection by using NN, ABC, and SMC

together. In principle, we can directly use the final output of the

parameter estimation procedure by DLS for every model and

then use it for the ABC classification approach. However, this

approach would be inefficient given that only one model is true

for our real dataset, and thus spending considerable resources to

optimize parameters for unlikely scenarios does not make sense.

Instead, we used the output of 100 Mb parameter optimizations

from the DLS approach as a prior to every model, and then we

used the model selection strategy of DL, as mentioned before. In
2042 The American Journal of Human Genetics 108, 2037–2051, Nov
other words, we first optimized the parameters for each model

class by using 100 Mb of simulated sequence and then compare

the different models between each other. We found out that we

already have enough power to distinguish between models by us-

ing 100 Mb of total simulated sequence for most of the cases,

except Table S7, where we used 500 Mb regions for optimization.

ABC-RF
We tested the real SFS against the three simulatedmodels by using a

similar ABC approach but with random forest61 (here onward, we

call this implementation RF) as an inferential tool implemented

in the abcrf R package.43,62 First, we trained our model by using

the bagging method applying the function abcrf, with no linear

discriminant analysis, and 2,000 decision trees by using 1,000 sim-

ulations for each tested model. We then evaluated the performance

of ABC-RF through a cross-validation dataset composed of 1,000

simulations for each tested model by using the function predic-

t.abcrf. The same function and settings were used for inferring the

best-supported model with the SFS obtained from real data

described above. We performed parameter estimation for the most

supported scenario applying regression as implemented in the re-

gAbcrf model by using 1,000 decision trees. Each parameter was in-

ferred separately. Similar to DL and DLS approaches, the whole pro-

cedure has been repeated ten times for model selection.

Demographic models
Simple out of Africa (model S)

In this simulation model, we have modeled a simple OOA event

(Figure 1A) closely following Gravel et al.,19 except the migration
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rates are set to zero. All the main results were used without any

migration rates, but we also tested models with migrations some-

times. When we simulated a model with constant migrations, we

tried both a symmetrical migration matrix as in Gravel et al.19 (Ta-

ble S8) and a nonsymmetrical one (Tables S9 and S10).

Back to Africa (model B)

In this model, the basic OOA model still holds and additional

changes required for the back to Africa migration (Figure 1B) are

added. The basic idea was drawn from Poznik et al.10 In this sce-

nario, the basal out of Africa population splits into back to Africa

and OOA at T_Sep generations ago before the split between Euro-

pean and Asian populations (so that T_Sep is between T_B [the

time of separation between Africa and OOA] and T_EU_AS [the

time of separation between Europe and Asia]). Next, the back to

Africa population migrated to Africa having an effective popula-

tion size of N_BC andmixed with the ancestral African population

at T_Mix generations ago with a mixing proportion of mix (the

portion of ancestral African ancestry replaced). After the admix-

ture, the effective population size of the African population is

changed from N_AF0 to N_AF.

Mixed out of Africa (model M)

This model (Figure 1C) is similar to model S and has an additional

population M separating from the African population T_Sep gen-

erations ago (again between T_B and T_EU_AS) and having an

effective population size of N_MX. M mixed with OOA at T_Mix

generations ago, and mix is the proportion of OOA ancestry being

replaced byM. After the admixture, the effective population size of

OOA is changed from N_B0 to N_B. The basic idea came from two

OOA hypothesis.7

Recent admixture in Africa (model R)

As an alternative hypothesis, we also simulated a recent admixture

model for the African population. After the OOA population had

separated from the African population, the latter splits into two

sub-populations in AF1 and AF2 with effective population size of

N_AF1 and N_AF2 at T_Sep generations ago. At T_Mix generations

ago, these two populations admixed with each other so that a frac-

tion of AF1 equal to mix is replaced by AF2. After the admixture,

the effective population size of the African population becomes

the modern effective population size of Africa. We have not simu-

lated Neolithic farmer migration from Europe for this scenario.

Other migrations as prior

We also added some pulse migrations or admixtures proposed by

different studies on top of these basic models. We simulated

OOA to have introgression from Neanderthal63 at T_NM genera-

tions ago with the proportion of NMix. After the separation be-

tween Europeans and East Asians, the East Asian population has

an introgression from Denisova47,64 or an unknown archaic pop-

ulation20 at T_DM and the amount is DMix. Neanderthal sepa-

rated from Denisova or the unknown population around T_N_D

generations ago, and Neanderthal-Denisovan lineage separated

from the modern human lineage T_H_A generations ago.65,66

The African population also has introgression from another un-

known archaic population,16,67,68 which introgressed at T_XM

generations ago with the proportion of XMix. This unknown pop-

ulation separated from modern human lineage around T_H_X

generations ago. We observed that our method is incapable of

finding the effective population size for any archaic population

(most likely because we did not use any ancient genome in our

real data). Thus, we assumed them to be equal to N_A (ancestral

effective population size). We also simulated Neolithic farmers,

which separated from Europeans around T_FS generations ago

with effective population size of N_A and admixed with the Afri-
The American Jour
can population around T_FM generations ago with the proportion

of Fmix.69

For some events, their order is fixed (for example, the separation

of European and Asian populations can only happen after the

Neanderthal introgression on the basis of our prior assumption)

and is described in Table S11.
Relate
We used Relate v.1.1.4,14 a method for inferring local trees, to vali-

date our parameter estimates. Relate uses branch length of the

local trees to estimate coalescent rate through time.14 Thus, we

used it to compare effective population size trajectories and in-

ter-population coalescent rates for the African, European, and

East Asian populations between the real and simulated data. We

applied Relate to YRI, CEU, and CHB samples (108, 99, and 103 in-

dividuals, accordingly) from the high-coverage version of the 1000

Genomes project as well as to genetic data simulated under each of

the three models with optimized parameters (Tables 2, S5, and S6).

For real data, chromosome 1 was used and a region of the same

length was simulated.

We started with 2,054 high-coverage genomes from the 1000

Genomes Project. We kept positions that (1) are bi-allelic SNPs,

(2) pass the 1000 Genomes filters and have the value of the QD

(quality by depth) parameter above two and (3) have a missing

rate below 10%. We phased and imputed the entire dataset by us-

ing Eagle version 2.4.1.70 Next, we ran Relate on chromosome 1

for samples coming from the three focal populations. We used

the GRCh38 recombination map, 1000 Genomes strict genomic

mask, and a mutation rate of 1.45 3 10�8 per bp per generation.

Next, we ran the effective population size estimation module of

Relate for each population individually to obtain the effective

population size trajectories and for population pairs to obtain

the cross-coalescence rates.

For each model, we simulated a region of the same length as

chromosome 1 with uniform recombination together for 100 Afri-

can, 100 European, and 100 East Asian individuals by using

msprime.29We used the 1000Genomes strict mask for consistency

between real and simulated data in terms of the length of the avail-

able sequence. After that, the simulated data were treated as

described above.

We estimated effective population size for both real and simu-

lated data as 1/2C, where C is the inferred intra-population coales-

cence rate. To estimate the relative inter-population coalescence

rate, we used the following formula:13

C012 ¼ 23C12

C11 þ C22

;

where C11 and C22 are intra-population coalescence rates and C12

is the inter-population coalescence rate.
Comparing mutation age distribution between the

simulations and real data
Relate estimates branch length in generations for the inferred trees

and thus allows us to obtain tMRCA for any given mutation map-

ped to a specific tree branch. This value for a given mutation may

differ between populations, reflecting the history of the spread of

the mutation. A joined distribution of mutations’ tMRCA in two

populations may reflect the complex history and interactions be-

tween the two populations through time. Thus, we compared

such two-dimensional tMRCA distributions obtained from the

real genomes and from the genomes simulated under the
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demographic models tested (Neanderthal, Denisova, and Africa

archaic introgression with the above three models [BNDX,

MNDX, and SNDX] parameters coming from Tables 2, S5, and

S6, respectively) for each of the three population pairs (CEU-YRI,

CHB-YRI, and CEU-CHB). We first did a log10 transformation of

the tMRCA values (Figure S4) and then did a kernel density estima-

tion for each dataset (real, BNDX, MNDX, and SNDX) and each

pair of populations to obtain a matrix of a two-dimensional distri-

bution of allele ages. For the density estimation, we used the kde2d

function from the MASS R package setting n (number of grid

points) to 100. Next, we subtracted such a matrix obtained for

the real data from each of the simulation matrices. Together

with the distribution of this difference, we report the root-mean-

square deviation between the two matrices.

RMSD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

d2
i

vuut ;

where di is the difference between the value in the ith cells of the

matrix for the simulated and real distribution and N is the number

of cells (100 3 100). Lower root-mean-square deviation (RMSD)

value indicates less deviations between the tMRCA distribution

of real and simulated data (Figure S5).

We also report the standard error of this value obtained by

applying a jack-knife method by iteratively masking out a 50 Mb

long region of the sequence (between 1 and 246 Mb of the

GRCh38 reference sequence for chromosome 1 to avoid telomere

regions with a high fraction of N bases) in a non-overlapping

sliding window manner and calculating RMSD on the remaining

non-masked sequence, resulting in five values.
Results

ABC-DLS

The general workflow for ABC-DLS (both for model selec-

tion and parameters estimation) includes the following

steps. First, we simulated29 multiple genetic datasets for

each tested model by using demographic parameters

sampled from a uniform distribution within prior ranges

(Table 1). Next, we computed the SFS from these data and

split the data into a training and a testing subset. We then

trained the NN (implemented via TensorFlow with Keras

backended42) on the former dataset to either select between

demographic models or to estimate the demographic pa-

rameters. The resulting NN is applied to the testing dataset

as well as to the observed summary statistics data (see below

as well as material and methods for more details). Next, we

applied ABC to estimate support for the NN prediction on

the observed data by comparing theNNprediction outcome

between the observed data and the testing dataset (see ma-

terial and methods, Figure S2, and also our previous paper20

). Finally, in cases when SMC is used, we essentially iterated

the parameter estimation step by SMC.We kept the top five

percent (equal to the tolerance level) of simulations from

the testing dataset that best match the observed data. We

then used the parameters of those simulations to update

our prior range and sent it for next iteration until conver-

gence was reached (Figures S3 and S4).
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Before testing our primary hypothesis on real sequence

data, we tested whether our approach (DLS) can reproduce

the known results. The predicted parameters for real

sequence data (see below for more details) are consistent

with previous works from the literature17,19,71(Table S7).

We also tested our method on simulated data with known

parameters under various models (model S, B, and M, see

below for more information; simulation parameters com-

ing from Tables 2, S5, and S6) and found that our approach

with SMC correctly predicted the model in all the cases

tested, suggesting it can find the correct model. Also, our

method can infer the parameter values with high accuracy

when the correct parameter values are known and coming

from a mock observed SFS (Table S12).

Model selection

To test our hypothesis, we simulated three OOA models,

simple model (model S), back to Africa model (model B),

and mix model (model M), and all the models had intro-

gression fromNeanderthal to all OOA populations,63 Deni-

sova or unknown to Asia,20,47,64 African archaic to Africa,16

,67,68,72 and European Neolithic farmers to Africa69 (NDXF)

(see material and methods for more details, Figure 1 and

Table 1).We used the 1000 Genomes Project high-coverage

genomes44 (see material and methods for more details) of

five Yoruba (African), five Utah residents with Northern

and Western European ancestry (European), and five Han

Chinese (East Asian) individuals as our real dataset. Next,

we used three different methods to choose between the

competing models: (1) RF that combines random forests

with ABC;43 (2) NN and ABC together (DL), which is an

analogous but improved version of our previously pub-

lished method, ABC-DL;20 and (3) the method introduced

here, DLS, which expands the DL method with SMC.

Although all three methods identified the back to Africa

model as the most probable one, the prediction certainty

varied between methods (Tables 3 and 4). Both DL and

DLS returned >95% probability for model B although RF

gave lower support.

The DLS results were reproduced under different data

filtering strategies, different datasets (Table S2), and

different total length with different per block length of

simulated regions (Table S4). We also tested whether our

assumption of pulse migration events (three archaic intro-

gression scenarios and recent migration of Neolithic

farmers) could affect our inference. We tested different

models with (1) no introgression and no farming migration

(NI), (2) Neanderthal and Denisova introgression (ND), (3)

Neanderthal, Denisova, and Africa Archaic introgression

(NDX), and (4) Neanderthals and Denisova introgression

with farming migration (NDF) using only DLS. Except for

the no introgression model (Table S13), we always found

the back to Africa model to be supported over simple and

mix out of Africa models. When we compared all these 15

models together ([B, M, S] 3 [NI, ND, NDX, NDF, NDXF])

by using DLS, the back to Africa model with Neanderthal,

Denisova, and African archaic introgression (BNDX) is
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Table 3. Cross-validation via different approaches on simulated
data

OOA_B OOA_M OOA_S

RF

OOA_B 92.85% 1.84% 5.31%

OOA_M 2.69% 84.71% 12.60%

OOA_S 6.17% 15.38% 78.44%

DL

OOA_B 88.03% 2.54% 9.43%

OOA_M 3.43% 77.78% 18.79%

OOA_S 5.78% 15.69% 78.52%

DLS

OOA_B 99.09% 0.00% 0.91%

OOA_M 0.00% 99.98% 0.02%

OOA_S 1.25% 0.30% 98.45%

Confusion matrix for misclassification is reported here via RF (random forest),
DL (only neural network), and DLS (neural network and sequential Monte
Carlo together) for random samples from the models with ABC.
supported over all other possibilities (P(BNDX|data) ¼ 0.86)

(Table S14). The model with Neolithic farming migration

has a lower support (P(BNDXF|data) ¼ 0.14). Both RF and

DL were incapable of differentiating between these models

as precisely as DLS (Tables S15 and S16). We further tested

these two models (BNDX and BNDXF) with more precise

priors by using more simulated data (see material and

methods for more details) via DLS and rejected European

Neolithic migration to Africa (Table S10). This result not

only demonstrated the robustness of our inference for

back to Africa but also independently supported other as-

sumptions (except Neolithic migration) that were

reported before, but not all of them were confirmed

together.16,20,47,63,64,68,69 In addition to the 15 models

described above, we also tested the recent admixture model

(model R), which adds a split and follows admixture within

Africa, both happening after the separation of theOOApop-

ulation on top of the simple out of Africa model. Thus, both

our best back to Africa (BNDX) and recent admixture

models represent the modern African population as a result

of admixture of two components and the main difference is

those separations happened before or after OOA population

separation. Based on our results model, back to Africa better

fits the data compared to recent admixture (Table S17).
Parameter estimation

After demonstrating that back to Africa (BNDX) best ex-

plains the real data, we used the three methods described

above (RF, DL, and DLS) to estimate the model’s parame-

ters. The confidence intervals (CIs) returned by DLS are

much narrower than those of the alternative approaches

(Tables 2, S18, and S19). Hence, all the results discussed

below are the ones obtained with DLS (Figure 2).
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Our inference suggests that first there was a separation

between the ancient African population and a population

ancestral to both back to Africa and the actual out of Africa

populations (basal out of Africa) around 71.3 (CI 69.4–

73.3) kya. This event was followed by a split between

back to Africa and OOA 57.9 (CI 56.1–59.8) kya and an

admixture between ancient African and back to Africa

48.2 (CI 46.8–49.5) kya. The Neanderthal introgression

to OOA happened much later, 38.3 (CI 37.6–39) kya, sug-

gesting that this back to Africa migration cannot explain

the Neanderthal ancestry found in modern African popu-

lations.69 Our method predicted the admixture proportion

from back to Africa to be as high as 91% (CI 90.28–91.57),

suggesting a massive replacement of the ancient African

population.

To independently validate our results, we compared

effective population size trajectories and cross-coalescent

rates obtained by applying Relate32 to real data as well as

to data simulated under each of the three models with

the mean posterior parameters (Tables 2, S5, and S6) pre-

dicted by DLS.14 We observe a close match between the es-

timates for the real data and our best model (Figure 3),

which suggests our parameter estimation to be accurate.

This similarity is particularly interesting given that we

have not used any linkage disequilibrium (LD)-based sum-

mary statistics to optimize those parameters. On the other

hand, neither the effective population size trajectory nor

the cross-coalescent rate over time is informative enough

to differentiate between these three models (data not

shown). Specifically, the gradual separation between Afri-

can and OOA populations, which was shown before with

Relate and similar methods,13,14 cannot be directly ex-

plained by the back to Africa or two out of Africa migra-

tion, as such gradual separation is also observed in our

model S (Figure S6). However, the two-dimensional tMRCA

distributions of mutations in population pairs (CEU-YRI

and CHB-YRI) coming from Relate analysis best matches

the distribution of the back to Africa model with lower

RMSD value than other alternatives when comparing

with real data (Figures S4 and S5).
Discussion

We here demonstrated that the ABC analysis can be sub-

stantially enhanced by using NN coupled with the SMC

approach. Our methodology is suitable to test many hy-

potheses that can be simulated but cannot be extensively

tested by other methods, especially for scenarios of admix-

ture from ghost populations where the ancient genomes

are unavailable and can accommodate any kind of sum-

mary statistics. Our model selection shows it can easily

reach close to 100% accuracy in cross-validation steps

with few simulations (2,000 samples), suggesting it can

be used for testing much more complicated scenarios. We

also found that our parameter estimation has high preci-

sion (most of the events have confidence interval width
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Table 4. Model selection via different approaches on real data

OOA_B OOA_M OOA_S

RF 66.00% 16.40% 17.60%

DL 100.00% 0.00% 0.00%

DLS 100.00% 0.00% 0.00%

Posterior of votes for RF (random forest) and posterior model probabilities for
DL (only neural network) and DLS (neural network and sequential Monte Carlo
together) are reported here via the real data.
below 5,000 years), which can directly complement with

the radiocarbon dating. In this study, we used SFS as sum-

mary statistics because it is effortless to calculate and has

sufficient information.17,51 Our results might be further

improved by use of some LD-based summary statistics,67,

73 but we opted out because they are computationally

demanding to produce and the improvement in the result

is minimal (at least for the tested scenario). As we use SFS as

our choice of summary statistics, our method is not

affected by local recombination rate.52 Applying two

different filtering strategies (see material and methodsfor

more details) gave similar results, suggesting that our strat-

egy is quite robust to the choice of the genomic regions to

be analyzed.

In our models, we have not adopted any constant mi-

grations between populations, although our approach

can incorporate it. This is because we found out that

our approach (parameter estimation via DLS) predicted

non-zero migration rates when we used mock observed

summary statistics data coming from a pulse migration

model with no constant migrations and demographic pa-

rameters coming from mean values of Table 2 (Tables S9

and S10). This suggests that models including constant

migrations may lead to equifinality as proposed by
2046 The American Journal of Human Genetics 108, 2037–2051, Nov
others74 and/or that our approach is imprecise for esti-

mating them.

Our results also comply with Y chromosome phylogeny

and support back to Africa as proposed before.10 However,

our estimated time of separation between populations is

much younger than what is reported for the Y chromo-

somes. One explanation might be that we used a slightly

higher mutation rate (1.45 3 10�8 per bp per genera-

tion)53 instead of a slightly slower alternative (1.25 3

10�8 per bp per generation).54,55 When we used the slower

mutation rate, our estimation for most of the events time

increased (Table S3). Indeed, the separation time between

back to Africa and OOA populations corresponds to 72.8

(CI 72.4–73.3) kya, which is close to the estimate of tMRCA

between haplogroups D and E (72 kya10).

Although back to Africa is preferred over other alterna-

tives in most of the cases, considering no introgression as

an option (NI) supported mixed out of Africa over other

models (Table S13). This result might be a side effect of

the Neanderthal introgression in OOA. Under certain con-

ditions (i.e., older separation time between Africa and

OOA [T_B]), mixed out of Africa model with no introgres-

sion and simple out of Africa with Neanderthal introgres-

sion are comparable (Neanderthal population behaves like

the first OOA population in this scenario). However, this

model was rejected when compared with other more com-

plex models (Table S14). This false result suggests a

possible drawback of our method as different demo-

graphic histories can give similar SFS patterns, which

can bias our interpretation if demographic histories were

not incorporated in the model correctly52 and also advo-

cates for the importance of parameter estimation because

it can give insight for the choice of selected model (espe-

cially if it does not match with the prior knowledge),
Figure 2. Schematic of inferred demog-
raphy
Model B with onlymean posterior. K is kilo
years ago, AFR is African, AA is Ancestral
African, EUR is Europeans, ASN is East
Asian, and XAFR is African Archaic. Black
boxes represent mean posterior of separa-
tion time between populations. Thickness
of the lines represent effective population
size of their respective population
although they are not according to scale.
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A

B

Figure 3. Effective population size tra-
jectories and coalescence rates over time
(A and B) Here, we compare effective pop-
ulation size (A) and relative cross-coales-
cence rates (B) estimated by using Relate
between the real and data simulated under
the model B. (A) x axis in kya (kilo years
ago) and y axis is the effective population
size for corresponding populations pre-
sented in the inset. Both axes are in log
scale. (B) x axis is in kya and y axis shows
the relative cross coalescent rate for corre-
sponding populations pairs presented in
the insert. x axis is log scale.
which then can suggest more complicated scenarios to

test.

The separation times between Homo sapiens and archaic

populations are slightly older (877 [CI 773.1–982.3] kya for

human and Neanderthal lineage divergence and 1,073.7

[CI 1,032.7–1,117.5] kya for human and African archaic)

than those previously inferred63,66–68 if we used a loose

prior of 400–1,600 kya (Table S20). These deviations were

not reproduced when we used simulated summary statis-

tics generated under known parameters from Table 2.

This may be specific to real sequence data and might be a

side effect of some of our assumptions (for example,

some unknown interactions between these populations

that was not modeled here65) or systematic biases due to

the use of European reference genome75 or recent changes

of generation time or mutation rate per generation.76,77

These results were obtained without using the ancient

genome at all in our real SFS data to reduce any chances

of bias. It would be interesting to revisit these results after

incorporating ancient genome directly in our analysis.

We did not find support for a model of European

Neolithic migration to West Africa, which was proposed

recently.69 We have to caution that our result is only true

for the Yoruba population. As sub-Saharan African popula-

tions have quite diverged ancestry, this is not representa-

tive of the whole sub-Saharan African population. None-

theless, our back to Africa model also fails to explain

Neanderthal sequence identified in Yoruba. Even if we as-

sume this migration has happened (model BNDXF), our

predicted amount of migration is as low as 2.4% (Table

S21), which results in the average total length of Neander-

thal sequence in Yoruba to be less than 5 Mb as opposed to

17 Mb reported by Chen et al.69 This suggests that most of
The American Journal of Human Genetics 1
the Neanderthal regions found in

Yoruba should be explained by some

other migration(s) (for example from

human to Neaderthal65). Alterna-

tively, Neolithic farmers’ contribu-

tion might be so low on West African

populations that our approach with

the current format (with SFS as sum-

mary statistics) fails to detect it.

We chose Yoruba, European, and
East Asian population as a representative population set

to test the OOA model because they are quite well studied

and show relatively less recent admixture than other pop-

ulations (for example, South Asian, East African, or Cen-

tral Asian, etc.), which makes our model relatively simpler

than other alternatives. Although back to Africa is better

in explaining the real data, there might be more compli-

cated models characterized by additional migrations and

admixture that better explain the observed data. We

have tested the two out of Africa model under the mixed

out of Africa model, but it is not thorough enough

because we have not used the populations that are

assumed to have a contribution from the first OOA popu-

lation.7 It will be interesting to revisit this hypothesis

with Papuan populations in the future.

Our back to Africa model can explain the reduction in

effective population size of all African populations coin-

ciding with the OOA event.78 We would like to caution

that although we are naming the model ‘‘back to Africa,’’

the OOA population did not need to be geographically

out of Africa.21,79 Our estimates, particularly the effective

population size of back to Africa (N_BC) (which is more

than 10,000), and the time of Neanderthal introgression

(T_NM) compared to separation back to Africa population

from OOA population (T_Sep) suggest that the split might

have happened within Africa itself before the actual out of

Africa event. In such a case, our results can be explained

by the separation of West and East African population

87.8 kya (T_B) and then later the primary separation of

OOA and East African population 72.8 kya (T_Sep)

(assuming mutation rate of 1.25 3 10�8 per bp per gener-

ation54,55 and generation time of 29 years56). In this re-

gard, our model is more akin to the Lipson et al., 202016
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model rather than what is suggested by Cole et al.,

2020.15 If we assume the model from Lipson et al. to be

true, the most parsimonious explanation would be that

our back to Africa population represents the basal West

African population that separated from OOA populations

72.8 kya (T_Sep). Our ancient African represents ghost

modern,16 which contributed to modern West African

population around 10% through admixture around 61.9

kya from our prediction. On the other hand, if we assume

true the back to Africa event happened, then most likely

the OOA event took place less than 90 kya (T_B). This sug-

gests that most of the older fossils (>100 kya) found

outside of Africa80–82 are unlikely to have contributed to

OOA populations (assuming the main lineage of modern

humans has not left Africa before that). Geographical

location where back to Africa separated from OOA is

immensely important for this hypothesis but cannot be

estimated from our approach. It will be especially fasci-

nating to test this hypothesis with ancient genomes orig-

inating at those areas from that time point when they will

be available.
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46. Prüfer, K., de Filippo, C., Grote, S., Mafessoni, F., Korlevi�c, P.,

Hajdinjak, M., Vernot, B., Skov, L., Hsieh, P., Peyrégne, S.,

et al. (2017). A high-coverage Neandertal genome from Vin-

dija Cave in Croatia. Science 358, 655–658.

47. Jacobs, G.S., Hudjashov, G., Saag, L., Kusuma, P., Darusallam,

C.C., Lawson, D.J., Mondal, M., Pagani, L., Ricaut, F.X.,

Stoneking, M., et al. (2019). Multiple Deeply Divergent Deni-

sovan Ancestries in Papuans. Cell 177, 1010–1021.e32.

48. Li, H. (2011). A statistical framework for SNP calling, mutation

discovery, association mapping and population genetical

parameter estimation from sequencing data. Bioinformatics

27, 2987–2993.

49. Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E.,

DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T.,

Sherry, S.T., et al. (2011). The variant call format and

VCFtools. Bioinformatics 27, 2156–2158.

50. Miles, A., Murillo, R., Ralph, P., Harding, N., Pisupati, R., Rae,

S., and Millar, T. (2020). cggh/scikit-allel: v1.3.2 (Zenodo).

https://doi.org/10.5281/zenodo.3976233.

51. Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V.C.,

and Foll, M. (2013). Robust demographic inference from

genomic and SNP data. PLoS Genet. 9, e1003905.

52. Lapierre, M., Lambert, A., and Achaz, G. (2017). Accuracy of

demographic inferences from the site frequency spectrum:

The case of the yoruba population. Genetics 206, 439–449.

53. Scally, A. (2016). The mutation rate in human evolution and

demographic inference. Curr. Opin. Genet. Dev. 41, 36–43.

54. Kong, A., Frigge, M.L., Masson, G., Besenbacher, S., Sulem, P.,

Magnusson, G., Gudjonsson, S.A., Sigurdsson, A., Jonasdottir,

A., Jonasdottir, A., et al. (2012). Rate of de novomutations and

the importance of father’s age to disease risk. Nature 488, 471–

475.

55. Tian, X., Browning, B.L., and Browning, S.R. (2019). Esti-

mating the genome-wide mutation rate with three-way iden-

tity by descent. Am. J. Hum. Genet. 105, 883–893.
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