
A new mesh selection strategy with stiffness detection
for explicit Runge–Kutta methods

Francesca Mazzia a,⇑, A.M. Nagy b

a Dipartimento di Matematica, Università di Bari, Via Orabona 4, 70125 Bari, Italy
b Department of Mathematics, Benha University, 13518 Benha, Egypt

a r t i c l e i n f o

Keywords:
Mesh selection
Conditioning
Stiffness
ODE problems
Initial value problems
Runge–Kutta methods

a b s t r a c t

In this paper, we develop a new mesh selection strategy based on the computation of some
conditioning parameters which allows to give information about the conditioning and the
stiffness of the problem. The reliability of the proposed algorithm is demonstrated by some
numerical experiments. We observe that ‘‘when an initial value problem is run on a com-
puter, the results may appear plausible even if they are unreliable because of some unrec-
ognized numerical instability’’ (Miller, 1967) [23]. The additional information about the
behavior of the numerical solution provided by the new mesh selection algorithm are,
therefore, of great interest for potential users of a numerical computer code.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

We consider initial value problems for systems of ordinary differential equations

y0 ¼ f ðt; yÞ; yðt0Þ ¼ y0; t 2 ½t0; tf �; ð1Þ

where y0 is a given vector in Rm.
In order to suitable choose the most efficient numerical scheme for computing a numerical solution of (1), information

about the behavior of the solution are required. One of such information concerns the ‘‘stiffness’’ of the problem. In fact if
we try to solve a stiff problem with an explicit method, the code may fails to give a solution, or may provide unreliable
results.

Many researchers have attempted to find a suitable way to automatically detect stiffness when an explicit numerical
schemes is used [1–5]; in practice, they detect if the stepsize is limited by stability reason. This is an important advice when
we are working with explicit methods, but does not give information about the degree of stiffness of the problem to be
solved. In [1] the author looks for a method that is able to recognize when the step-size is limited by stability. He used
two error estimators of different orders err ¼ OðhpÞ, ferr ¼ OðhqÞ, with q < p, usually err < ferr , if the stepsize is limited by
stability requirements and err � ferr when the stepsize is limited by accuracy requirements. The same author reports in
[3], a method based on the estimation of the spectra of the Jacobian matrix that detects if the stepsize is restricted by sta-
bility. Both procedures are described in [6, p.21]. The technique based on an approximation of the dominant eigenvalue has
been implemented in the code DOPRI5 [6] and used in [7,5]. The estimation of the dominant eigenvalues with Arnoldi’s
methods is analyzed in [4]. Automatic selection of appropriate methods for solving stiff and nonstiff differential equation

http://dx.doi.org/10.1016/j.amc.2014.03.065
0096-3003/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail addresses: francesca.mazzia@uniba.it (F. Mazzia), abdelhameed_nagy@yahoo.com (A.M. Nagy).

Applied Mathematics and Computation 255 (2015) 125–134

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2014.03.065&domain=pdf
http://dx.doi.org/10.1016/j.amc.2014.03.065
mailto:francesca.mazzia@uniba.it
mailto:abdelhameed_nagy@yahoo.com
http://dx.doi.org/10.1016/j.amc.2014.03.065
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc

A new mesh selection strategy with stiffness detection for explicit

Runge-Kutta methods

Francesca Mazziaa,∗, A. M. Nagyb

aDipartimento di Matematica,Università di Bari, Via Orabona 4, 70125 Bari, Italy
bDepartment of Mathematics, Benha University, 13518 Benha, Egypt

Abstract

In this paper, we develop a new mesh selection strategy based on the computation of some condi-
tioning parameters which allows to give information about the conditioning and the stiffness of the
problem. The reliability of the proposed algorithm is demonstrated by some numerical experiments.
We observe that “when an initial value problem is run on a computer, the results may appear plau-
sible even if they are unreliable because of some unrecognized numerical instability” (Miller, 1967).
The additional information about the behavior of the numerical solution provided by the new mesh
selection algorithm are, therefore, of great interest for potential users of a numerical computer code.

Keywords: mesh selection, conditioning, stiffness, ODE problems, initial value problems,
Runge-Kutta methods

1. Introduction

We consider initial value problems for systems of ordinary differential equations

y′ = f(t, y), y(t0) = y0, t ∈ [t0, tf], (1)

where y0 is a given vector in Rm.
In order to suitable choose the most efficient numerical scheme for computing a numerical solution

of (1), information about the behavior of the solution are required. One of such information concerns
the “stiffness” of the problem. In fact if we try to solve a stiff problem with an explicit method, the
code may fails to give a solution, or may provide unreliable results.

Many researchers have attempted to find a suitable way to automatically detect stiffness when
an explicit numerical schemes is used [1, 2, 3, 4, 5]; in practice, they detect if the stepsize is limited
by stability reason. This is an important advice when we are working with explicit methods, but
does not give information about the degree of stiffness of the problem to be solved. In [1] the author
looks for a method that is able to recognize when the step-size is limited by stability. He used two
error estimators of different orders err = O(hp), ẽrr = O(hq), with q < p, usually err < ẽrr, if the
stepsize is limited by stability requirements and err " ẽrr when the stepsize is limited by accuracy
requirements. The same author reports in [3], a method based on the estimation of the spectra
of the Jacobian matrix that detects if the stepsize is restricted by stability. Both procedures are
described in [6, p.21]. The technique based on an approximation of the dominant eigenvalue has been
implemented in the code DOPRI5 [6] and used in [7, 5]. The estimation of the dominant eigenvalues
with Arnoldi’s methods is analyzed in [4]. Automatic selection of appropriate methods for solving
stiff and nonstiff differential equation has been analyzed in [8, 9, 2]. These methods are based on
the approximation of the dominant eigenvalue and/or on the estimation of the computational cost.

We report here the following sentence, quoted by [10], which summarize what is, now, considered
the “best way” to detect stiffness: “Often the best way to proceed is to try one of the solvers

∗Corresponding authors
Email addresses: mazzia@dm.uniba.it (Francesca Mazzia), abdelhameed_nagy@yahoo.com (A. M. Nagy)

1

*Manuscript
Click here to download Manuscript: stiffdetect2014.tex Click here to view linked References

http://ees.elsevier.com/amc/download.aspx?id=488038&guid=6778f6cb-9563-417f-a9d5-785d64e008b6&scheme=1

intended for non-stiff systems. If it is unsatisfactory, the problem may be stiff. If the problem is
stiff, there are effective solvers available.”

A practical definition of stiffness has been given in [11, 12] and further refined in [13, 14]. This
definition has been used to detect stiffness for Boundary Value Problems (BVPs) and to define
new hybrid mesh selection strategies based on the conditioning parameters and the local error.
The definition of the conditioning parameters has been given [15, 16, 14] and they measure the
sensitivity of the problem to perturbations. Such parameters can be defined both for the continuous
problems and for the discrete ones giving the possibility to measure how well the discrete problem
approximates the continuous one. Since such parameters, for the discrete problem, also depend on
the chosen mesh it is possible for a fixed method to vary the mesh in order to compute a better
approximation of them. Some general purpose codes for BVPs now include the computation of
the conditioning parameters and hybrid mesh selection strategies based on conditioning, see, for
example, the Matlab codes bvptwp [17] and tom [18], the R code bvptwp of the R package bvpSolve
[19, 20], the fortran codes twpbvpc,twpbvplc [21, 22].

The mesh selection algorithm that we present in this paper is strongly related to the hybrid
mesh selection algorithms for BVPs and allow the computation of the conditioning parameters. The
algorithm essentially computes two solutions starting from initial conditions that are very close, and
adapt the mesh in order to have a good approximation of both solution. It is possible to monitor the
differences beetwen the two solution using two different norms and this is used to give information
about stability and stiffness. We observe that a similar experimental method was proposed in [23]
for testing numerical stability in Initial Value Problems.

In Section 2 we recall how to analyse the conditioning of an initial value problem defined in
a fixed interval and the definition of stiffness for uniformly asymptotically stable problem. This
definition has been used in [24] in a new algorithm to detect stiffness, here we also introduce a new
definition for general non-uniformly stable problems. In Section 3 we describe the mesh selection
algorithm with stiffness detection implemented in codes based on explicit Runge-Kutta methods. In
Section 4 we generalize the new mesh selection strategy for non-uniformly stable problems.

The numerical tests show that the new mesh selection algorithm is able to compute a solution
more accurate than the one obtained with the standard mesh selection and to give information about
stability and stiffness for very difficult non linear problems used in applications [25].

2. Conditioning, stability and stiffness

Let us consider a linear initial value problem having an uniformly asymptotically stable reference
solution:

y′ = A(t)y + q(t), y(t0) = y0, t ∈ [t0, tf] (2)

The condition of uniform stability yields the definition of the stability constant

κc = sup
t0≤x≤t<∞

‖Y (t)Y −1(x)‖,

where Y (t) is the fundamental solution of the ODE (2). We note that this stability constant is a
special case of the conditioning constant for a BVPs, which for this reason, we call the conditioning
constant (see [12, p.239], [11] and [26, p.100] for more details). Using κc it is possible to give
a bound on the effect of perturbation η on the initial condition y0. In fact, if we consider the
perturbed problem:

ŷ′ = A(t)ŷ + q(t), ŷ(t0) = y0 + η, t ∈ [t0, tf], (3)

the difference between the solution of the perturbed and the unperturbed problem, satisfies:

z′ = A(t)z, z(t0) = η, t ∈ [t0, tf], (4)

and
‖z‖∞ ≤ κc‖η‖.

2

For uniformly asymptotically stable problems we have that there exist α > 0, β > 0 such that
‖Y (t)Y −1(x)‖ ≤ βe−α(t−x) for all x ≥ t, this means that κc ≤ β and we say that the IVP is
well-conditioned if β is of moderate size (see [12, p.7]).

Having fixed problem (2), we now describe one parameter which tells us if the solution varies
rapidly or not in [t0, tf]. This can be done easily by introducing the following two measures related
to the solution of problem (4) with different starting values (see, e.g., [14, 13]):

κc(t0, tf , η) =
1

‖η‖
max

t0≤t≤tf
‖z(t)‖, κ̄c(t0, tf) = max

‖η‖≤δ,η '=0
κc(t0, tf , η),

γc(t0, tf , η) =
1

(tf − t0)‖η‖

∫ tf

t0

‖z(t)‖dt, γ̄c(t0, tf) = max
‖η‖≤δ,η '=0

γc(t0, tf , η),

(5)

where ‖ ·‖ is a compatible vector norm and δ is sufficiently small; the first one study the conditioning
in the infinity norm, the second one in the scaled l1-norm. We have changed the notation, with
respect to the one used in [14], giving explicitly the dependence on t0, tf , instead only on the width
of the interval T = tf − t0. This has been done in order to maintain the same notation needed
for the general case. According to [14], we report the following definition of stiffness for uniformly
asymptotically stable problems:

Definition 1. The initial value problem (2) is stiff in [t0, tf], tf = (t0 + T), T > 0 if there is a
δ > 0, such that:

σc(T) = max
‖η‖≤δ,η '=0

κc(t0, t0 + T, η)

γc(t0, t0 + T, η)
" 1. (6)

We note that σc(T) depends on the width of the interval of integration. More details about σc(T)
and the relation with Definition 1 and classical definition of stiffness are reported in [14]. Since in
practical applications more general problems could arise, that are no uniformly asymptotically stable,
we give here a new more refined definition of stiffness for IVPs that allows to cover more general
situations.

Definition 2. The initial value problem (1) is called stiff in the interval [t0, tf] if

σG
c (t0, tf) = max

t0≤t<tf
max

‖η‖≤δ,η '=0

κc(t, tf , η)

γc(t, tf , η)
" 1. (7)

More details about the importance of this generalized definition will be given in Section 4. In the
general nonlinear case (1) if ŷ is the solution of the following perturbed problem:

ŷ′ = f(t, ŷ), ŷ(t0) = y0 + η, t ∈ [t0, tf] (8)

the difference between the solution of the perturbed and the unperturbed problem, satisfies:

z′ = f(t, ŷ)− f(t, y), z(t0) = η, t ∈ [t0, tf] (9)

and the values of the conditioning parameters in (5) are computed using z solution of (9).

3. Hybrid mesh selection strategy and computation of the conditioning parameters for

explicit Runge-Kutta schemes

In the following we describe the implementation of the hybrid mesh selection strategy in the
MATLAB version of the code DOPRI5 even though, in principle, the algorithm could be implemented
in every Runge-Kutta code. The same algorithm has been, in fact, implemented in a code based on
the explicit Cash-Karp-Runge-Kutta method available in the R package deTestSet [27, 28, 29, 30],
code cashkarp with input parameter stiffness=4, with similar results.

3

A general s-stage explicit Runge-Kutta method is given by

yn+1 = yn + hn

s∑

i=1

biki

where
ki = f(xn + cihn, gi), i = 1, . . . , s

and

gi = yn + hn

i−1∑

j=1

aijkj .

For the Dormand and Prince method we have s = 7 and c6 = c7 = 1. A numerical code
computes an approximation of y, solution of (1) on the grid π = {t0, t1, . . . , tN} with grid spacing
hn = tn − tn−1, n = 1, . . . , N. The grid is automatically computed using an estimation of the
local truncation error in an attempt to produce a numerical solution that satisfy some input error
tolerances. In addition to this, we would like to compute an approximation of the conditioning
parameters defined in (5), (6) and (7). To do this we also compute an approximation of ŷ, the
solution of (8), by choosing a suitable value of the perturbation η. To compute an approximation of
ŷ that satify the same input error tolerance we estimate the error for ŷ and we choose the stepsize
accordly. Moreover, the estimation of the conditioning parameter is based on the difference z = ŷ−y
computed using equation (9) that also need to be computed with a similar accuracy.

In order to control the local error the code DOPRI5 uses, at each step n, a standard relative
error estimation on y,

ey(h) =

√√√√ 1

m

m∑

i=1

(En,i(h)

ρi

)2
, (10)

where ρi = atoli +max(|yn,i|, |yn+1,i|)rtoli and En,i(h) is an approximation of the local error. To
have a good approximation of ŷ, we check the error using the same strategy used for y, whereas for
z is necessary to use a smaller absolute tolerance, since z is the difference beetwen two solutions
that are very close each other, so the error estimation for z is computed using the absolute tolerance
equal to 10−2atoli. This generate a new mesh selection strategy:

hnew = fac · h · e(h)−1/5, e(h) = max(ey(h), eŷ(h), ez(h)).

The step is accepted if e(h) < 1. The factor fac is computed using the PI step size control [6, p.28].
This allow us to approximate the conditioning parameters as follows:

κη(π) =
1

‖η‖2
max

i=1,...,N
(‖zi‖2), (11)

γη(π) =
1

‖η‖2

1

(tN − t0)

N∑

i=1

hi

2
(‖zi‖2 + ‖zi−1‖2), (12)

where zi = ŷi − yi, and the stiffness ratio (6) as follows:

ση(π) =
κη(π)

γη(π)
. (13)

We also monitor the relative difference between y and ŷ at each step n using the following formula:

rz(π) =

√√√√ 1

m

m∑

i=1

(yn,i − ŷn,i
10−2atoli + |yn,i|rtoli

)2
.

4

In practice we compute two solutions of the same problem starting with a different initial con-
dition. It is important to detect the choice of η that yields a good approximation of σc(T). After
some extensive numerical experiments we choose η as the dominant eigenvector of J(t, y(t)), where
J refers to the Jacobian matrix, with t ≈ t0. This eigenvector, in the modified version of the code
DOPRI5, is computed by using the technique described in [6] as follows:

η = ξ ∗
g7 − g6

‖g7 − g6‖
,

and we choose the scaling factor ξ = rtol‖y0‖, if ‖y0‖ > 0 and ξ = atol when ‖y0‖ = 0. Moreover,
to avoid a too small value of ξ we require ξ > 104 · eps, where eps is the machine precision. Since
both g7 and g6 are approximation of the continuous solution at the same point t0 + h0, with h0 the
initial stepsize, the chosen perturbation η is the one naturally introduced by the numerical method
used. In addition it is related to the input tolerances by the scaling factor.

For uniformly asymptotically stable problem, the stiffness detection algorithm is based on the
value of ση(π). In more details, we empirically consider a problem to be stiff when ση(π) > 50 and
rz(π) is small, naturally this is an empirical decision.

We can have more information about the behavior of the numerical methods analyzing the two
approximation of the erros ey(h) and ez(h). In fact if ey(h) is smaller than ez(h), we can deduce
that the stepsize is restricted only by stability reason, moreover we can deduce that the numerical
solution is unstable if rz(π) and κη(π) are large.

In the original code DOPRI5 an approximation of the absolute value of the dominant eigenvalue
is computed by using the already computed quantities k7, k6, g7, g6:

|λ̃| =
‖k7 − k6‖

‖g7 − g6‖
. (14)

Once |λ̃| is computed the product h ˜|λ| is compared to the boundary of stability domain of the

method in order to detect if the stepsize is limited by stability reason; the practical test is: h ˜|λ| > 3.25
for at least 15 steps. These steps could be consecutive or separated by at most 5 steps where the
inequality is not satisfied. In the modified version we compute two approximations of the dominant
eigenvalue, |λ̃y| and |λ̃ŷ|, using in the appropriate way formula (14), and these approximations can
be used as in the standard stiffness detection algorithm implemented in DOPRI5.

So to give to the user all the important information about the solution, we have included the
following tests:

S1: The stepsize is limited by stability reason if ey(h) < 0.1ez(h); for at least 50 steps. These steps
could be consecutive or separated by at most 5 steps where the inequality is not satisfied;

S2: The stepsize is limited by stability reason if 2.8 < hmax(|λ̃y |, |λ̃ŷ|) < 4.2, for at least 25 steps.
These steps could be consecutive or separated by at most 5 steps where the inequality is not
satisfied.

S3: The numerical solution is unstable if rz(π) > 1010 and κη(π) > 108;

Concerning the computational cost, at each step we doubled the number of function evaluations.
This is a very modest price to pay for explaining the behavior of the numerical solution and giving
information about the conditioning and the stiffness of the problem, keeping in mind that the direct
use of an implicit method is much more expensive.

3.1. Numerical Experiments

In the following we present some numerical results to demonstrate the performance of the new
mesh selection algorithm and of the stiffness detection algorithm based on the computation of σc(T),
the computation of an approximation of σG

c (t0, tf) will be described in the next section. Comparisons
are made between the original code and the modified one. For simplicity, in the following we omit
the dependence on π for the stiffness ratio and the conditioning parameters.

5

The results are tabulated in the tables for different values of rtol and atol. In the tables we show
the time t of the integration when stiffness is detected or when the code recognize that the stepsize
is restricted only by stability reason. We denote it by to for the original code and tm for the new
one (– in the tables means that the code did not detect stiffness and * means that the code failed
to compute the solution), the (e), (λ) or (σ) after tm denote how the stopping decision has been
made, (e) if S1 is satisfied, (λ) if S2 is satisfied, (σ) if ση computed at tm is greater than 50 and
rz < 10−5; No, Nm are the number of total steps required by the original and the modified code. We
also compute the errors Eo and Em for the original and the modified code by using the following
formula:

max
0≤i≤n

(
|y(ti)− yπ(ti)|

(atol/rtol + |y(ti)|)

)
,

where ti, i = 1, . . . , n are the mesh points in the final mesh, yπ represented the numerical solution
and y is an accurate solution computed by an implicit solver such as ode15s (MATLAB solver for
solving stiff problems) with very small tolerance rtol = atol = 10−13.

We run the original code DOPRI5 using the parameter Nonstiff = 10, in order to start the stiffness
detection at the beginning of the integration.

Example 1. Classical problem due to Robertson [6] which models a chemical reaction. The equa-
tions and initial values are given by

y′1 = −0.04y1 + 104y2y3,
y′2 = 0.04y1 + 104y2y3 − 3 · 107y22 , t ∈ [0, 10]
y′3 = 3 · 107y22 ,
y(0) = (1, 0, 0)T .

(15)

Example 2. The Brusselator problem modeled as (for more details see page 6 in [6])

∂u
∂t = A+ u2v − (B + 1)u+ α∂2u

∂x2 , t ∈ [0, 10]

∂v
∂t = Bu− u2v + α∂2v

∂x2 ,
(16)

where u and v denote the concentration of the reaction products, A and B denote the concentration
of input reagents. In our work we choose A = 1, B = 3 and α = 0.02. The initial conditions are
u(x, 0) = 1 + sin(2πx), v(x, 0) = 3.

Example 3. The stiff Beam which is originally described by a partial differential equation subject
to boundary conditions. It describes the motion of an elastic, inextensible thin beam clamped at one
end and subject to a force acting at the free end. The semi-discretization in space of this equation
leads to a stiff system of 80 nonlinear differential equations. A complete description of the problem
could be found in [25] and [6, p.8].

Example 4. The Model of Flame Propagation given by [10, 31]

y′ = y2 − y3, t ∈ [0, 2/δ]
y(0) = δ.

(17)

By looking at Table 1 we see that for the Robertson problem for rtol = atol = 1e-4, the original
code fails to give a solution, but the new code, which implements a different mesh selection strategy,
is able to give a solution, which is more accurate than was required, and this is what we expect, since
the stepsize is limited by stability reason. Moreover, we observe that the value of ση(tm) (that is ση

computed in the interval [t0, tm]) is greater than ση(tf), this means that γη is growing. We expect
that if we integrate in a bigger interval an unstability will be detected. For smaller values of the

6

Table 1: Examples 1, 2, 3.
Robertson, tf = 10

to tm rtol atol ση(tm) ση κη γη No Nm Eo Em

– (*) 0.04311 (λ,σ) 1e-4 1e-4 6.56e1 8.31e0 1.0e0 1.20e-1 – 8992 – 2.27e-5
0.02661 0.04780 (λ,σ) 1e-4 1e-7 1.06e2 1.05e4 1.0e0 9.53e-5 7156 7103 8.24e-5 8.01e-7
0.03509 0.04799 (λ,σ) 1e-5 1e-8 5.92e1 1.12e4 1.0e0 8.92e-5 7103 7105 9.91e-6 5.27e-7
0.03844 0.04924 (λ,σ) 1e-6 1e-9 5.71e1 9.98e3 1.0e0 1.00e-4 7102 7105 1.23e-6 5.82e-7

Brusselator, N = 40, tf = 10
0.69436 0.75636 (λ) 8e-2 8e-2 6.84e0 1.81e1 1.0e0 5.52e-2 498 412 6.86e-1 3.27e-7
0.60002 0.90407 (e) 1e-4 1e-7 6.73e0 1.93e1 1.0e0 5.17e-2 415 424 2.84e-4 9.14e-7

– – 1e-8 1e-8 – 1.93e1 1.0e0 5.17e-2 421 421 1.65e-8 1.65e-8
Brusselator, N = 80, tf = 10

0.21481 0.18269 (λ) 8e-2 8e-2 6.24e0 4.72e1 1.0e0 2.12e-2 1791 1593 8.37e-1 2.15e-8
0.15044 0.23545 (e) 1e-4 1e-7 7.02e0 4.85e1 1.0e0 2.06e-2 1593 1603 4.39e-4 1.10e-9
1.48430 0.35983 (e) 1e-8 1e-8 9.05e0 4.83e1 1.0e0 2.07e-2 1599 1602 3.05e-8 2.91e-9

Beam, tf = 0.5
– 0.01574 (e) 1e-4 1e-4 1.67e0 1.99e0 2.72e1 1.36e1 2451 2451 1.19e-1 2.66e-7
– 0.01514 (e) 1e-6 1e-6 1.62e0 1.98e0 2.65e1 1.34e1 2458 2458 1.18e-3 2.60e-7
– 0.01484 (e) 1e-8 1e-8 1.64e0 1.98e0 2.65e1 1.34e1 2469 2460 1.15e-5 2.60e-7

Table 2: Example 4.
Flame propagation, rtol = 1e-4, atol = 1e-7.

δ to tm ση(tm) ση κη γη No Nm Eo Em

1e-1 – – – 3.24e0 1.62e1 5.00e0 24 29 6.37e-5 1.39e-5
1e-2 192.725 – – 2.86e1 1.43e3 5.02e1 64 82 1.20e-4 1.07e-4
1e-3 1074.192 1024.907 (σ) 1.51e2 2.95e2 1.48e5 5.02e2 347 371 1.72e-3 1.61e-3
1e-4 10084.990 10023.069 (σ) 1.47e3 2.93e3 1.46e7 4.99e3 3080 3111 4.94e-2 4.81e-2

tolerances the conditioning parameters stabilized and this give an indication about the reliability of
the solution.

We obtain similar results for the Brusselator problem, but looking at Figure 1, we see that, using
atol = rtol = 8 · 10−2 the new algorithm provides a more accurate solution without oscillation,
with a smaller number of mesh points and a relative error Em = 3.27 · 10−7, the original code
instead compute a solution with a relative error Eo = 6.89 · 10−1. This means that the new mesh
selection strategy based on conditioning gives a more accurate solution using the same number of
mesh points. When atol = rtol = 10−8 the stepsize is no restricted by stability reason, but the
degree of stiffness of the problem does not change, with respect to the one computed using higher
tolerances. In this case ση ≈ 20, so we can consider this problem moderately stiff. Moreover, for
N = 80, the stiffness ratio increases and the new algorithm computes a solution which is much more
accurate than required. In this case the new step selection always generate a solution with an error
of the order of 10−8, the original step selection algorithm instead generated, using a similar number
of mesh points, a solution with an error which is much higher.

A similar behavior in the error is observed for the Beam problem, were the error computed with
the original algorithm is 103 times higher than the required input tolerance, the new mesh selection
algorithm instead compute the solution with an error which is usually smaller than the required
tolerances with the same number of mesh points. For the beam problem, we also see that the
original code is not able to detect if the stepsize is limited by stability reason, the new one, instead,
detect soon that the stepsize is limited by stability reason, the value of ση is however small. We
observe that the algorithm compute a lower bound of σc(T).

For the flame propagation problem, the stiffness depends on the value of δ. For δ = 0.1 the
problem is not stiff, the value of κη " 1 means that the problem has a growing solution in the
interval. If we decrease δ the code not only detect stiffness, but also the ill-conditioning of the
problem, in fact both κη and ση grow and κη = 1.46 · 107 for δ = 10−4. This problem has been
carfully described in [31, 10] as an illustrative example of stiffness. In Figure 2 we report the
numerical solution computed with δ = 10−4, and rtol = atol = 10−4 by the two codes and a zoom
of the solution near t = δ. We note that the modified code computes a more accurate solution with
the same number of mesh points.

7

Figure 1: The numerical solution for equation (16) using the original (left) and the modified DOPRI5 code (right).

Figure 2: The numerical solution for Example 4 using the original (left) and the modified DOPRI5 code (right). The
figures at the bottom are a zoom of the solution, the width of the y-axis is (1 − 2 · 10−4, 1 + 5 · 10−5).

4. Generalization for non-uniformly stable problems

The following two examples show that the algorithm presented in the previous section works
very well for uniformly asymptotically stable problems but could give a value of ση smaller than we
could aspect for stable, but not uniformly stable, problems.

Example 5. The Kreiss problem [6] which is a linear and non-autonomous problem:

y′ = A(t)y, t ∈ [0, 4π], y(0) = (0, 1)T , (18)

where
A(t) = QT (t)ΛεQ(t),

and

Q(t) =

(
cos t sin t
− sin t cos t

)
, Λε =

(
−1

−ε−1

)
,

with ε = 10−3.

Example 6. A non-uniformly stable test problem:

y′ = et cos y, t ∈ [0, tf]
y(0) = 0.

(19)

8

Table 3: Kreiss problem, t0 = 0 and tf = 10.
rtol atol to tm ση(tm) ση κη γη No Nm Eo Em

1.0e-3 1.0e-5 0.0913 0.1045 (λ, σ) 9.46e1 5.35e3 1.0e0 1.87e-4 3038 3038 1.45e-3 1.45e-3
1.0e-4 1.0e-6 0.0817 0.1082 (λ, σ) 9.90e1 5.48e3 1.0e0 1.82e-4 3045 3045 9.95e-5 7.89e-5
1.0e-5 1.0e-7 0.0753 0.1118 (λ, σ) 1.02e2 4.37e3 1.0e0 2.29e-4 3054 3054 9.14e-6 7.28e-6
1.0e-6 1.0e-8 1.1070 0.1057 (λ, σ) 9.80e1 5.53e3 1.0e0 1.81e-4 3085 3085 8.21e-7 8.21e-7
1.0e-7 1.0e-9 3.4090 0.6644 (λ, σ) 4.78e2 5.53e3 1.0e0 1.81e-4 3200 3200 8.69e-8 8.69e-8

From Tables 3-4 we see that for the uniformly stable Kreiss problem, the value of ση decreases
with the width of the interval and remains the same if we change t0 and tf , but we leave unchanged
the width tf − t0. Different results are obtained for the non-uniformly stable problem (see Tables
5-6). In this case changing the value of t0, the value of ση increases even if the width of the
interval decreases. Example 6 shows that Definition 1 does not give the complete information about
stiffness if the problem is not uniformly stable. For this reason we have introduced the new general
Definition 2. For uniformly stable problems the approximation of σc(T) could be efficiently done
using the algorithm presented in Section 3. This is not the case for general stiff problems where
it is important to compute κc(t, tf , η) and γc(t, tf , η) changing the value for t ≥ t0 and this is not
computationally efficient. So, we decide to dynamically choose a discrete set of times, say Nσ, and
to compute an approximation of σG

c (t0, tf)

σG
η (πi) = max

1≤i≤Nσ

κη(πi)

γη(πi)
,

where πi is the mesh used in the interval tσi , t
σ
i+1, The new algorithm starts with tσ1 = t0, i = 1

and chooses the new point tσi+1 by computing rz , the relative difference between the numerical
approximation of y and ŷ, at time tσi+1, if this difference became negligible, no more information is
added to the computation of σG

η (πi) and, if σG
η (πi) is small we restart the computation. The results

of this algorithm for problem (6) are reported in Table 7. We see that now the value of σG
η changes

and the stiffness is detected. For all the problems presented in the previous section the results are
the same, because the restart is not needed. We observe that the stiffness strongly depends on the
size of the interval when the solution as to be computed, in Table 8 we report the results of the
Robertson problem using a different value of tf . When tf is less than 10−1 the problem is not stiff,
the value of σG

c is small and the explicit method works well, in the other cases σG
c grows and the

numerical method require an higher computational cost. The new mesh selection algorithm gives
a solution whose error does not depends on the input tolerances, because the stepsize is always
restricted by stability reason. For higher values of the tolerance the original code gives a solution
with an higher error, using a similar number of mesh points.

5. Conclusions

We have presented a new mesh selection algorithm based on conditioning that gives information
about the conditioning and the stiffness of the problem. This algorithm has been implemented into
the Matlab code DOPRI5 and the R code cashkarp.

We observe that, as pointed out in [23] “when an initial value problem is run on a computer,
the results may appear plausible even if they are unreliable because of some unrecognized numerical

Table 4: Kreiss problem, rtol = 1e-4 and atol = 1e-8.
t0 tf to tm ση(tm) ση κη γη No Nm Eo Em

0.0e0 1.0e1 0.2044 0.1069 (λ,σ) 9.83e1 5.50e3 1.0e0 1.82e-4 3060 3060 1.86e-4 1.86e-4
2.0e0 1.0e1 2.0696 2.1073 (λ,σ) 9.85e1 4.40e3 1.0e0 2.27e-4 2488 2496 4.26e-4 2.18e-4
4.0e0 1.0e1 4.0742 4.1065 (λ,σ) 9.79e1 3.30e3 1.0e0 3.03e-4 1871 1885 5.32e-4 7.10e-4
6.0e0 1.0e1 6.6002 6.1028 (λ,σ) 9.47e1 2.22e3 1.0e0 4.51e-4 1263 1267 4.72e-4 2.99e-4
8.0e0 1.0e1 8.1792 8.1034 (λ,σ) 9.52e1 1.17e3 1.0e0 8.55e-4 635 642 3.48e-4 2.38e-4

0.0e0 1.0e1 0.2044 0.1069 (λ,σ) 9.83e1 5.50e3 1.0e0 1.82e-4 3060 3060 1.86e-4 1.86e-4
2.0e0 1.2e1 2.0696 2.1073 (λ,σ) 9.85e1 5.50e3 1.0e0 1.82e-4 3095 3103 4.26e-4 2.18e-4
4.0e0 1.4e1 4.0742 4.1065 (λ,σ) 9.79e1 5.50e3 1.0e0 1.82e-4 3089 3103 5.32e-4 7.10e-4
6.0e0 1.6e1 6.6002 6.1028 (λ,σ) 9.47e1 5.50e3 1.0e0 1.82e-4 3093 3097 4.72e-4 2.99e-4
8.0e0 1.8e1 8.1792 8.1034 (λ,σ) 9.52e1 5.50e3 1.0e0 1.82e-4 3094 3102 3.48e-4 2.38e-4

9

Table 5: Example 6, t0 = 0 and tf = 10.
rtol atol to tm ση(tm) ση κη γη No Nm Eo Em

1.0e-3 1.0e-5 4.1876 4.5197 (λ) 5.21e0 1.15e1 1.0e0 8.71e-2 6678 6679 1.11e-3 1.05e-3
1.0e-4 1.0e-6 4.4242 4.5621 (λ) 5.27e0 1.15e1 1.0e0 8.66e-2 6683 6683 1.06e-4 1.09e-4
1.0e-5 1.0e-7 4.2311 4.6220 (λ) 5.35e0 1.16e1 1.0e0 8.65e-2 6689 6689 1.13e-5 1.18e-5
1.0e-6 1.0e-8 4.2816 4.6479 (λ) 5.37e0 1.16e1 1.0e0 8.65e-2 6697 6699 1.15e-6 1.08e-6
1.0e-7 1.0e-9 4.3511 4.6987 (λ) 5.42e0 1.15e1 1.0e0 8.66e-2 6710 6709 9.97e-8 1.10e-7

Table 6: Example 6 changing t0, tf = 10, rtol = 1e-4 and atol = 1e-8.
t0 to tm ση(tm) ση κη γη No Nm Eo Em

0.0e0 4.3833 4.5625 (λ) 5.27e0 1.15e1 1.0e0 8.66e-2 6683 6683 1.09e-4 1.15e-4
2.0e0 4.3301 4.6909 (λ) 1.43e1 4.25e1 1.0e0 2.35e-2 6677 6677 9.68e-5 1.05e-4
4.0e0 4.8909 5.0511 (λ) 3.68e1 2.07e2 1.0e0 4.82e-3 6661 6661 1.23e-4 1.22e-4
6.0e0 6.1686 6.2026 (σ) 5.15e1 9.48e2 1.0e0 1.05e-3 6555 6555 7.51e-5 6.21e-5
8.0e0 8.0276 8.0276 (σ) 5.18e1 2.93e3 1.0e0 3.41e-4 5774 5774 9.80e-5 7.50e-5

instability.” Additional information about the behavior of the numerical solution are, therefore, of
great interest for potential users of a numerical computer code. The presented algorithm not only
computes the conditioning parameters, but also gives information about the stiffness and disclose
unstable situations, providing a numerical solution which is, in general, much more accurate than the
one computed by standard mesh selection algorithms, that do not take into account the conditioning.

Acknowledgements

The authors are very grateful to Prof. L. Brugnano for his comments and suggestions during the
preparation of this paper.

References

[1] L. F. Shampine, Stiffness and nonstiff differential equation solvers. II. Detecting stiffness with
Runge-Kutta methods, ACM Trans. Math. Software 3 (1) (1977) 44–53.

[2] P. Rentrop, Partitioned Runge-Kutta methods with stiffness detection and stepsize control,
Numer. Math. 47 (4) (1985) 545–564. doi:10.1007/BF01389456.
URL http://dx.doi.org/10.1007/BF01389456

[3] L. F. Shampine, Diagnosing stiffness for Runge-Kutta methods, SIAM J. Sci. Statist. Comput.
12 (2) (1991) 260–272. doi:10.1137/0912015.
URL http://dx.doi.org/10.1137/0912015

[4] K. Ekeland, B. Owren, E. Øines, Stiffness detection and estimation of dominant spectra
with explicit Runge-Kutta methods, ACM Trans. Math. Software 24 (4) (1998) 368–382.
doi:10.1145/293686.287641.
URL http://dx.doi.org/10.1145/293686.287641

[5] M. Sofroniou, G. Spaletta, Construction of explicit Runge-Kutta pairs with stiffness detection,
Math. Comput. Modelling 40 (11-12) (2004) 1157–1169. doi:10.1016/j.mcm.2005.01.010.
URL http://dx.doi.org/10.1016/j.mcm.2005.01.010

[6] E. Hairer, G. Wanner, Solving ordinary differential equations. II, Vol. 14 of Springer Series
in Computational Mathematics, Springer-Verlag, Berlin, 2010, stiff and differential-algebraic
problems, Second revised edition, paperback.

[7] M. Sofroniou, G. Spaletta, Extrapolation methods in Mathematica, JNAIAM J. Numer. Anal.
Ind. Appl. Math. 3 (1-2) (2008) 105–121.

[8] L. Petzold, Automatic selection of methods for solving stiff and nonstiff systems of ordinary
differential equations, SIAM J. Sci. Statist. Comput. 4 (1) (1983) 137–148. doi:10.1137/0904010.
URL http://dx.doi.org/10.1137/0904010

10

Table 7: Example 6 using the restarting algorithm, t0 = 0 and tf = 10.

rtol atol tσ
1

σG
η (t0, t

σ
1
) σG

η (tσ
1
, tf) κη γη No Nm Eo Em

1.0e-3 1.0e-5 5.50e0 6.33e0 1.23e3 1.0e0 8.16e-4 6678 6691 1.11e-3 1.05e-3
1.0e-4 1.0e-6 5.18e0 5.99e0 9.20e2 1.0e0 1.09e-3 6683 6697 1.06e-4 1.09e-4
1.0e-5 1.0e-7 5.18e0 5.99e0 9.06e2 1.0e0 1.10e-3 6689 6703 1.13e-5 1.18e-5
1.0e-6 1.0e-8 5.16e0 5.96e0 8.89e2 1.0e0 1.12e-3 6697 6713 1.15e-6 1.08e-6
1.0e-7 1.0e-9 5.11e0 5.90e0 8.58e2 1.0e0 1.17e-3 6710 6723 9.97e-8 1.10e-7

Table 8: Robertson problem, DOPRI5 results.
rtol = 1e-4 and atol = 1e-7

t0 tf to tm σG
η (tm) σG

η κη γη No Nm Eo Em

0.0e0 2.0e-3 – – – 4.56e0 1.0e0 2.19e-1 8 15 1.57e-5 2.58e-8
0.0e0 1.0e-2 – – – 2.24e1 1.0e0 4.45e-2 14 25 4.88e-5 7.62e-8
0.0e0 1.0e-1 0.0266 0.0478 (λ,σ) 1.06e2 2.19e2 1.0e0 4.56e-3 76 85 8.07e-5 8.01e-7
0.0e0 5.0e0 0.0266 0.0478 (λ,σ) 1.06e2 6.37e3 1.0e0 1.57e-4 3419 3398 8.24e-5 8.01e-7
0.0e0 1.0e1 0.0266 0.0478 (λ,σ) 1.06e2 1.05e4 1.0e0 9.53e-5 7156 7103 8.24e-5 8.01e-7

rtol = 1e-6 and atol = 1e-10
0.0e0 2.0e-3 – – – 2.28e0 1.0e0 4.40e-1 17 18 6.34e-8 4.16e-8
0.0e0 1.0e-2 – – – 1.11e1 1.0e0 9.02e-2 29 34 1.28e-7 4.16e-8
0.0e0 1.0e-1 0.0335 0.0515 (λ,σ) 5.71e1 1.11e2 1.0e0 9.02e-3 90 95 1.03e-6 6.08e-8
0.0e0 5.0e0 0.0335 0.0515 (λ,σ) 5.71e1 5.29e3 1.0e0 1.89e-4 3403 3407 1.03e-6 8.34e-7
0.0e0 1.0e1 0.0335 0.0515 (λ,σ) 5.71e1 1.03e4 1.0e0 9.66e-5 7108 7113 1.03e-6 8.33e-7

[9] J. C. Butcher, Order, stepsize and stiffness switching, Computing 44 (3) (1990) 209–220.
doi:10.1007/BF02262217.
URL http://dx.doi.org/10.1007/BF02262217

[10] L. F. Shampine, S. Thompson, Stiff systems, Scholarpedia 2 (3) (2007) 2855.

[11] L. Brugnano, D. Trigiante, On the characterization of stiffness for ODEs, Dynam. Contin.
Discrete Impuls. Systems 2 (3) (1996) 317–335.

[12] L. Brugnano, D. Trigiante, Solving differential problems by multistep initial and boundary
value methods, Vol. 6 of Stability and Control: Theory, Methods and Applications, Gordon
and Breach Science Publishers, Amsterdam, 1998.

[13] F. Iavernaro, F. Mazzia, D. Trigiante, Stability and conditioning in numerical analysis, JNAIAM
J. Numer. Anal. Ind. Appl. Math. 1 (1) (2006) 91–112.

[14] L. Brugnano, F. Mazzia, D. Trigiante, Fifty years of stiffness, in: Recent advances in computa-
tional and applied mathematics, Springer, Dordrecht, 2011, pp. 1–21.
URL \url{http://dx.doi.org/10.1007/978-90-481-9981-5_1}

[15] J. R. Cash, F. Mazzia, Conditioning and Hybrid Mesh Selection Algorithms For Two Point
Boundary Value Problems, Scalable Computing: Practice and Experience 10 (4) (2009) 347–
361.

[16] J. R. Cash, F. Mazzia, N. Sumarti, D. Trigiante, The role of conditioning in mesh selection
algorithms for first order systems of linear two point boundary value problems, J. Comput.
Appl. Math. 185 (2) (2006) 212–224. doi:10.1016/j.cam.2005.03.007.
URL http://dx.doi.org/10.1016/j.cam.2005.03.007

[17] J. R. Cash, D. Hollevoet, F. Mazzia, A. M. Nagy, Algorithm 927: the MATLAB code bvptwp.m
for the numerical solution of two point boundary value problems, ACM Trans. Math. Software
39 (2) (2013) Art. 15, 12. doi:10.1145/2427023.2427032.
URL http://dx.doi.org/10.1145/2427023.2427032

[18] F. Mazzia, D. Trigiante, A hybrid mesh selection strategy based on condition-
ing for boundary value ODE problems, Numer. Algorithms 36 (2) (2004) 169–187.
doi:10.1023/B:NUMA.0000033132.99233.c8.
URL http://dx.doi.org/10.1023/B:NUMA.0000033132.99233.c8

11

[19] K. Soetaert, J. R. Cash, F. Mazzia, bvpSolve: Solvers for Boundary Value Problems of Ordinary
Differential Equations, R package version 1.2.4 (2013).
URL http://CRAN.R-project.org/package=bvpSolve

[20] F. Mazzia, J. R. Cash, K. Soetaert, Solving boundary value problems in the open source software
R : Package bvpSolve, Opuscula Mathematica,in press. doi:10.7494/OpMath.

[21] J. R. Cash, F. Mazzia, A new mesh selection algorithm, based on conditioning, for
two-point boundary value codes, J. Comput. Appl. Math. 184 (2) (2005) 362–381.
doi:10.1016/j.cam.2005.01.016.
URL http://dx.doi.org/10.1016/j.cam.2005.01.016

[22] J. R. Cash, F. Mazzia, Hybrid mesh selection algorithms based on conditioning for two-point
boundary value problems, JNAIAM J. Numer. Anal. Ind. Appl. Math. 1 (1) (2006) 81–90.

[23] R. H. Miller, An experimental method for testing numerical stability in Initial-Value Problems,
Journal of Computational Physics 2 (1967) 1–7.

[24] F. Mazzia, A. M. Nagy, Stiffness detection strategy for explicit Runge Kutta methods, AIP
Conference Proceedings 1281 (1) (2010) 239–242. doi:10.1063/1.3498435.
URL http://link.aip.org/link/?APC/1281/239/1

[25] F. Mazzia, C. Magherini, Test Set for Initial Value Problem Solvers, release 2.4, Department of
Mathematics, University of Bari and INdAM, Research Unit of Bari (February 2008).
URL http://www.dm.uniba.it/~testset

[26] U. M. Ascher, R. M. M. Mattheij, R. D. Russell, Numerical solution of boundary value problems
for ordinary differential equations, Vol. 13 of Classics in Applied Mathematics, Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995, corrected reprint of the
1988 original.

[27] J. R. Cash, A. H. Karp, A variable order Runge-Kutta method for initial value problems with
rapidly varying right-hand sides, ACM Transactions on Mathematical Software 16 (3) (1990)
201–222.
URL http://doi.acm.org/10.1145/79505.79507

[28] K. Soetaert, J. R. Cash, F. Mazzia, deTestSet: Testset for differential equations, R package
version 1.1.1 (2013).
URL http://CRAN.R-project.org/package=deSolve

[29] F. Mazzia, J. R. Cash, K. Soetaert, A test set for stiff initial value problem solvers in the open
source software R : Package deTestSet, J. Comput. Appl. Math. 236 (16) (2012) 4119–4131.
doi:10.1016/j.cam.2012.03.014.
URL http://dx.doi.org/10.1016/j.cam.2012.03.014

[30] K. Soetaert, J. Cash, F. Mazzia, Solving differential equations in R, Use R!, Springer, New
York, 2012. doi:10.1007/978-3-642-28070-2.
URL http://dx.doi.org/10.1007/978-3-642-28070-2

[31] C. Moler, MATLAB News & Notes, Stiff Differential Equations (May 2003).
URL http://www.mathworks.com/company/newsletters/news_notes/clevescorner/
may03_cleve.html

12

