
Will you come back to contribute? Investigating
the inactivity of OSS core developers in GitHub

Fabio Calefato1 & Marco Aurélio Gerosa2 & Giuseppe Iaffaldano1 & Filippo Lanubile1 &

Igor Steinmacher2

Accepted: 30 June 2021/
The Author(s) 2021

Abstract
Several Open-Source Software (OSS) projects depend on the continuity of their development
communities to remain sustainable. Understanding how developers become inactive or why
they take breaks can help communities prevent abandonment and incentivize developers to
come back. In this paper, we propose a novel method to identify developers’ inactive periods
by analyzing the individual rhythm of contributions to the projects. Using this method, we
quantitatively analyze the inactivity of core developers in 18 OSS organizations hosted on
GitHub. We also survey core developers to receive their feedback about the identified breaks
and transitions. Our results show that our method was effective for identifying developers’
breaks. About 94% of the surveyed core developers agreed with our state model of inactivity;
71% and 79% of them acknowledged their breaks and state transition, respectively. We also
show that all core developers take breaks (at least once) and about a half of them (~45%) have
completely disengaged from a project for at least one year.We also analyzed the probability of
transitions to/from inactivity and found that developers who pause their activity have a ~35 to
~55% chance to return to an active state; yet, if the break lasts for a year or longer, then the
probability of resuming activities drops to ~21–26%, with a ~54% chance of complete
disengagement. These results may support the creation of policies and mechanisms to make
OSS community managers aware of breaks and potential project abandonment.

Keywords Open-sourcecommunities .Repositorymining.Retention.Abandonment .Turnover .

Disengagement

1 Introduction

The success of an OSS project depends on the strength and health of the group behind it
(Crowston and Howison 2006; Link and Germonprez 2018; Coelho and Valente 2017).

Empirical Software Engineering (2022) 27:76
https://doi.org/10.1007/s10664-021-10012-6

Communicated by: Audris Mockus

* Fabio Calefato
fabio.calefato@uniba.it

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10012-6&domain=pdf
http://orcid.org/0000-0003-2654-1588
mailto:fabio.calefato@uniba.it

Marsan et al. (2018) reported that, from the perspective of OSS developers, maintainers, and
managers, the loss of contributors is a major problem in OSS communities and ecosystems,
followed by poor code quality. Almost half of the OSS projects that fail do so because of a
problem related to the development team (Coelho and Valente 2017). Turnovers often disrupt
the community, reduce productivity (Mockus 2010), and degrade product quality (Schilling
2014; Foucault et al. 2015), especially when core contributors are involved. More specifically,
Avelino et al. (2019) showed that 59% of the analyzed projects did not survive after the
departure of Truck Factor developers (Williams and Kessler 2002), i.e., developers who hold
unique responsibilities in the project.

Therefore, it is critical to nurture the project workforce and avoid losing core developers
and their knowledge. However, little is known about either the stages of project disengagement
that developers undergo, or the transitions between these stages. So far, research has focused
on the developers’ life cycle: how people join the projects (Von Krogh et al. 2003), including
the barriers they face (Steinmacher et al. 2015; Hannebauer and Gruhn 2017; Balali et al.
2018); how they are attracted (Yamashita et al. 2016; Santos et al. 2013; Fronchetti et al.
2019); and how they become long-term contributors or core members (Ducheneaut 2005;
Nakakoji et al. 2002; Zhou and Mockus 2012). The limited research about understanding
developers’ disengagement has focused on the risks that projects incur when they lose
developers (Ricca and Marchetto 2010; Avelino et al. 2019; Ferreira et al. 2017) and factors
related to the developers’ abandonment, using the survival analysis technique (Lin et al. 2017).
To avoid developers’ disengagement, researchers analyzed the factors related to developers’
engagement and retention (Schilling 2014; Midha and Palvia 2007; Zhou et al. 2016).
However, these factors fail to consider the developers’ rhythm or the disengagement stages
and their transitions.

In this paper, we employ a mixed-methods approach to investigate how developers take breaks
and disengage from OSS projects. We first design a state model based on interviews with OSS
developers. Then, we analyze data from eighteen OSS organizations and identify core developers’
breaks by analyzing their personal work rhythm and identifying their inactivity states and the
transitions between states. Then, we collect the developers’ feedback about the output of our
method. Finally, we employ our method to characterize break frequency and length as well as state
transition probabilities in the analyzed OSS organizations.

This paper makes the following contributions: (i) an empirically-defined state model that
describes developers’ (in)activity states and transitions in OSS projects; (ii) a method to
identify the inactivity periods based on the individual rhythm of contribution, assessed by
OSS developers via a survey; and (iii) an in-depth analysis at the organizational level about the
frequency and extension of over 500 core developers’ break periods, showing how the break
periods vary and the probability of core developers’ transitions to and from inactive periods.
The proposed model captures disengagement, short breaks, and periods when contributors are
only working on non-coding activities. Our results show that breaks are rather common, and
highlight the importance of considering more than just coding to analyze inactivity/disengage-
ment. The model and method proposed here are relevant for OSS communities; they can be
used to define reference values for dashboards that alert when someone is likely about to leave.

The rest of this paper is organized as follows. In Section 2, we review related work. In
Section 3, we illustrate the research framework devised to carry out the study and answer the
research questions. In Section 4, we present the model developed to inform our research
method, which is described in Section 5. Results are reported in Section 6 and discussed in
Section 7. Finally, we conclude in Section 8.

 76 Page 2 of 38 Empirical Software Engineering (2022) 27:76

2 Related work

In this section, we present the literature related to developers’ life cycle and disengagement,
focusing on OSS.

2.1 Open source developers’ life cycle

Many OSS projects rely on a globally distributed community of developers who join projects
for diverse reasons, such as reputation, giving back to the community, and learning (Gerosa
et al. 2021; David and Shapiro 2008; Alexander Hars 2002; Lakhani and Wolf 2005; Krogh
et al. 2012). Many studies have focused on investigating the stages and activities in the path to
becoming core members or long-term contributors. For example, Nakakoji et al. (2002)
proposed the Onion model, which represents the general structure of OSS roles that developers
follow to become core members. Von Krogh et al. (2003) proposed a joining script, based on
steps followed to become a member of a project. Ducheneaut (2005) offered an in-depth look
at a successful newcomer’s socialization history, identifying activities that contributed to their
success.

Steinmacher et al. (2014) bring a different perspective to the joining process, explaining it
in two stages, namely onboarding and contributing, and describing the forces that push
developers towards a project, such as motivation (Hannebauer and Gruhn 2017; Krogh et al.
2012; Gerosa et al. 2021) and attractiveness (Yamashita et al. 2016; Santos et al. 2013), and
those that hinder developers’ onboarding (Steinmacher et al. 2015).

Overall, the studies that model OSS developers’ life cycles address how to onboard, remain,
and become long-term contributors. Even the motivation-related literature focuses on what
compels developers to join projects (Von Krogh et al. 2003; Hannebauer and Gruhn 2017;
Alexander Hars 2002; Silva et al. 2020) and remain active (Zhou and Mockus 2012; Barcomb
2014; Yamashita et al. 2016). Very little is known about developers’ inactive periods and
disengagement. Recent work has started filling this gap by investigating the impacts and
reasons behind abandonment and turnover, as presented in the following section.

2.2 Developers’ turnover and disengagement

Previous literature reported on the negative impact of turnover on team cognition and
performance (Levine and Choi 2004; Levine et al. 2005), and its costs for the company and
society (Graef and Hill 2000; Garman et al. 2005). Software engineering-specific literature has
also shown that developers’ turnover harms software development projects (Bass et al. 2018;
Nakatsu and Iacovou 2009; Hall et al. 2008). Hall et al. (2008) showed that projects with high
turnover are less successful. Mockus (2010) reported that people leaving the organization
(departures) might increase the probability of defects in commercial projects. Some researchers
also investigate the impact of developers’ turnover on software quality (Mockus 2009;
Foucault et al. 2015). Regarding the reasons for leaving a software company, Dittrich et al.
(1985) and Garden (1988) reported that wage and pay raise equity is a significant predictor of
intentions to quit. Additionally, Lee (2002) showed that job satisfaction strongly influences
turnover intentions.

In the OSS context, several researchers investigated turnover in OSS projects. For example,
Lin et al. (2017) studied why some developers are more likely to continue their contributions
than others. Others focused on understanding the potential issues surrounding developers

Empirical Software Engineering (2022) 27:76 Page 3 of 38 76

leaving OSS projects, including the so-called truck factor (Ricca and Marchetto 2010; Avelino
et al. 2016; Ferreira et al. 2017; Cosentino et al. 2015), which is defined as the number of
people who have to be hit by a truck (i.e., leave the project) before the project itself is at risk
(Williams and Kessler 2002). Avelino et al. (2019) found that truck factor is a real concern,
which may affect project evolution. They showed that the majority of the projects do not
survive when truck factor developers disengage and no other developers replace them.

Some other researchers have focused on understanding the reasons behind disengagement
from OSS projects. Miller et al. (2019) found that contributors who work at night and during
weekends disengage for different reasons than those who work during office hours. While the
first group reported social reasons as their primary motivation to leave, the latter mostly cited
job-related reasons. In our previous work (Iaffaldano et al. 2019), we uncovered potential
reasons behind developers’ inactive periods, including personal (e.g., job change, financial
issues, lack of interests) and project-related (e.g., role change, governance issues) reasons. Our
current study further investigates these reasons, quantifying how frequently they occur.

Finally, Decan et al. (2020) predict developers’ imminent abandonment by considering
their commit activity. Although we are not predicting abandonment, our results can inform
similar prediction models by bringing to light the importance of the work rhythm and by
characterizing multiple states and their transitions, which consider coding and non-coding
activities.

In summary, existing research has focused on studying the health of OSS communities
concerning developers’ onboarding, retention, and turnover. While a few papers consider the
reasons behind OSS developers’ disengagement, turnover, and the consequences of such
actions, it is still unknown how breaks comprise part of the developer life cycle. The current
literature does not explore the extent of disengagement, nor how to identify breaks based on
the contribution rhythm of developers. In this paper, we broaden the literature by going beyond
understanding the reasons to stay or leave. We investigate developers’ disengagement, model-
ing intermediate states in which developers pause their coding contribution or engage in non-
coding activities, and then either resume coding, or extend their hiatus until eventually
abandoning a project altogether.

3 Research framework

The goal of this study is to investigate how core developers take breaks and disengage from
OSS projects. To conduct the study, we devised a research framework divided into two phases
(see Fig. 1).

In Phase I (see Sect. 4), we refined the preliminary model of developers’ activities and
breaks from our previous work (Iaffaldano et al. 2019). Accordingly, we carried out interviews
with 13 OSS developers from 8 projects. Building on their feedback and insights, we designed
a revised state model.

In Phase II (see Sect. 5), we collected a larger sample of 18 projects from GitHub. Building
on the revised model, we designed and implemented an algorithm that analyzes trace data
mined from project repositories to establish the working rhythm of OSS developers and
identify their states (activities and breaks) and transitions, at the organization level, as defined
in the model.

To further understand the phenomenon of core developers taking breaks from and
abandoning OSS projects, we defined the following research questions:

 76 Page 4 of 38 Empirical Software Engineering (2022) 27:76

RQ1. To what extent can our method identify developers’ breaks?
RQ2. How often do core developers take breaks?
RQ3. How long do core developers’ breaks last?
RQ4. How common are the transitions between states?

To answer RQ1, we applied the Truck Factor algorithm (Avelino et al. 2016) to identify 75
core developers of the selected projects. Then, we invited those with a public email address to
participate in a personalized survey where we asked them to provide feedback on the revised
model and to acknowledge their own breaks and transition as identified by our algorithm. We
received answers from 17 developers. The results of this step were used to further refine the
model.

For the remaining research questions RQ2-4, we considered a larger sample of core
developers, i.e., those who authored 80% of a project codebase, because, as discussed in Sect.
5.1.1, the Truck Factor algorithm is far more restrictive. We ran our break-identification
algorithm on the trace data of 538 core developers to quantitatively assess the phenomenon
of inactivity and disengagement in OSS projects on a larger scale.

Next, we detail the activities carried out in the two phases of the research framework.

4 Phase I - modeling developers’ activities and breaks

In our previous work (Iaffaldano et al. 2019), we designed a preliminary state model, which
defines states for project disengagement and explains the reasons for the transitions, as can be
seen in Fig. 2. We designed this model by conducting six interviews with experienced OSS
developers and comparing their commit timeline on GitHub to the circadian rhythm (or sleep-
wake cycle).

The interviewed developers contributed to different projects, including Radar Parlamentar,1

Noosfero,2 Crossminer,3 GrimoireLab,4 KDE Cantor,5 and R.6

Preliminary
model

Refined
model

13 OSS dev
interviews

Break
iden�fica�on

algorithm

17 Truck Factor
devs survey

RQ1

RQ2-RQ4

538 Core devs
trace data

Phase Phase

Final
model

MSR from
18 org.

Fig. 1 An overview of the research framework

1 https://gitlab.com/radar-parlamentar/radar
2 https://gitlab.com/noosfero/noosfero
3 https://www.crossminer.org
4 https://chaoss.github.io/grimoirelab
5 https://edu.kde.org/cantor
6 https://www.r-project.org

Empirical Software Engineering (2022) 27:76 Page 5 of 38 76

https://doi.org/10.1007/s10664-021-10012-6
https://gitlab.com/noosfero/noosfero
http://www.crossminer.org/
https://chaoss.github.io/grimoirelab
https://edu.kde.org/cantor
http://www.r--project.org/

In this preliminary model, nodes represent the developers’ states in a project and edges represent
the transitions between these states. The model is framed within the the metaphor of the circadian
rhythm: thewake stage—where intense brain activity is registered—corresponds to the active state,
in which developers actively contribute source code changes; the sleep stage—when brain activity is
low, but other life signals are still observable—corresponds to the sleeping state, when developers
pause their code contributions but still give signals of their presence in the community (e.g., by
commenting issues and pull requests); finally, the dead stage corresponds to the state where a
contributor has completely abandoned a project (i.e., neither code contributions nor signals of non-
coding activities are found). The analysis of the interviews also helped to uncover a list of reasons for
transitioning fromone state to another. For example, a sleeping developermaywake up and return to
active by contributing code after a break due to either a personal (e.g., life event, financial, lack of
interests) or project-related (e.g., role change, social, governance issues) reason.

Because this model was based on a small set of interviews, we decided to further assess its
validity and refine it before using it in the second phase of this study.

4.1 Evaluation of the preliminary model

To evaluate our preliminary model, we presented our results to 13 OSS developers from 8 OSS
projects hosted on GitHub. These developers are longterm contributors and active in these projects.
They were recruited from our personal network and referrals. These developers are from a different
set of projects compared to those interviewed to conceive the preliminary model. The projects they
contribute to (i.e., rails/rails,7 laravel/framework,8 elixirlang/elixir,9 JabRef/jabref,10 github/lin-
guist,11 atom/atom,12 flutter/flutter,13 and ionic-team/ionic-framework)14 are active, popular, with

7 https://github.com/rails/rails
8 https://github.com/laravel/framework
9 https://github.com/elixir-lang/elixir
10 https://github.com/JabRef/jabref
11 https://github.com/github/linguist
12 https://github.com/atom/atom
13 https://github.com/flutter/flutter
14 https://github.com/ionic-team/ionic-framework

Active

Dead

Sleeping

Professional/Life event/Financial
/Not the right moment to contribute
/Social/Changes in the project/Role change

Right moment to contribute/Changes in
the project/Social/Professional

Professional/Life event/Change of interest
/Changes in the project/Social

Financial/Social

C
hange of interest/C

hanges in the project

Fig. 2 The original model of OSS developers’ states and contribution breaks (Iaffaldano et al. 2019)

 76 Page 6 of 38 Empirical Software Engineering (2022) 27:76

https://github.com/rails/rails
https://github.com/laravel/framework
https://github.com/elixir--lang/elixir
https://github.com/JabRef/jabref
https://github.com/github/linguist
https://github.com/atom/atom
https://github.com/flutter/flutter
https://github.com/ionic--team/ionic--framework

5+ years of historic records, and diverse in terms of programming languages. Table 2 includes the
details of these projects (which are marked with a * in the table), among others.

We tailored a structured interview (questionnaire) for each respondent. We first collected
the project history of each respondent from GitHub—using the GitHub API—and instantiated
the model for that data. To identify breaks, we applied a method based on the far-out values
approach used for computing outliers (detailed in Sect. 5.1.2), looking for breaks outside the
developers’ natural contribution rhythm. We also asked the respondents to give feedback about
the state transitions (we showed up to 3 examples of each transition) and about the model as a
whole.

After analyzing their answers, we identified three recurring issues. The first issue regarded
considering the states based on a single project instead of analyzing the entire organization, as
some developers appeared as sleeping, but in fact are contributing to other repositories within
the same organization. The second issue was that the term sleeping was misleading, as it failed
to capture that, albeit not coding, many members are still actively contributing, e.g., by
managing issues or the project. The third problem was also related to naming, specifically
of the dead state; some respondents pointed out that the term was too negative and ‘terminal,’
therefore failing to capture that some disengaged developers can actually go back. As one of
the interviewees commented, a dead developer would be one who “does not want to contribute
anymore to that community ever again.” Instead, the developers also noticed a high number of
transitions between dead and active states as well as between active and sleeping.Based on the
feedback, we defined a revised version of the model.

4.2 The revised model of inactivity

Given the feedback from the structured interviews, we defined a revised model (see Fig. 3) to
inform this study. Compared to the preliminary version (Fig. 2), we dropped the metaphor of
the circadian rhythm; as such, we renamed the dead state as gone, and sleeping as non-coding.
We explicitly added this state because contributors follow different pathways to contribute and
contributors not working with code are usually ‘hidden’ (Trinkenreich et al. 2020). In addition,
we added a new state between non-coding and gone, named inactive.

Also, the revised model includes transition labels that indicate the event that triggers the
state change; therefore, if active developers do not perform any commit in a given time interval
(i.e., no commit afterΔt_non-coding), but perform other activities, they transition from active into
the non-coding state. The classification of coding and non-coding activities is provided later in
Sect. 5.1.3, along with the description of the algorithm for labeling breaks and transitions
accordingly.

OSS developers who take breaks from writing code may resume their commit activity at
some point. However, if non-coding developers do not resume code contribution but rather
stop contributing (e.g., no issue comments, no pull requests reviews) for a time interval (i.e., no
collaboration activity after Δt_inactive), they become inactive. Entering into such a state is also
possible for active developers, should they stop both committing and contributing by other
means altogether (i.e., neither commit nor collaborate via issue tracker for at least Δt_inactive).
Developers can come out of the inactive state by resuming their activities. Otherwise, if their
hiatus continues for at least Δt_gone, they eventually will be considered gone (i.e., they
abandoned the project). As such, the transition towards gone is only possible from inactive.
Finally, developers can go back to either active (by resuming code commits) or noncoding
state (by reviewing code, opening issues, commenting, etc.).

Empirical Software Engineering (2022) 27:76 Page 7 of 38 76

5 Phase II - evaluation of the revised model and characterization
of the phenomenon

In this section, we describe the method adopted for the second phase of our research, including
the data collection and sampling, the definition of break periods, and the identification of
transitions between states.

5.1 Data collection and sampling

Wemined project data from eighteen projects from different organizations hosted on GitHub.We
extracted their entire history of activities, including commits, issues, and pull requests. The
dataset and all the scripts for data collection and analysis are available online as supplementary
material.15

We used convenience sampling to select the organizations (see Table 1) and projects (see
Table 2) used in the study. We started by including the same eight projects and organizations
used for the preliminary model evaluation (see Sect. 4.1), namely rails/rails, laravel/frame-
work, elixir-lang/elixir, JabRef/jabref, github/linguist, atom/atom, flutter/flutter, and ionic-
team/ionic- framework (which are identified with a * in Table 2). This choice was motivated

15 https://doi.org/10.5281/zenodo.3731344

Inactive

no commit
after�∆tnon-coding

neither commit nor
collaborative activity�

after�∆tinactive

after�∆tgone

commit

co
lla

bo
ra

tiv
e

ac
tiv

ity

commit
no

 c
ol

la
bo

ra
tiv

e
ac

tiv
ity

af
te

r�
∆t

in
ac

tiv
e

co
lla

bo
ra

tiv
e�

ac
tiv

ity

commit

Active

do / commit
do / collaborative activity

Non-coding

do / collaborative activity

Gone

Fig. 3 The state diagram of the revised model. A transition label represents the event triggering the state change,
whereas internal activities are performed while in state

 76 Page 8 of 38 Empirical Software Engineering (2022) 27:76

https://doi.org/10.5281/zenodo.3731344

by the fact that we have connections in those organizations, which we were planning to use to
recruit developers for future qualitative assessments.

To select the other ten projects and their organizations, from the ‘Topics’ section on the
GitHub website,16 we identified the ten most trending topics and then moved on to select up to
three projects per topic, excluding a priori research projects and small, one-person projects.
Instead, we opted to select active, successful projects whose discontinuation would pose a
threat to the sustainability of many others depending on it. We also filtered out projects within
organizations with too many other projects (>350) to contain the extraction time within
acceptable limits; likewise, we filtered out projects deemed too large in terms of the number
of distinct contributors (>4000) or development history (>15 years). Finally, we selected the
highest-rated projects (GitHub stars) that would also add variety to the sample in terms of size
(using the number of contributors, pull requests, and LOC as proxy), history (age), and
programming language.

After completing the sampling, we ensured we selected the main project from each
organization. The identification was straightforward in most of the cases, as the largest project
(in terms of the number of contributors, stars, forks received, pull requests, and LOC) is either
homonymous with its organization (e.g., rails/rails, atom/atom) or has a closely resembling
name (e.g., elixirlang/elixir, ionic-team/ionic-framework). The verification in the case of
GitHub and Facebook organizations, from which we respectively selected linguist and react,
required extra care. We verified that the two projects were indeed the largest ones after
excluding those that are mirrors or forks of other projects, as well as documentation-only
projects (i.e., do not contain any source code).

Looking at the breakdown of the sample, we observe that the selected organizations
(Table 1) host a number of repositories ranging between 9 and 349; regarding the projects
(Table 2), we notice that, as intended, they are written in different programming lan-
guages (e.g., Java, Ruby, PHP, Dart) and have a history (3-15 years) long enough to
observe the development rhythm of its contributors. The projects vary also in terms of
size (40-3.8k contributors, 1.5k-5.9M LOC, 1.6k-23.5k pull requests) and popularity
(1.3k-131k GitHub stars).

In the rest of the paper, we focus on studying the core developers of the selected projects
while analyzing their (in)activity across all projects within the entire organization. This is
motivated by the observation that—albeit most of their commit activity focuses on the main
project—on average nearly 36% of the total commits by the sampled core developers are
contributed to the other projects from the same organization.

5.1.1 Identifying Core developers and their pauses

For each project in the selected organizations, we first used the GitHub API to collect the
commit history of all developers. Then, for each developer, we checked the days when they
made a commit to the projects and called them ‘commit days.’ Accordingly, we define a
‘pause’ as the interval (in days) between two consecutive commit days. For each project, we
collected the number of pauses taken by all the developers who contributed at least twice (i.e.,
we observed those who took at least one pause) and normalized it by the number of years that
they have been in the project.

16 https://github.com/topics

Empirical Software Engineering (2022) 27:76 Page 9 of 38 76

https://github.com/topics

The focus of our analysis is on core contributors because their disengage- ment poses a
serious risk to the survival of OSS projects (Avelino et al. 2019). Therefore, we applied the
Truck Factor (TF) algorithm (Avelino et al. 2016) to select the subset of the developers who
are key to the project, and whose disengagement would greatly affect project survival (see
Table 3). As the Truck Factor algorithm is not the only approach for identifying key people
from the projects, we also used a popular heuristic based on the number of commits from the
project contributors, which usually follows a heavy-tailed distribution (Coelho et al. 2018).

Table 1 The eighteen GitHub organizations sampled for this study, sorted by number of repositories, and the
selected projects (as of January 2020)

Organization #repos Selected project

github 349 linguist
atom 256 atom
ionic-team 257 ionic-framework
nodejs 172 node
facebook 162 react
rails 98 rails
aseprite 64 aseprite
jekyll 53 jekyll
laravel 56 framework
jquery 45 jquery
MinecraftForge 40 MinecraftForge
JabRef 41 jabref
SpaceVim 35 SpaceVim
flutter 34 flutter
fastlane 32 fastlane
crystal-lang 25 crystal
BabylonJS 21 Babylon.js
elixir-lang 9 elixir

Table 2 A breakdown of the eighteen GitHub projects analyzed for each organization in the study (as of January
2020). Projects with a * represent those that also had developers interviewed to evaluate the preliminary model
(in Phase 1)

Project Progr. language Age #contributors LOC #pull reqs #stars

linguist* Ruby; C 8 760 191 k 2.7 k 6.8 k
atom* JavaScript 8 430 196 k 4.4 k 48.9 k
ionic-framework* TypeScript 4 328 115 k 2.9 k 38.2 k
node JavaScript; C++ 10 2471 5.9 M 17.8 k 61.9 k
react JavaScript 6 1295 191 k 8 k 130.8 k
rails* Ruby 15 3825 328 k 23.5 k 43.3 k
aseprite C++ 12 40 227 k 185 7.4 k
jekyll Ruby 11 874 41 k 3.6 k 39.2 k
laravel/framework* PHP 6 1962 115 k 16.4 k 17.5 k
jquery JavaScript 13 278 38 k 2.5 k 52.7 k
MinecraftForge Java 8 320 82 k 3.2 k 3.5 k
JabRef* Java 15 213 138 k 2.8 k 1.3 k
SpaceVim Vim 3 186 221 k 1.6 k 12.6 k
flutter* Dart 5 399 487 k 12.9 k 66.8 k
fastlane Ruby 5 1016 561 k 5.6 k 27.5 k
crystal Crystal 7 347 15 k 3.5 k 14.1 k
Babylon.js JavaScript; TypeScript 6 256 2.6 M 5.5 k 1.5 k
elixir* Elixir 8 849 47 k 5.3 k 15.4 k

 76 Page 10 of 38 Empirical Software Engineering (2022) 27:76

Thus, in Table 3, we also report the core developers of a project, those who produced 80% of
the total commits in a project (Commit-Based Heuristic). We noticed that the Truck Factor
algorithm in- deed is more selective than using the Commit-Based Heuristic and that most of
the time the Truck Factor developers of a project are also included in the set of core
contributors identified using the Commit-Based Heuristic. The only exceptions (i.e., nodejs/
node, JabRef/jabref, and atom/atom) are caused by the fact that, unlike the Commit-Based
Heuristic, the implementation of the Truck Factor approach that we used does not take into
account the commits made on documentation files.

Because Truck Factor is more selective, we used this approach to identify the developers of
each main project to assess our model (RQ1). Thus, we collected their data and analyzed their
inactivity according to the state model. We assessed the outcomes of the model by conducting
a survey with the Truck Factor developers, aiming to validate our findings.

After assessing the model, we used the Commit-Based Heuristic approach to broaden the
understanding of the phenomenon. With the complete set of core developers identified, we
conducted a quantitative analysis based on the data collected to answer RQ2, RQ3, and RQ4.

5.1.2 Identifying Core developers’ inactivity periods

Because each developer has their own rhythm of development, not every pause in between two
consecutive commits indicates that a developer has become inactive. For instance, for a
developer who typically commits every other day, a week with no contribution to any project
of an organization represents an actual period of inactivity; by comparison, a week without a
contribution may not mean inactivity for a developer whose rhythm comprises only a few
commits per month. Therefore, to identify the actual inactivity periods for each developer, we
first create an individual array with all their pauses (in days) at the organization-level (i.e., for
all the projects therein). Since developers’ pauses vary in length, we only consider as inactivity
periods those that are ‘longer than usual.’

Table 3 Truck Factor developer s (TF) and Core developers responsible for the 80% of total commits (Core),
extracted for each of the projects in the sample

Project Devs TF Core % TF in Core

nodejs/node 2031 15 115 87%
rails/rails 3834 13 93 100%
laravel/framework 1979 1 74 100%
facebook/react 1301 4 33 100%
fastlane/fastlane 958 3 19 100%
elixir-lang/elixir 851 1 13 100%
jekyll/jekyll 846 2 17 100%
github/linguist 765 3 89 100%
atom/atom 431 4 11 25%
flutter/flutter 402 7 28 100%
ionic-team/ionic-framework 331 3 8 100%
crystal-lang/crystal 327 2 6 50%
MinecraftForge/MinecraftForge 289 3 6 100%
jquery/jquery 263 3 9 100%
BabylonJS/Babylon.js 231 2 7 100%
JabRef/JabRef 204 7 8 71%
SpaceVim/SpaceVim 158 1 1 100%
aseprite/aseprite 37 1 1 100%

Tot. 75 538

Empirical Software Engineering (2022) 27:76 Page 11 of 38 76

To identify longer-than-usual pauses, we set a developer-specific threshold Tfov using the
far out values approach for detecting outliers in a distribu- tion (Tukey 1977). A far out value
is defined as an extreme value larger than the upper quartile plus 3 times the interquartile
range, i.e., the outer fences in a box plot (see Fig. 4). In our case, let P =< p1 , p2 , ..., pn > be
the array of all the pauses taken by a given developer, Q1 (P) the first quartile of the
distribution, Q3 (P) the third quartile, and I QR = Q3 (P) − Q1 (P) the interquartile range (or
H-spread). Thus, based on the previous definition, we calculate the developer-specific thresh-
old as Tfov = Q3 (P) + 3 × IQR.

The rhythm of a developer is not only unique, but also likely to change over time.
Furthermore, the lifespan of participation in a project and its organization also varies from
developer to developer. Therefore, it was necessary to identify a time-interval long enough to
observe the natural rhythm of contributions and inactivity periods, and the ‘variations’ from it.
As such, to account for these variations, we refined our approach based on the far out values by
introducing a sliding window mechanism.

To define the size (in months) of this window, we experimented with different values,
namely w = 1, 3, 4, 6, 12. For each value, we started by considering the initial window w (see
step i in Fig. 5), identified all the pauses therein, and computed the far-out values threshold Tfov
; then, we identified the inactivity periods as the longer-than-usual pauses that are above Tfov
within the window. After that, we moved the window w forward by 1 week (see step ii) and
repeated the shift until the last week of the contribution history (step iii), thus eventually
extracting all the inactivity periods from a developer’s commit history. We selected a window
size of 3 months because there are no cases of Truck Factor developers with a history of
contributions smaller than the selected window size, as is the case for w = 4, 6, 12 months (i.e.,
no data point is lost because of a too large window size); at the same time, this value reduces

Fig. 4 An example of box plot with far out values above the outer fence

 76 Page 12 of 38 Empirical Software Engineering (2022) 27:76

the number of pauses that are longer than the window size, as occurs in the case of w = 1
month (i.e., window size too small).

For further details, please refer to the complete algorithm available in Appendix A.

5.1.3 Labeling breaks and transitions

As noted by the participants in the preliminary model evaluation (see Sect. 4.1),
developers often collaborate on multiple projects in the same organization. Therefore,
broadening the activity analysis of the selected projects’ core developers at the organi-
zation level was necessary for the completeness of our model. Indeed, today’s OSS
communities are more and more often examples of complex ecosystems of interrelated
projects; for example, one developer might be non-coding or inactive in the front-end
project, while they are actively coding to fix a bug in the back-end project from the same
organization.

Regarding the type of activities, we label as coding activity both making a commit to a local
repository and opening a pull request. For pull requests, we point out that we analyze and
include in the activity timeline all the commits therein, whether the pull request was closed (as
merged or not) or still open at the time of data extraction.

Other activities such as those related to code review and project management (e.g., closing
a pull request, assigning an issue) are classified as noncoding; we included comments in pull
request discussions, issues opened, comments in issue discussions, and other actions per-
formed on issues (e.g., subscription, assignment, closing, labeling) that could be gathered via
GitHub API. Given the state diagram presented in Fig. 3, we label as non-coding those
inactivity periods when at least one non-commit action has been performed, whereas we call
inactive breaks those periods of inactivity in which no events were extracted.

Regarding the transitions, first we mined the list of commits and other collaboration events
(e.g., pull request and issue comments) from GitHub and labeled the back-to-codings (i.e., the
transitions from non-coding to active), reactivations (from inactive to active or non-coding),
and comebacks (from gone to active or non-coding).

… tWeek
1

window
i)

ii)

iii)

Week
2

window

Week
n+1

… …Week
m+1

Week
m+2

Week
last

window

Fig. 5 Inactivity periods are identified as the longer-than-usual pauses within each sliding window of size w and
a forward shift of 1 week. We tested windows sizes of w = 1, 3, 4, 6, 12 months and selected 3 months as the
optimal configuration

Empirical Software Engineering (2022) 27:76 Page 13 of 38 76

To label the remaining transitions, we defined the time intervals Δtnon−coding, Δtinactive , and
Δtgone after which a state change can be triggered if there were no commits and/or other events.
Regarding the transitions to non-coding and inactive, we used Δtnon−coding = Δtinactive = Tfov , the
same developerspecific, far out value-based threshold used to select the breaks. The rationale
behind this choice is to ensure that the time intervals account for the differences in the individual
rhythm of contribution of each core developer. Additionally, this choice allows us to identify
cases of multiple breaks and state transitions within one inactivity period.

To further clarify these cases, we provide a couple of examples. Figure 6a portrays an
inactivity period within two consecutive commits made by a developer of the atom project on
Sept. 11 and Dec. 13, 2015. Various collaboration traces are left by the developer during such
an interval (e.g., pull requests and issues comments), each shown in the figure as separate
graphs. The threshold Δtnon−coding = Δtinactive = Tfov is 85.75 days in this case. Because there are
no sub-intervals longer than Tfov during which any activity was performed, this inactivity
period represents a single break, labeled as non-coding. Instead, looking at the inactivity period
depicted in Fig. 6b, we note that the developer was in the non-coding state for 32 days between
Sep. 12 and Oct. 14, 2014. After that, (s)he did not leave further collaboration activity traces
for longer than Tfov = 30 days, thus transitioning to inactive. As such, this inactivity period
contains two breaks: a non-coding break followed by an inactive break.

Finally, regarding the extent of the hiatus Δtgone after which an inactive developer transi-
tions into gone, existing studies rely on different thresholds to classify abandoning developers.
As there is no consensus, we experimentally tested different thresholds. We first tested
thresholds of three (Constantinou and Mens 2017) and six months (Miller et al. 2019).
However, they generated too many gone breaks and comeback transitions. Then, we tested
and selected Δtgone = 12 months as the threshold, which gave results in line with our model
conceptualization, while also being consistent with the speculations reported in our previous
work (Iaffaldano et al. 2019) that a developer’s ‘death’ occurs after a year of complete
inactivity. Avelino et al. (2019) also found that this threshold is the least sensitive to error
when computing the Truck Factor of popular GitHub projects.

6 Phase II - results

6.1 RQ1 – Evaluation of the model and identification method

To evaluate our model and identification method, we collected feedback from Truck Factor
developers. Using the algorithm provided by Avelino et al. (2016), we identified 75 Truck
Factor developers, distributed across the 18 projects, as shown in Table 3. Among them, 53
have been gone and/or inactive at least once. Out of these, 34 had a valid email address
publicly available on their GitHub page.

Similarl to the preliminary evaluation (see Sect. 4.1), we designed personalized question-
naires17 for each developer, asking them (1) to provide feedback about the model and (2) to
confirm whether they recognize the breaks and transitions we identified. In particular, we
selected up to nine breaks (three instances for each of the three types of break states) among the
most recent ones to facilitate their recollection; then, we explained the model, as well as the
meaning of each state, and for each break we asked: (i) Were you actually in that state?, (ii)

17 An example is available at https://doi.org/10.6084/m9.figshare.12062964

 76 Page 14 of 38 Empirical Software Engineering (2022) 27:76

Why did you take that break?, and (iii)Why did you return to commit/collaborate?. We offered
a $15 gift card to those who completed the questionnaire.

We received responses from 17 developers out of 34 invited (50% of re- sponse rate). A
breakdown of the respondents is reported in Table 4. All respondents self-identified as male,
with ages ranging between 21 and 50 (avg. 35). We received answers from developers of

Fig. 6 Examples of how breaks are identified within inactive periods and labeled

Empirical Software Engineering (2022) 27:76 Page 15 of 38 76

several projects: rails/rails (8), laravel/framework (2), flutter/flutter (2), JabRef/jabref (2),
nodejs/node (1), elixir-lang/elixir (1), and github/linguist (1).

Model feedback We asked the developers to rank their agreement with our inactivity model on a
four-point Likert scale (1=Strongly disagree, 2=Some- what disagree, 3=Somewhat agree, and
4=Strongly agree). We received 17 answers, of which only 1 strongly disagreed (6%); the
remaining ranks are evenly distributed betweenmoderately agree (8, 47%) and strongly agree (8,
47%). The mean and median values are 3.4 and 3, respectively. The strong dis- agreement came
from a developer who mentioned that “ GitHub doesn’t track all the ways that I contribute to a
project. For example, [...] I review design docs written in Google docs and I attend video
conference meetings to men- tor teammates ” (D-16). This comment suggests that the name
non-coding may unintentionally imply that developers are not actively participating un- less they
are coding. Consistently, albeit D-16 moderately agreed with model, D-13 commented that
“there’s varying degree of ‘active.’ Maybe this is more a continuum than one with discrete
states”, and D-10 suggested that we “should also consider reviewing and filing bugs as active, in
case you’re not.” These observation are congruous with the comment from D-04, who observed
that our model “maybe makes the ‘commit’ the ultimate contribution. For most projects that’s the
case, but [sometimes] the discussions around the new fea- tures added [...] are more important
than the few line of codes that implement [them]. ”

We also received a few comments concerning the gone state. For instance, D-05 pointed
that the name is maybe too strong and constrained: “Per this def- inition, I am gone [...], but
I’m still around, just no time to code or contribute. I occasionally do come to life, though.” In
line with this, D-08 noted that “you can be inactive for 12 months or longer without being
gone. There’s also a bit of an extra stage, which I guess I would just call ‘lurker,’ where you’re
still watching everything happening, you are just not participating in it (unless it hits some
personal threshold that pulls you back in to participate).” This lurking stage matches our
definition of inactive; as such, lurking may become an alternative name for inactive or be
included in its the definition. Neverthe- less, lurking represents a state from the perspective of
the contributor, who can be viewed as inactive from the point of view of the project.

Table 4 Breakdown of survey respondents

ID Project Age Gender # other projects in the org. They contribute to

D-01 nodejs/node 50 Male –
D-02 rails/rails 30 Male 1
D-03 rails/rails 32 Male 1
D-04 rails/rails 47 Male 0
D-05 rails/rails 45 Male 2
D-06 rails/rails 23 Male 7
D-07 rails/rails 32 Male 1
D-08 rails/rails 32 Male 2+
D-09 rails/rails 37 Male 0
D-10 laravel/framework 21 Male 4
D-11 laravel/framework 28 Male 3
D-12 JabRef/jabref 33 Male 1
D-13 JabRef/jabref 33 Male 0
D-14 elixir-lang/elixir 41 Male 0
D-15 facebook/linguist 40 Male 0
D-16 flutter/flutter 39 Male all
D-17 flutter/flutter 38 Male 2+

 76 Page 16 of 38 Empirical Software Engineering (2022) 27:76

Breaks and state transitions acknowledgment We analyzed the questionnaire responses
and, in particular, those cases where developers reported to disagree with the identified breaks
and transitions. Table 5 reports the breakdown of the acknowledgments with 88 breaks and 62
agreements overall (71%). We observed 21 cases of disagreements (24%) of which 10 (48%)
had “don’t know/can’t remember” entered as a comment or simply had no comment. To
uncover potential limitations of our model, next we focus on discussing the remaining cases of
disagreement that were reported with a motivation.

Aligned with our previous observation, the gone breaks generated disagree- ments due to
different perspectives. Two developers disagreed that they were gone. We analyzed their expla-
nations and concluded that they were actually gone according to our definition, but not to their
own. In fact, D-05 did not want to consider himself gone despite the fact that he did not contribute
for over a year because he “started several companies and work took over.” Similarly, D-04
reported that he simply “did not find any bug or thing worthwhile contributing.”

Regarding the inactive breaks, we found 8 disagreements out of 39 cases (20.5%). In 6 cases,
no comments were provided. In two cases, developers disagreed because they were studying
new technologies (D-03) or doing design work (D-16) before contributing again. There are two
cases we labeled as ‘other’ (6.1%): D-09 commented that he was sort of inactive: “I stopped
being employed to [work] on <project name> full-time in 2010, but I remained pretty active as
a mentor for at least one year after that.” As for the agreements (29, 74.4%), the most cited
reasons for inactive breaks are holidays, paid work, switching jobs, and personal matters.

Regarding non-coding breaks, we found 9 cases of disagreements out of 44 (20.5%), 5 of
which present no comments to analyze. D-05 disagreed that he was in the non-coding state.
Unfortunately, his comment (“was working on other things”) does not provide any clarifica-
tion: if he was coding for any project of the organization, we would have found traces, because
we mined the entire GitHub organization commit history; otherwise, any work on other, un-
related projects would not matter here. The remaining case concerned D-15, who explained his
disagreement saying that he had “already left the company” by then and, therefore, he could
not possibly be contributing in any way to the project. The comment raised a red flag: having
labeled it a non-coding break meant that we had found traces of collaboration activities
through the GitHub API. After investigating, we found a couple of events that in which D-
15 was mentioned in a PR conversion and assigned to an issue. As such, our speculation is
that, unaware of his disengagement from the company, other project contributors kept
mentioning him and assigning him to issues in his area of expertise. To avoid these cases,
we fine-tuned our break labeling algorithm (see Appendix A) to consider only those GitHub

Table 5 Break and state transition acknowledgments from the surveyed Truck Factor developers

Breaks Total Agreements (%) Disagreements (%) Other (%)
Gone 5 1 (20%) 4 (80%) 0 (0%)
Inactive 39 29 (74.4%) 7 (20.5%) 2 (5.1%)
Non-coding 44 32 (72.7%) 9 (20.5%) 3 (6.8%)
Tot. 88 62 (70.5%) 21 (23.9%) 5 (5.7%)

Transitions Total Agreements (%) Disagreements (%) Other (%)
Back-to-coding 40 33 (82.5%) 5 (12.5%) 2 (5%)
Reactivation 40 30 (75%) 8 (20%) 2 (5%)
Comeback 5 4 (80%) 1 (20%) 0 (0%)
Tot. 85 67 (78.8%) 14 (16.5%) 4 (4.7%)

Empirical Software Engineering (2022) 27:76 Page 17 of 38 76

events that imply ‘active’ participation of developers (e.g., writing a comment), discarding
‘passive’ events such being mentioned in comment, being un/assigned from/to an issue. All the
results reported next in this paper have been obtained after applying this change. Finally, as for
the 3 remaining cases of disagreement labeled ‘other’ (5.7%), D-09 commented that he “ likely
slowed down because the break was over the July 4th long weekend, but was still doing some
work.” Yet, we could only retrieve traces of interaction on GitHub that do not include code
contributions.

Table 5 also reports the breakdown of the 85 state transition acknowledgments, with 67
agreements overall (78.8%). We observed 14 cases of disagreements, of which half had “
don’t know/can’t remember ” entered as a comment or simply had no comment. Regarding
back-to-coding transitions, we found 5 cases of disagreement out of 40 (12.5%), all of
which with no comments. Regarding reactivations (transitions from inactive or non-coding
into active), we found 8 disagreements. D-03 pointed out that what we mined “ was
probably a merge from an old pull request.” Yet, after checking, we did find a commit
from him that he probably did not remember or missed while checking on GitHub. As for
the 2 cases of partial disagreement with reactivation transitions (i.e., classified as other),
D-09 commented that, while he disagreed, he was not entirely sure. Again, we found
commits authored by him thorough git log. Finally, with respect to the comebacks from the
gone state, we found 1 case of disagreement out of 5 (20%), namely from D-05 who
commented that he did not actually want to re-engage, but only “ needed to fix something
in the code.”

Coding of the reasons why In our previous work (Iaffaldano et al. 2019), after interviewing
OSS developers, we not only designed the preliminary ver sion of the state model presented in
Sect. 4, but also defined a classification schema for the reasons why they took breaks. To
gather a better understanding of the motivations of the developers surveyed in this study, we
adapted the existing schema and developed two classifications to code, respectively, the
comments to the the second question (i.e., “Why did you take that break?,” see Table 6) and
the third question (“Why did you return to <state>?,” see Table 7) of the questionnaire.

In both coding schemas, we distinguished personal reasons (i.e., related to individual
choices, needs, end events) from those concerning the community (i.e., events related to
changes or interaction with others within the OSS community). We observe a consistent 80/
20% split between the personal- vs. communityrelated categories.

Table 6 Coding schema for the reasons to take breaks

Category (%) Reason (%) Examples

Personal-related
(78.3%)

Professional (21.7%), Life event (14.5%),
Financial (21.7%), Change of interest
(20.3%)

Analysis/design work, job change, learning a
new technology, student assignment,
Vacation/holidays, needed time to relax,
child birth, sickness, death in the family,
Need more time at work, end of financial
support, Grew uninterested, migration to a
new community

Community-related,
(21.7%)

Not the right time to contribute (2.9%),
Social (2.9%), Changes in the project
(2.9%), Role change (13%)

Did not feel responsible, others took over
Problems with other members, lack of
feedback/recognition Technical, organi-
zational (governance) Becoming a project
manager, mentoring

 76 Page 18 of 38 Empirical Software Engineering (2022) 27:76

Regarding the personal reasons for taking a break, they are quite balanced, with 20% of the
surveyed developers mentioning professional reasons (e.g., “ changed job”, “ been busy doing
analysis work ”), financial reasons (i.e., “ doing paid work ”), and a change of interest (e.g., “
started looking for other projects to contribute to”). Slightly fewer developers (14.5%)
mentioned a life-related event as a cause for taking breaks (e.g., “ was on vacation/holidays
”, “ personal health-related issues ”), which are more varied. With respect to the community-
related reasons for taking a break, by far the most common is the change of role (13%), such
as becoming project manager or a mentor for newcomers. Changes in the organization of the
community or personal issues with other members are not very common (3%).

Regarding personal reasons for returning to commit or contribute, by far the most common
are professional (50%), which are cited not only by paid developers—whose employer is
sponsoring the project—but also by others who need to fix something in the code of the project
that was blocking their work. The other cited reasons concern personal (15.2%, e.g., “ found
something to contribute to”) and financial interest (13%, e.g., “ was doing paid work ”). Again,
life events such as end of vacation/holidays are the least common personal reasons (4.3%) for
returning among core developers. With respect to the community-related reasons for returning
to commit or contribute, the most common concern the sense of responsibility of the developer
(13%), who feels committed to the project and dependable, and realizes they hold exclusive,
vital knowledge. The other reasons are related to changes of the developer’s role or in the
project itself, and are considerably less common (2%).

RQ1 – Evaluation of the model

– Almost all of the surveyed Truck Factor developers (94%) agree with our state model of inactivity, either
strongly (47%) or moderately (47%).

– Respectively, 71% and 79% of the surveyed developers acknowledge their breaks and state transitions.
– The names chosen for the active and non-coding states can be misleading as they may unintentionally imply

that developers are not actively participating unless they are coding.
– Most of the cited reasons among core developers for taking breaks as well as returning are personal (80%)

rather than related to the interaction within the community (20%).
– The most common personal reasons for taking breaks are professional, financial, or lack of interest.
– The most common personal reason for returning to contribute are professional and the sense of responsibility

toward the project.

6.2 RQ2 – Break frequency

To answer the research question about the frequency of inactivity periods in OSS develop-
ment, we quantitatively analyzed the results of our approach to identify the non-coding,
inactive, and gone breaks of the core developers from the eighteen sampled projects. To

Table 7 Coding schema for the reasons to return to commit/contribute

Category (%) Reason (%) Examples

Personal-related
(82.5%)

Professional (50%), Life event
(4.3%), Financial (13%), Interest in
OSS (15.2%)

Needed to fix something, work duties, job change
End of vacation/holidays, Doing paid work.
Wanted/found opportunity to contribute

Community-related,
(17.5%)

Sense of responsibility (13.1%),
Changes in the project (2.2%),
Role change (2.2%)

Commitment, exclusive knowledge, feeling
dependable, Wanted to catch up, Onboarding

Empirical Software Engineering (2022) 27:76 Page 19 of 38 76

broaden our analysis, in the second phase of analysis we considered the set of 538 core
developers identified using the Commit-Based Heuristic approach. Table 8 provides an
overview of the core developers who have been inactive at least once, considering their
activity in all the projects of each organization.

We notice that 97% of the sampled core developers have been in the noncoding state at
least once and 89% have been inactive. Nearly a third (33%) of the developers in our sample
transitioned to the gone state at least once. On the one hand, we found projects in which no
core developers have been in the gone state (i.e., aseprite, SpaceVim, and crystal-lang) or only
one (i.e., ionic- team, BabylonJS, and MinecraftForge). On the other hand, in organizations
like rails and GitHub this happened for 65% and 89% of their core developers, respectively.

Finally, in Fig. 7, we report the distributions of the average number of noncoding, inactive,
and gone breaks per core developer in each organization. As expected, we observe that the
non-coding (mean: 11.63, median: 10, SD: 9.14) periods occur more frequently than inactive
breaks (mean: 6.56, median: 5, SD: 5.84), and that gone breaks are the least common (mean:
0.27, median: 0, SD: 0.60).

RQ2 – Break frequency

– Almost all core developers take breaks, as 97% and 89% of them have been in the non-coding and inactive
states at least once, respectively.

– Almost all core developers take breaks, as 97% and 89% of them have been in the non-coding and inactive
states at least once, respectively.

– About one third of the developers analyzed (33%) have been gone at least once and disengaged completely
from a project for one year or longer.

– Non-coding periods occur more frequently than inactive breaks within organizations; gone breaks are by far the
least common.

Table 8 Core Developers who have been inactive per organization

developers who have been # developers

Organization Non-coding Inactive Gone Gone during data collection

nodejs 112 (97%) 101 (88%) 24 (21%) 16 (14%)
rails 92 (99%) 93 (100%) 60 (65%) 38 (41%)
aseprite 1 (100%) 1 (100%) 0 (0%) 0 (0%)
jekyll 16 (94%) 15 (88%) 8 (47%) 8 (47%)
laravel 72 (97%) 71 (96%) 23 (31%) 11 (15%)
MinecraftForge 6 (100%) 6 (100%) 1 (17%) 0 (0%)
JabRef 8 (100%) 7 (88%) 4 (50%) 3 (38%)
SpaceVim 1 (100%) 0 (0%) 0 (0%) 0 (0%)
fastlane 17 (89%) 17 (89%) 12 (63%) 9 (47%)
crystal-lang 6 (100%) 6 (100%) 0 (0%) 0 (0%)
BabylonJS 7 (100%) 7 (100%) 1 (14%) 1 (14%)
elixir-lang 13 (100%) 13 (100%) 5 (38%) 2 (15%)
github 68 (76%) 64 (72%) 79 (89%) 66 (74%)
atom 10 (91%) 11 (100%) 6 (55%) 5 (45%)
ionic-team 8 (100%) 8 (100%) 1 (13%) 1 (13%)
facebook 33 (100%) 33 (100%) 10 (30%) 7 (21%)
jquery 9 (100%) 8 (89%) 4 (44%) 3 (33%)
flutter 27 (96%) 25 (89%) 5 (18%) 3 (11%)
Avg. 97% 89% 33% –

 76 Page 20 of 38 Empirical Software Engineering (2022) 27:76

6.3 RQ3 – Break length

We analyzed the duration (in days) of the breaks, except for gone breaks, since most of them
(see Table 8) were still in progress at the time of this analysis. The breaks range from 367 to
2,893 days. Figure 8 shows the boxplots

of the average duration of the non-coding and the inactive breaks per core developer,
grouped by organization and on a logarithmic scale.Overall, the average duration of a non-
coding break ranges from 8 to 994 days (mean: 32.26, median: 22, SD: 32.03), whereas the
duration of an inactive break varies in the range of 8 to 374 days (mean: 65.59, median: 41,
SD: 66.43). From Fig. 8, we observe that the median duration of inactive breaks is consistently
longer than that of non-coding breaks across all the organizations, with the sole exception of
jquery.

To understand whether these differences are statistically significant, for each organization
we filtered those developers who have been in both states, and then performed a series of
paired tests for each organization. Because the distribution of break durations are not normal,
we used the Wilcoxon singedrank test as a non-parametric alternative to t-test for matched
pairs. The results are reported in Table 9, where we observe that most of the core developers
have been in both states (non-coding and inactive) at least once. We observe a few cases of

Fig. 7 Distributions of the average number of non-coding, inactive, and gone breaks per core developer in each
organization. The boxplots are sorted in descending order with respect to the duration of non-coding breaks

Empirical Software Engineering (2022) 27:76 Page 21 of 38 76

statistically significant mean difference at the 1% level (after Bonferroni-Holm correction for
multiple comparisons) between non-coding and inactive break duration, namely flutter, atom,
jquery, crystal-lang, and MinecraftForge. To assess the magnitude of such differences, we
computed the effect size as Cliff ‘s δ, using the thresholds provided by (Hess and Kromrey
2004).18 We found a large effect size for atom, crystal-lang, and Minecraft-Forge.

RQ3 – Break length

– On average, inactive breaks last longer than non-coding breaks (65 vs. 32 days).
– This difference is, however, statistically significant only for three organizations (atom, crystal-lang, and

MinecraftForge).

6.4 RQ4 – State transition probabilities

After identifying all the core developers’ breaks, we calculated their probabilities to transition
from one state into another. Specifically, in Fig. 9, we present the transition probabilities

18 We also assessed effect size by computing the Glass rank biserial correlation coefficient (King and Minium,
2008) and obtained the same results.

Fig. 8 Distribution of the median duration (in days on a logarithmic scale) of non-coding vs. inactive breaks for
each developer. The boxplots are sorted in descending order with respect to the duration of non-coding breaks

 76 Page 22 of 38 Empirical Software Engineering (2022) 27:76

Table 9 Results of the Wilcoxon signed-rank (paired) tests to reveal mean differences between non-coding and
inactive break durations for developers who have been in both states (results in bold are significant at the 1%
level after p value correction and also have a large effect size)

developers who have been

Organization non-coding inactive both W adjusted p Cliff’s j_j
Organization non-coding inactive both W adjusted p Cliff ‘s |δ|

nodejs 112 98 98 502 0.3875 0.5146
rails 92 93 92 168 1.0 0.6832
laravel 72 71 70 132 0.3875 0.5527
github 68 64 60 20 0.9375 0.7594
facebook 33 33 33 45 1.0 0.5914
flutter 27 24 23 73 1.5905e-10* 0.2949
fastlane 17 17 17 7 1.0 0.6678
jekyll 16 15 15 6 1.0 0.6533
elixir-lang 13 13 13 12 0.1719 0.4142
atom 10 11 10 8 1.2379e-09* 0.4800
jquery 9 8 8 14 3.0262e-13* 0.1250
ionic-team 8 8 8 11 0.0103 0.1719
BabylonJS 7 7 7 1 1.0 0.5306
JabRef 8 7 7 0 0.1719 0.9592
crystal-lang 6 6 6 6 0.0038* 0.6111
MinecraftForge 6 6 6 3 7.2804e-10* 0.5556
aseprite 1 1 1 N/A N/A N/A
SpaceVim 1 1 1 N/A N/A N/A

*p < 0.01

|δ| < 0.147 “negligible”, |δ| < 0.330 “small”, |δ| < 0.474 “medium”, otherwise “large”

28.99%

11.44%

Active

67.5%

32.17%

Non-coding

20.56%

25.55% Gone

54.89%
8.18%

35.05%

Inactive

59.57%

1.88%

53.89%

0.33%

Fig. 9 Aggregated transition probabilities all core developers in the sampled organizations

Empirical Software Engineering (2022) 27:76 Page 23 of 38 76

aggregated for all the sampled organiza tions, whereas in Fig. 10 we report the probabilities for
each organization individually.

Active state From Fig. 9, we can observe that the average probability to remain active
is 59.57%. This suggests that more than a half of the analyzed core developers tend
to follow a constant rhythm of code contributions. This is similar for each organiza-
tion in our sample (probabilities in the range 50.0–62.9%, see Fig. 10). On average
(see Fig. 9), core developers in the active state are more likely to transition to non-
coding (28.99%) than to become inactive (11.44%). This observation also holds true
when we analyzed organizations individually (Fig. 10), with the exception of
BabylonJS (see Fig. 10k).

Non-coding state On average, core developers in the non-coding state are much more likely
to return to being active (67.5%, see Fig. 9) than remain in the same state (0.33%) or become
inactive (32.17%). The same observation also holds true at the individual organization level
(Fig. 10).

Inactive state We found that inactive core developers who do not provide any signal of life/
participation in an organization are more likely to resume contributing by writing code—
i.e., return to the active state (54.89%, Fig. 9)—than by collaborating without code—i.e.,
return to the non-coding state (35.05%). Also, our findings suggest that inactive core
developers have a lower probability (8.18%) to remain so for more than one year and enter
the gone state than to remain inactive for less than 12 months (1.88%). Regarding the
individual organizations, despite several differences observed, no clear pattern can be
identified.

Gone state On average, more than a half of the developers who abandon organizations for
more than one year remain in the gone state (53.89%). Still, comebacks are not rare events,
with 25.55% and 20.56% going back to the active and non-coding state, respectively.
However, looking at the organizations individually, a quite varied picture emerges, which
does not appear to be affected by their type. First, we notice that in only 4 out of 18
organizations (i.e., aseprite, MinecrafForge, SpaceVim, and crystal-lang), no core devel-
oper has ever disengaged, i.e., transitioned into the gone state. In a way, this pattern of
behavior is expected for these smaller communities in which the main project relies on 1-3
Truck Factor developers and 1-6 core developers (see Table 3), whose disengagement
would jeopardize the survival of both the project and the community. As such, these
developers form a solid base of project maintainers who have never taken breaks longer
than a year. For the remaining organizations for which we found cases of disengagement,
such as node (Fig. 10a) and linguist (Fig. 10m), we notice that nearly 60% of them remain in
the gone state (between 40-100%), while the others resume contributing, i.e., go back to
either active or non-coding.

To further our understanding of developers disengaging from projects, we analyzed the
association between the level of code contribution to a project and the likelihood of developers
transitioning into the gone state at least once. To do so, we used the set of core developers (n =
538) with their associated percentage of code contribution to the projects. Then, we computed
the perproject median and assigned each developer to either of two equally-sized bins, called
high- and low -level contributors. Finally, we built a logistic regression model where is_gone is

 76 Page 24 of 38 Empirical Software Engineering (2022) 27:76

34.55%

3.77%

Active

67.64%

31.97%

Non-coding

24.14%

20.69% Gone

36.28%
4.57%

55.68%

Inactive

61.68%

3.47%

55.17%

0.38%

24.44%

17.27%

Active

67.45%

32.55%

Non-coding

22.22%

39.39% Gone

64.87%
9.2%

24.91%

Inactive

58.29%

1.02%

38.38%

0.0%

37.04%

11.11%

Active

90.0%

10.0%

Non-coding

0.0%

0.0% Gone

100.0%
0.0%

0.0%

Inactive

51.85%

0.0%

0.0%

0.0%

34.63%

5.0%

Active

68.09%

31.91%

Non-coding

25.0%

8.33% Gone

41.18%
11.76%

44.12%

Inactive

60.37%

2.94%

66.67%

0.0%

25.75%

11.35%

Active

55.01%

44.22%

Non-coding

14.81%

44.44% Gone

55.97%
4.61%

38.4%

Inactive

62.9%

1.02%

40.74%

0.77%

33.99%

10.56%

Active

79.13%

20.87%

Non-coding

100.0%

0.0% Gone

73.21%
1.79%

19.64%

Inactive

55.45%

5.36%

0.0%

0.0%

55.45%

79.13%

Fig. 10 Transition probabilities for core developers of the analyzed organizations

Empirical Software Engineering (2022) 27:76 Page 25 of 38 76

28.71%

15.51%

Active

79.81%

20.19%

Non-coding

0.0%

40.0% Gone

67.65%
7.35%

25.0%

Inactive

55.78%

0.0%

60.0%

0.0%

79.81%

55.78%

50.0%

0.0%

Active

100.0%

0.0%

Non-coding

0.0%

0.0% Gone

0.0%
0.0%

0.0%

Inactive

50.0%

0.0%

0.0%

0.0%

27.1%

12.47%

Active

58.44%

39.61%

Non-coding

8.33%

16.67% Gone

51.33%
10.62%

35.4%

Inactive

60.43%

2.65%

75.0%

1.95%

30.58%

11.87%

Active

75.49%

24.51%

Non-coding

0.0%

0.0% Gone

70.69%
0.0%

29.31%

Inactive

57.55%

0.0%

0.0%

0.0%

21.56%

24.31%

Active

78.18%

21.82%

Non-coding

0.0%

0.0% Gone

84.62%
1.54%

12.31%

Inactive

54.13%

1.54%

100.0%

0.0%

33.6%

8.76%

Active

78.5%

21.5%

Non-coding

20.0%

40.0% Gone

53.49%
5.81%

39.53%

Inactive

57.64%

1.16%

40.0%

0.0%

Fig. 10 (continued)

 76 Page 26 of 38 Empirical Software Engineering (2022) 27:76

23.1%

16.47%

Active

53.95%

45.61%

Non-coding

18.18%

15.15% Gone

45.69%
23.08%

29.84%

Inactive

60.43%

1.4%

66.67%

0.44%

22.83%

20.81%

Active

70.59%

29.41%

Non-coding

14.29%

14.29% Gone

67.65%
6.86%

21.57%

Inactive

56.36%

3.92%

71.43%

0.0%

30.29%

16.42%

Active

85.56%

14.44%

Non-coding

50.0%

0.0% Gone

84.48%
3.45%

10.34%

Inactive

53.28%

1.72%

50.0%

0.0%

29.79%

8.65%

Active

65.72%

33.62%

Non-coding

27.27%

9.09% Gone

43.82%
4.38%

48.21%

Inactive

61.55%

3.59%

63.64%

0.66%

33.48%

8.44%

Active

77.93%

21.72%

Non-coding

50.0%

0.0% Gone

50.0%
4.92%

43.44%

Inactive

58.08%

1.64%

50.0%

0.34%

36.21%

9.78%

Active

87.58%

12.42%

Non-coding

20.0%

20.0% Gone

69.83%
4.31%

24.14%

Inactive

54.0%

1.72%

60.0%

0.0%

Fig. 10 (continued)

Empirical Software Engineering (2022) 27:76 Page 27 of 38 76

the dichotomous dependent variable to be predicted (i.e., whether a developer has ever
transitioned to the gone state at least once) and the only predictor is the ordinal variable
contribution_level (low/high).

The results of the logistic regression are reported in Table 10. The odds ratio (OR) for the
variable contribution_level = high is 0.39. The 95% confidence interval for the OR does not
include 1, indicating that the result is statistically significant. Therefore, as compared to low-
level contributors, high-level contributors’ odds of disengaging from a project at least once
(i.e., is_gone = true) decrease by 61%.

RQ4 – State transition probabilities

–Most core developers have a steady rhythm of code contributions, as the average probability of remaining in the
active state is 60%.

–Most core developers who pause their code contributions and transition into the non-coding and inactive states
resume coding and go back to active (on average 67% and 55%, respectively).

– On average, about 8% of inactive developers remain so for over a year and eventually become gone,
disengaging from the organization.

– On average, more than a half of gone developers never come back (54%), whereas the remaining half is
equally distributed between those who resume coding (i.e., active, 26%) and those who resume collaborating
without contributing code (i.e., non-coding, 21%).

– No transition into the gone state was observed for smaller projects, counting on 1-3 Truck Factor developers
and up to 6 Core developers.

– As compared to Low-level contributors, for High-level contributors the odds of disengaging from a project at
least once decrease by 61%.

7 Discussion

In the following, we discuss our results, presenting implications, insights, and future research
avenues.

Rhythm-based model Our revised model, presented in Fig. 3, is a significant extension of the
original model presented in (Iaffaldano et al. 2019)— inspired by the circadian rhythm, which
also varies from individual to individual. The assessment of the revised model by the
developers showed that 94% of them agreed with it, and that it correctly captured about 70-
80% of the transitions (as per RQ1, see Sect. 6.1). Notably, some developers did not remember
their breaks or did not acknowledge the transitions. For many cases of transition disagree-
ments, we found that the developers were not actually working on the project, but they were
still present in some form (e.g., lurking, waiting for the next thing to do). Although the

Table 10 Results of the logistic regression shows that for high-level contributors the odds of disengaging at least
once from projects are 61% (OR=0.39) less than low-level contributors

Confidence Interval

Core devs (n=538) OR 2.5% 97.5%
Intercept) 1.276 1.090 1.618
Intercept) 1.276 1.090 1.618

AIC = 716.46

 76 Page 28 of 38 Empirical Software Engineering (2022) 27:76

developers considered themselves active in the project, per the model definition they fit the
inactivity state, since they were considered not actively contributing. We also found that even
considering multiple events and activities that are public, contributors perform other kinds of
activities not observable from the traces left on GitHub. This corroborates the results from
Trinkenreich et al. (2020), who provide empirical evidence of the existence and importance of
community-centric roles (e.g., advocate, license manager, community founder), which typically
remain hidden, since these roles may not leave traces in the software repositories typically analyzed
by researchers.

Why are you leaving? Our investigation (RQ1) collected evidence on the reasons why core
developers who do not completely disengage take breaks and then resume their activity. Albeit
not exhaustive, our findings show that in both cases the reasons are mostly personal (80%)
rather than related to the community (e.g., social interactions, technical changes, and organi-
zational aspects). Such personal reasons concern life events (e.g., child birth, vacation) as well
as professional (e.g., new job) and financial changes (e.g., stopped volunteer contribution to
focus on a paid job).

These reasons for disengagement extend the current literature that focuses on motiva-
tions to join and factors that explain longer attachment (Zhou and Mockus 2012; Silva et al.
2020; Lin et al. 2017; Constantinou and Mens 2017; Gerosa et al. 2021). We contribute by
showing that, in addition to job-related reasons (also reported also by Miller et al. (2019)), a
non-negligible share of the reasons to leave are related to life-events and change of interest.
These two latter categories of reasons cannot be easily controlled by project maintainers
and are harder to predict based on historical data. On the other hand, we found cases of
disengagement related to changes in the community organizational structure, problem with
other members’ ideas, and lack of available tasks. These reasons are in line with other
studies, which showed that changes in the organization (Yu et al. 2012) and mismatch of
ideas (Steinmacher et al. 2018) are reasons for contributors to give up. Still, we show that
those core members who leave for job-related and life-event reasons generally return—
which explains more than 50% of probability of contributors moving away from the gone
state (see Fig. 9).

Variations in inactive periods Our findings serve as an input to communities that want to
create awareness mechanisms to inform about developers’ inactivity. As our results showed,
almost all developers take some kind of break during their life cycle—89% and 97% have
been respectively in the inactive and non-coding states at least once (as per RQ2, see Sect. 6.2).
Moreover, as investigated in RQ3, the duration of the breaks may vary widely, even across
developers from a single project (see Fig.8). We noted, for example, that for rails/rails, the
period in non-coding state varies from 8 to 270 days, while for atom/atom, the variation in
gone state is 428-651. This suggests that projects and organizations may find reference values
based on the distribution of breaks; however, it is important to closely follow the individual
rhythm and characteristics of developers, given that each developer may have a distinct
contribution pace.

It is not a ‘goodbye,’ it is a ‘see you soon.’ One interesting finding from RQ2 is that about
one third of the core developers analyzed (33%) have been gone at least once from a project for
one year or longer (see Table 8). Furthermore, as per RQ4 (see Sect. 6.4), the transition
probabilities presented in Fig. 9 show that the probability of a comeback, considering all

Empirical Software Engineering (2022) 27:76 Page 29 of 38 76

projects, is 25.6%. Moreover, the chances that someone inactive will transition to gone is on
average 8.2%, which is much smaller than the chances of transitioning from inactive to active
(54.9%) or non-coding (30.1%).

Overall, the number of break events observed and the odds in Figs. 9, 10 suggest that the core
members of the analyzed projects are more likely to stay than to abandon projects, especially for
smaller projects like aseprite, Space-Vim, MinecraftForge, and crystal, which count on a smaller
core base (see Table 3). Consistently, the results of the logistic regression reported in Table 10
indicate that projects remain sustainable because people with high-level contribution rates have
higher odds (61%) to stay active. This shows that turnover at the core-developers level is not an
issue as we expected—considering the analyzed sample. Moreover, given the age of the projects
analyzed (3 to 15 years, median 8), some turnover is expected with the rise of new core members.
For example, as reported in Sect. 6.2 (see Table 8), 38 core developers from rails were gone at the
time of the data collection (41% of the rails sample), and likewise for fastlane (9 devs., 47%) and
jekyll (8 devs., 47%). The remaining core developers were, in general, enough to keep the
projects running. Although the renewal was not analyzed in this paper, this is something worth
investigating from the perspective of project sustainability. Future work may focus on the impact
of breaks and disengagement with the project performance, and in understanding how other
developers take over when a core member transitions into gone.

Non-coding activities matter Usually, the indicators of contribution (such as GitHub
graphs)19 focus on contributions made to the repository, which represent mainly code
contributions. However, it is known that contributors follow different pathways to contribute
(Trinkenreich et al. 2020) and non-code contributions are often neglected (Ferreira et al. 2017;
Decan et al. 2020; Miller et al. 2019). We found in our analysis that almost all core contributors
take breaks from code contributions but take over non-coding roles (see Table 8). Separating the
analysis of these two types of contributions and making non-coding one state in the model is a
way of not obfuscating the importance of—and give visibility to—non-code contributions.

Adjustments to the model Given the feedback received during the qualitative assessment,
we accordingly adjusted the model. First, we had to account for the ‘degrees of activity’
provided by our model. Our analysis of RQ1 (see Sect. 6.1) revealed that the model was
accepted by 94% of the surveyed developers. However, we noticed room for improvement
based on the received feedback. One shortcoming that clearly emerged from the analysis of
comments was that the activity state came with different degrees of action and that the model
seemed to convey the idea that committing source code is the ultimate form of ‘action.’While
it is impossible to represent all the nuances of development activities in a state diagram, we
accepted the feedback and refined the model so that it would not unintentionally mislead
developers into thinking that non-coding means that they are not actively participating. As
such, in the final version of the model, presented in Fig. 11, we renamed the active state to
active coding and non-coding to active non-coding.

Regarding the identification of the transitions into the gone state, the feedback we received
showed that 4 out of 5 developers did not acknowledge that they had been gone (see Sect. 6.1).
As aforementioned, these developers point out that they did not want to leave; rather, they state
that they did not find anything to work on (D-04) or were too busy with their paid job (D-05).

19 e.g., https://github.com/rails/rails/graphs/contributors

 76 Page 30 of 38 Empirical Software Engineering (2022) 27:76

https://github.com/rails/rails/graphs/contributors

We argue that the disagreement is related to different perspectives taken: project vs. personal.
Our model takes the perspective of the project, mapping when someone takes an overly long
break. When a developer reaches the threshold of one year without any traces, per the model
definition they are considered gone.

Future Work Opportunities and Implications for Researchers We designed and evaluated
our model and method to understand the different states of the contributor’s life cycle and their
transitions. Researchers can extend our approach to build prediction models to anticipate
breaks and disengagement. An interesting future work would be to create and evaluate such
prediction tools by extending the work of Decan et al. (2020) to consider the length of the
breaks and non-coding activities as part of developers’ contributions.

Researchers can also expand our research by including maintainers’ perception of core
developers taking breaks. We have so far focused on identifying and acknowledging breaks
according to developers’ own perception, but we do not yet know how these inactivity periods
and breaks are seen by other community members.

Although we mined multiple public events from GitHub, sometimes we considered
developers as not active because their activities did not leave traces on GitHub. Researchers

Inactive

no commit
after Δtnon-coding

neither commit nor
collaborative activity�

after�Δtinactive

after�Δtgone

commit

co
lla

bo
ra

tiv
e

ac
tiv

ity

commit

no
 c

ol
la

bo
ra

tiv
e

ac
tiv

ity

af
te

r�
Δt

in
ac

tiv
e

co
lla

bo
ra

tiv
e�

ac
tiv

ity

commit

Active coding

do / commit
do / collaborative activity

Active non-coding

do / collaborative activity

Gone

Fig. 11 Final version of the inactivity model with revised names for active-coding and active non-coding states.

Empirical Software Engineering (2022) 27:76 Page 31 of 38 76

who investigate contributors’ activity in software repositories should be aware of this kind of
activity. Usually, the literature focuses on coding activities, disregarding other kinds of
contributions and ‘hidden figures’ (Trinkenreich et al. 2020). Although we only looked for
the activities available on GitHub, this opens doors for further research about ‘invisible
collaboration,’ which may not be mined from project repositories.

A larger sample of repositories can also be investigated, including some private repositories
owned by companies, to gather a better picture of how disengagement varies across different
projects and ecosystems, and whether developers migrate. In addition, we did not analyze
whether the breaks are related to the project schedule or coordinated among team members. A
potential future direction would be an in-depth exploration of these relationships.

Another way to expand our work is to look at the effects of sponsorship on developers’
inactivities—to identify potential differences in frequency and length for company-supported
OSS projects that routinely receive contributions from employed developers—as well as study
the impact on productivity at the project level—to understand whether and how overall
productivity takes a hit during core contributors’ breaks.

Implications for Practitioners Our results show that developers have different work rhythms,
and that the transitions to breaks and abandonment vary from project to project. In fact, this is
in line with the literature that has shown software engineering metrics to be highly context
dependent (Zhang et al. 2013; Gil and Lalouche 2016; Aniche et al. 2016). Nevertheless, in
this paper we presented individual analyses of a variety of projects and organizations, which
allows practitioners to observe similarities and differences, fostering the generalization by
similarity (Wieringa and Daneva 2015). Our results also indicate a range of values to which
projects can compare themselves.

Inspired by ourmodel andmethods, communities can also build tools tomonitor the rhythm of
individual developers (e.g., building dashboards) and detect when they take longer-than-usual
breaks, helping maintainers and managers to assess developers’ life cycles individually. While
informally discussing our results with a core developer who participated in the research, he
mentioned that this kind of information would be valuable to create a “ Contributor Relationship
Management System ” (CRM). In this case, according to him, “ customers are the contributors.
As an OSS project owner, one wants to keep the contributors contributing and identify high-
potential ones. When I see high-potential contributors being away longer than usual, I would use
the communication channel they like.” Such a system could work as a heart monitor, alerting the
community managers of potential cases of ‘non-reported’ breaks. This may help maintainers, for
example, identify developers who are ‘waiting for the next thing to do,’ and have been inactive for
longer than expected. It is important to keep these developers in the loop, because they may
eventually lose track of the technical and social aspects of the project, which may lead to
disengagement. This is especially important since most of the reasons to leave reported by our
survey respondents are personal (see Table 6), beyond the project’s reach.

Limitations Every empirical study suffers from threats to validity and limitations (Wohlin
et al. 2012). First, we acknowledge that we focused on studying a sample of eighteen projects
and organizations hosted on GitHub.Although GitHub hosts millions of open source projects
20, we acknowledge that the results may be different for other forges and ecosystems. Future
research can expand our work to consider other environments. Moreover, because we used a

20 https://octoverse.github.com/\#the-world-of-open-source

 76 Page 32 of 38 Empirical Software Engineering (2022) 27:76

https://octoverse.github.com//#the--world--of--open--source

convenience sampling strategy, we acknowledge the potential sampling bias. Also, despite our
efforts to add variety to the sample, most of the projects analyzed are popular development
frameworks and tools for developers—with the exceptions of JabRef, MinecraftForge,
aseprite, and SpaceVim. This imbalance is likely the side effect of having started the sampling
process by selecting projects and organizations from those trending on GitHub. Accordingly,
our findings may not generalize to other OSS communities, given that each project and
organization has their peculiarities. Nonetheless, the projects in our sample are diverse in
terms of programming languages, size, age, and popularity, which helped us provide an initial
understanding of the developers’ inactivity phenomenon. Presenting individual analyses of
these projects and organizations allows the identification of similarities and differences, which
fosters the generalization by similarity (Wieringa and Daneva 2015).

Also related to the generalization of results, after sampling the 18 organizations, in Sect. 5.1
we described how we selected their main project as the largest one in terms of the number of
contributors, stars, forks received, pull requests, and LOC. While most of the sampled projects
are undoubtedly representative of the organizations—since they have identical or closely
resembling names (e.g., atom/atom)—this might not be the case for github/linguist and
facebook/react. Both github and facebook organizations are ‘umbrellas’ hosting any open-
source effort from the two companies and, as such, they include a varied set of loosely related
projects. Hence, we acknowledge that linguist and react may not be representative of their
respective organization and that this difference may impact the generalizability of our findings.

The method designed to identify breaks showed a reasonably good performance (between 70-
80% of developers acknowledged their state and transitions), albeit not perfect. One possible
explanation for the disagreements is that we consider only the activities tracked by GitHub,
whereas other actions happen outside of the platform, like communicating over email or Gitter.
While we acknowledge this as a limitation of our current method, we point out that there is a great
variety of communications solutions (not to mention the other non-communication tools), which
makes it impracticable to cover all of possible alternatives. In addition, these tools do not always
leave freely accessible traces of activity. Projects using Slack, for example, make it particularly
hard to download and analyze the communication logs. Moreover, when integrating data from
multiple sources, we point out the need to disambiguate developers’ multiple logins and identi-
fications (Wiese et al. 2016). Finally, we hope that, by making all the scripts available, there can
be independent replications and extensions of our work that bridge this gap by investigating the
effect of external communication channels on our method.

When identifying the gone breaks, our model cannot distinguish between cases in which
developers have the intention of abandoning a project from those who are just taking a break
longer than a year (for whatever reason) until they will eventually come back and resume their
activity. Furthermore, the survey about the reasons for taking breaks and resuming contribu-
tion (described in Sect. 6.1) has revealed that reasons can also depend on the decision of the
employer. It is indeed more and more common for paid developers to contribute to OSS
projects; some companies even share their products under open-source licenses, while keeping
their employees in charge of main- taining the projects (Pinto et al., 2018). In our current
analysis, we do not distinguish between company-sponsored projects, which routinely receive
contributions from employed developers, and community-based projects, which mostly grow
through voluntary contributions. In fact, the distinction between the two types can be blurry,
since there are often sponsored contributions to community-based projects and vice-versa. To
date, there have been semi- automatic attempts at classifying the contribution between paid and

Empirical Software Engineering (2022) 27:76 Page 33 of 38 76

non-paid developers (Pinto et al. 2018); however, there is no broadly accepted method to be
employed at scale, without time-consuming manual intervention.

Another potential limitation of this work relates to the choice of the algorithms used to
identify the sample of core developers under investigation. After manual validation by com-
paring the Truck Factor developers sample with the contributors listed in the projects’ contrib-
utors pages on GitHub,21 we observed that the top contributor was not automatically selected in
the cases of JabRef and ionic-framework, and we had to manually amend these errors. As such,
the Truck Factor algorithmmay suffer from shortcomings in identifying all the core developers,
arguably due to how authorship of a file is determined. However, by also using the Commit-
Based Heuristics approach, which broadens the list of core developers of each project to the
authors of 80% of non doc-only commits, we implicitly address those limitations.

Lastly, the method proposed to analyze the developer’s life cycle may be seen as arbitrary.
To mitigate this issue, we evaluated our approach via survey twice, first when conceiving the
model (Sect. 4), and then as an answer to RQ1 (Sect. 6.1), which resulted in the final version
depicted in Fig. 11.

8 Conclusion

In this paper, we analyze the life cycle of OSS project developers concerning their breaks and
disengagement. First, by collecting data from GitHub and conducting a survey with devel-
opers, we devised a model that describes states and transitions related to the breaks. Then, we
designed and implemented an approach to identify developers’ transitions to/from inactivity
states, which we validated by collecting feedback from developers—94% of the TF core
developers agree with our state model of inactivity and 71% and 79% of them acknowledge
their breaks and state transitions, respectively.

Our results also showed that breaks are rather common, and that core members take
frequent breaks, which vary in length and type. We observed that all developers took at least
one break, 97% of them transitioned to noncoding and 89% to inactive.

We also analyzed the probability of the transitions to/from inactivity states and observed
that core developers will likely remain in the projects. However, if they transition to gone, they
are less likely to come back (54% of chance, on average). Our results may help communities
to create mechanisms to monitor core members breaks or to prepare to recruit new members in
case of disengagements.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s10664-021-10012-6.

Acknowledgements We thank all the developers who participated in the interviews and surveys. This research
is partially funded by NSF grants IIS-1815503 and IIS-1900903. The computational work has been executed on
the IT resources made available by two projects, ReCaS and PRISMA, funded byMIUR under the program PON
R&C 2007-2013.

Funding Open access funding provided by Università degli Studi di Bari Aldo Moro within the CRUI-CARE
Agreement.

21 For example: https://github.com/ionic-team/ionic/graphs/contributors

 76 Page 34 of 38 Empirical Software Engineering (2022) 27:76

https://doi.org/10.1007/s10664-021-10012-6
https://doi.org/10.1007/s10664-021-10012-6
https://github.com/ionic--team/ionic/graphs/contributors

Appendix

Empirical Software Engineering (2022) 27:76 Page 35 of 38 76

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article's
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alexander Hars SO (2002) Working for free? Motivations for participating in open-source projects. Int J Electron
Commer 6(3):25–39

Aniche M, Treude C, Zaidman A, Van Deursen A, Gerosa MA (2016) Satt: tailoring code metric thresholds for
different software architectures. In: 2016 IEEE 16th international working conference on source code
analysis and manipulation (SCAM), IEEE, pp 41–50

Avelino G, Passos L, Hora A, Valente MT (2016) A novel approach for estimat- ing truck factors. In: 2016 IEEE
24th Int’l Conf. On program comprehension (ICPC), IEEE, pp 1–10

Avelino G, Constantinou E, Valente MT, Serebrenik A (2019) On the aban- donment and survival of open source
projects: an empirical investigation. arXiv preprint arXiv:190608058

Balali S, Steinmacher I, Annamalai U, Sarma A, Gerosa MA (2018) Newcom- ers’ barriers... is that all? an analysis of
mentors’ and newcomers’ barriers in oss projects. Comput Supp Coop Work (CSCW) 27(3):679–714

Barcomb A (2014) Volunteer attraction and retention in open source com- munities. In: proc. of the Int’l
symposium on open collaboration, ACM, p 40

Bass JM, Sarah B, Razzak MA, Noll J (2018) Employee retention and turnover in global software development:
comparing in-house offshoring and offshore outsourcing. In: 2018 IEEE/ACM 13th International
Conference on Global Software Engineering (ICGSE), IEEE, pp 77–86

Coelho J, Valente MT (2017) Why modern open source projects fail. In: pro- ceedings of the 2017 11th joint
meeting on foundations of software engineering, pp 186–196

Coelho J, ValenteMT, Silva LL,HoraA (2018)Whywe engage in floss: answers from core developers. In: proceedings
of the 11th international workshop on cooperative and human aspects of software engineering, pp 114–121

Constantinou E, Mens T (2017) Socio-technical evolution of the ruby ecosys- tem in github. In: 2017 IEEE 24th
Int’l Conf. On software analysis, evolution, and reengineering (SANER), IEEE, pp 34–44

Cosentino V, Izquierdo JLC, Cabot J (2015) Assessing the bus factor of git repositories. In: 2015 IEEE 22nd Int’l
Conf. On software analysis, evolution, and reengineering (SANER), IEEE, pp 499–503

Crowston K, Howison J (2006) Assessing the health of open source communities. Computer 39(5):89–91
David PA, Shapiro JS (2008) Community-based production of open source software: what do we know about the

developers who participate? Inf Econ Policy 20(4):364–398
Decan A, Constantinou E, Mens T, Rocha H (2020) Gap: forecasting commit activity in git projects. J Syst Softw

165:110573
Dittrich JE, Couger JD, Zawacki RA (1985) Perceptions of equity, job satisfaction, and intention to quit among

data processing personnel. Inf Manag 9(2):67–75
Ducheneaut N (2005) Socialization in an open source software community: a socio-technical analysis. Comput

Supp Coop Work (CSCW) 14(4):323–368
Ferreira M, Valente MT, Ferreira K (2017) A comparison of three algorithms for computing truck factors. In:

proc. of the 25th Int’l Conf. On program comprehension, IEEE press, pp 207–217
Foucault M, Palyart M, Blanc X,Murphy GC, Falleri JR (2015) Impact of developer turnover on quality in open-source

software. In: Proc. of the 2015 10th joint meeting on foundations of software engineering, ACM, pp 829–841
Fronchetti F, Wiese I, Pinto G, Steinmacher I (2019) What attracts newcom- ers to onboard on Oss projects?

Tl;dr: popularity. In: Bordeleau F, Sillitti A, Meirelles P, Lenarduzzi V (eds) Open source systems. Springer
Int’l Publishing, Cham, pp 91–103

Garden AM (1988) Behavioural and organisational factors involved in the turnover of high tech professionals.
ACM SIGCPR Comput Pers 11(4):6–9

Garman AN, Corbett J, Grady J, Benesh J (2005) Ready-to-use-simulation: the hidden costs of employee
turnover. Simulation & gaming 36(2):274– 281, DOI https://doi.org/10.1177/1046878104273254, URL
https://doi.org/10.1177/ 1046878104273254

Gerosa M, Wiese I, Trinkenreich B, Link G, Robles G, Treude C, Steinmacher I, Sarma A (2021) The shifting
sands of motivation: revisiting what drives contributors in open source. In: proceedings of the 43rd
international conference on software engineering (ICSE)

 76 Page 36 of 38 Empirical Software Engineering (2022) 27:76

https://doi.org/

Gil JY, Lalouche G (2016) When do software complexity metrics mean nothing? – When examined out of
context. J Object Technol 15(1):2–1

Graef MI, Hill EL (2000) Costing child protective services staff turnover. Child Welfare 79(5)
Hall T, Beecham S, Verner J, Wilson D (2008) The impact of staff turnover on software projects: the importance

of understanding what makes software practitioners tick. In: proc. of the 2008 ACM SIGMIS CPR Conf. On
computer personnel doctoral consortium and research, ACM, pp 30–39

Hannebauer C, Gruhn V (2017) On the relationship between newcomer motivations and contribution barriers in
open source projects. In: proc. of the 13th Int’l symposium on open collaboration, ACM, p 2

Hess MR, Kromrey JD (2004) Robust confidence intervals for effect sizes: a comparative study of cohen’s d and
cliff ‘s delta under non-normality and heterogeneous variances. In: Annual meeting of the American
Educational Research Association, pp. 1–30

Iaffaldano G, Steinmacher I, Calefato F, Gerosa M, Lanubile F (2019) Why do developers take breaks from
contributing to Oss projects?: a preliminary analysis. In: proc. of the 2Nd Int’l workshop on software health,
IEEE press, Piscataway, NJ, USA, SoHeal ‘19, pp 9–16, https://doi.org/10.1109/SoHeal.2019.00009

King BM, Minium EW (2008) Statistical reasoning in the behavioral sciences. John Wiley & Sons Inc
Krogh GV, Haefliger S, Spaeth S, Wallin MW (2012) Carrots and rainbows: motivation and social practice in

open source software development. MIS Q 36(2):649–676
Lakhani KR, Wolf RG (2005) Why hackers do what they do: understanding motivation and effort in free/open

source software projects. In: Perspectives on Free and Open Source Software, The MIT Press, Cambridge,
MA, chap Chapter 1, p 570

Lee PCB (2002) The social context of turnover among information technology professionals. In: proc. of the
2002 ACM SIGCPR Conf. On computer personnel research, ACM, pp 145–153

Levine JM, Choi HS (2004) Impact of personnel turnover on team performance and cognition. In: Salas E, Fioren
S (eds) Team cognition: Understanding the factors that drive process and performance, American
Psychological Association, pp 153–176

Levine JM, Moreland RL, Argote L, Carley KM (2005) Personnel turnover and team performance. Tech. rep.,
PITTSBURGH UNIV PA

Lin B, Robles G, Serebrenik A (2017) Developer turnover in global, industrial open source projects: insights
from applying survival analysis. In: 2017 IEEE 12th Int’l Conf. On global software engineering (ICGSE),
IEEE, pp 66–75

Link GJ, Germonprez RM (2018) Assessing open source project health. In: 24th Americas Conference on
Information Systems 2018: Digital Disruption, AMCIS 2018, Association for Information Systems

Marsan J, Templier M, Marois P, Adams B, Carillo K, Mopenza GL (2018) Toward solving social and technical
problems in open source software ecosystems: using cause-and-effect analysis to disentangle the causes of
complex problems. IEEE Softw 36(1):34–41

Midha V, Palvia P (2007) Retention and quality in open source software projects. AMCIS 2007 Proceedings p 25
Miller C, Widder D, Kastner C, Vasilescu B (2019) Why do people give up flossing? A study of contributor

disengagement in open source. In: proc. of 15th Int’l Conf. On open source systems (SSO’19), IEEE
Mockus A (2009) Succession: measuring transfer of code and developer productivity. In: proc. of the 31st Int’l

Conf. On software engineering, IEEE computer society, pp 67–77
Mockus A (2010) Organizational volatility and its effects on software defects. In: Proc. of the eighteenth ACM

SIGSOFT Int’l symposium on Foundations of software engineering, ACM, pp. 117–126
Nakakoji K, Yamamoto Y, Nishinaka Y, Kishida K, Ye Y (2002) Evolution patterns of open-source software systems

and communities. In: Proc. of the Int’l workshop on Principles of software evolution, ACM, pp. 76–85
Nakatsu RT, Iacovou CL (2009) A comparative study of important risk factors involved in offshore and domestic

outsourcing of software development projects: a two-panel delphi study. Inf Manag 46(1):57–68
Pinto G, Steinmacher I, Dias LF, Gerosa M (2018) On the challenges of open-sourcing proprietary software

projects. Empirical Softw Eng 23(6):3221–3247
Ricca F, Marchetto A (2010) Are heroes common in floss projects? In: proc. of the 2010 ACM-IEEE Int’l

symposium on empirical software engineering and measurement, ACM, p 55
Santos C, Kuk G, Kon F, Pearson J (2013) The attraction of contributors in free and open source software

projects. J Strateg Inf Syst 22(1):26–45
Schilling A (2014) What do we know about floss developers’ attraction, retention, and commitment? A literature

review. In: 2014 47th Hawaii Int’l Conf. On system sciences, IEEE, pp 4003–4012
Silva JO, Wiese I, German DM, Treude C, Gerosa MA, Steinmacher I (2020) Google summer of code: student

motivations and contributions. J Syst Softw 162:110487
Steinmacher I, Gerosa MA, Redmiles D (2014) Attracting, onboarding, and retaining newcomer developers in

open source software projects. In: Workshop on Global Software Development in a CSCW Perspective

Empirical Software Engineering (2022) 27:76 Page 37 of 38 76

https://doi.org/10.1109/SoHeal.2019.00009

Steinmacher I, Conte T, Gerosa MA, Redmiles D (2015) Social barriers faced by newcomers placing their first
contribution in open source software projects. In: proc. of the 18th ACM Conf. On computer supported
cooperative work & social computing, ACM, pp 1379–1392

Steinmacher I, Pinto G, Wiese IS, Gerosa MA (2018) Almost there: a study on quasi-contributors in open-source
software projects. In: 2018 IEEE/ACM 40th international conference on software engineering (ICSE), IEEE,
pp 256–266

Trinkenreich B, Guizani M, Wiese I, Sarma A, Steinmacher I (2020) Hidden figures: roles and pathways of
successful Oss contributors. Proceedings of the ACM on human-computer interaction 4(CSCW2):1–22

Tukey JW (1977) Exploratory data analysis, 1st edn. Addison Wesley, URL http://gen.lib.rus.ec/book/index.
php?md5= 5444E9D55BA01B129B7BF8FB3C17FA0D

Von Krogh G, Spaeth S, Lakhani KR (2003) Community, joining, and specialization in open source software
innovation: a case study. Res Policy 32(7):1217–1241

Wieringa R, Daneva M (2015) Six strategies for generalizing software engineering theories. Sci Comput Program
101:136–152

Wiese IS, Da Silva JT, Steinmacher I, Treude C, Gerosa MA (2016) Who is who in the mailing list? Comparing
six disambiguation heuristics to identify multiple addresses of a participant. In: 2016 IEEE international
conference on software maintenance and evolution (ICSME), IEEE, pp 345–355

Williams L, Kessler R (2002) Pair programming illuminated. Addison-Wesley Longman Publishing Co., Inc.
Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software

engineering. Springer Science & Business Media
Yamashita K, Kamei Y, McIntosh S, Hassan AE, Ubayashi N (2016) Magnet or sticky? Measuring project

characteristics from the perspective of developer attraction and retention. J Inf Process 24(2):339–348
Yu Y, Benlian A, Hess T (2012) An empirical study of volunteer members’ perceived turnover in open source

software projects. In: 2012 45th Hawaii Int’l Conf. On system sciences, IEEE, pp 3396–3405
Zhang F, Mockus A, Zou Y, Khomh F, Hassan AE (2013) How does context affect the distribution of software

maintainability metrics? In: 2013 IEEE international conference on software maintenance, IEEE, pp 350–359
Zhou M, Mockus A (2012) What make long term contributors: willingness and opportunity in Oss community.

In: proc. of the 34th Int’l Conf. On software engineering, IEEE press, pp 518–528
Zhou M, Mockus A, Ma X, Zhang L, Mei H (2016) Inflow and retention in Oss communities with commercial

involvement: a case study of threehybrid projects. ACM Trans Softw Eng Methodol (TOSEM) 25(2):13

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Fabio Calefato is an Assistant Professor at the University of Bari, Italy, holding the national scientific
qualification as an associate professor. He was the co-chair of ICSE-SCORE 2021 competition, the General
Chair of ICGSE 2019, and a co-organizer of the “Trust in Virtual Teams” workshop co-located with CSCW’13
and SSE’16 (Social Software Engineering) workshop co-located with FSE’16. His research interests include
human factors in software engineering, global software development, online communities, and software engi-
neering for AI.

 76 Page 38 of 38 Empirical Software Engineering (2022) 27:76

http://gen.lib.rus.ec/book/index.php?md5
http://gen.lib.rus.ec/book/index.php?md5

Marco Aurélio Gerosa is an Associate Professor at Northern Arizona University, where he researches Software
Engineering and Computer Supported Cooperative Work. Recent projects include the development of tools and
strategies to support newcomers onboarding to open source software communities and the design of bots and
chatbots. He published more than 200 papers (impact factor 40+ on Google Scholar). He serves on the program
committee (PC) of important conferences, such as FSE, MSR, and CSCW, and as a reviewer for several journals.
He served as the PC Chair of IEEE ICGSE and CRIWG and as a co-editor of several journals special issues. He
graduated several Ph.D. and M.Sc. students and has more than 20 years of teaching experience. For more
information, visit http://www.marcoagerosa.com

Giuseppe Iaffaldano has received a PhD in Computer Science from the University of Bari. Formerly a research
fellow at Politecnico of Bari, he is currently a software developer at an international company. His main research
focus has been on analyzing the user participation and activity in creative online communities. His other research
interests include: human factors in software engineering, collaborative software development, human-computer
interaction, and Software-defined networking.

Empirical Software Engineering (2022) 27:76 Page 39 of 38 76

Filippo Lanubile is a Full Professor of computer science at the University of Bari, Italy, where he leads the
Collaborative Development Research Group. He is also the CEO and co-founder of the academic spin-off
company PeoplewareAI. His research interests include: human factors in software engineering, collaborative
software development, and software engineering for AI/ML systems. He has won two awards from IBM and one
from Microsoft Research. He is the Chair of the IEEE Software Advisory Board and the General Chair of the
15th ACM/IEEE Int. Symp. on Empirical Software Engineering and Measurement (ESEM 2021).

Igor Steinmacher is currently an Assistant Professor at the Federal University of Technology - Paraná (UTFPR),
Campo Mourão, Brazil, on a personal leave from his position at the Northern Arizona University. He researches
the intersections of Software Engineering and Computer Supported Cooperative Work, focusing on open source
developers’ behavior. He was the co-PC chair of ICGSE 2020, CHASE 2019, and was the co-chair of ICSE
SCORE 2021. He coauthored papers that received the ACM SIGSoft Distinguished paper award on ICSE 2021,
ICSE-SEET 2019, and IEEE TCSE Distinguished paper award on ICSME 2020. He is currently part of the
Editorial board of EMSE and JSME.

 76 Page 40 of 38 Empirical Software Engineering (2022) 27:76

Affiliations

Fabio Calefato1
& Marco Aurélio Gerosa2 & Giuseppe Iaffaldano1

& Filippo Lanubile1
&

Igor Steinmacher2

Marco Aurélio Gerosa
marco.gerosa@nau.edu

Giuseppe Iaffaldano
giuseppe.iaffaldano@uniba.it

Filippo Lanubile
filippo.lanubile@uniba.it

Igor Steinmacher
igor.steinmacher@nau.edu

1 University of Bari, Bari, Italy
2 Northern Arizona University, Flagstaff, AZ, USA

Empirical Software Engineering (2022) 27:76 Page 41 of 38 76

	Will you come back to contribute? Investigating the inactivity of OSS core developers in GitHub
	Abstract
	Introduction
	Related work
	Open source developers’ life cycle
	Developers’ turnover and disengagement

	Research framework
	Phase I - modeling developers’ activities and breaks
	Evaluation of the preliminary model
	The revised model of inactivity

	Phase II - evaluation of the revised model and characterization of the phenomenon
	Data collection and sampling
	Identifying Core developers and their pauses
	Identifying Core developers’ inactivity periods
	Labeling breaks and transitions

	Phase II - results
	RQ1 – Evaluation of the model and identification method
	RQ2 – Break frequency
	RQ3 – Break length
	RQ4 – State transition probabilities

	Discussion
	Conclusion
	References

