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Probing ion channel functional architecture and
domain recombination compatibility by massively
parallel domain insertion profiling
Willow Coyote-Maestas 1, David Nedrud1, Antonio Suma 2, Yungui He3, Kenneth A. Matreyek4,

Douglas M. Fowler 5,6, Vincenzo Carnevale 2, Chad L. Myers 7 & Daniel Schmidt 3✉

Protein domains are the basic units of protein structure and function. Comparative analysis of

genomes and proteomes showed that domain recombination is a main driver of multidomain

protein functional diversification and some of the constraining genomic mechanisms are

known. Much less is known about biophysical mechanisms that determine whether protein

domains can be combined into viable protein folds. Here, we use massively parallel inser-

tional mutagenesis to determine compatibility of over 300,000 domain recombination var-

iants of the Inward Rectifier K+ channel Kir2.1 with channel surface expression. Our data

suggest that genomic and biophysical mechanisms acted in concert to favor gain of large,

structured domain at protein termini during ion channel evolution. We use machine learning

to build a quantitative biophysical model of domain compatibility in Kir2.1 that allows us to

derive rudimentary rules for designing domain insertion variants that fold and traffic to the

cell surface. Positional Kir2.1 responses to motif insertion clusters into distinct groups that

correspond to contiguous structural regions of the channel with distinct biophysical prop-

erties tuned towards providing either folding stability or gating transitions. This suggests that

insertional profiling is a high-throughput method to annotate function of ion channel struc-

tural regions.
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Most metazoan proteins are comprised of multiple
domains, with distinct tertiary structure elements and
functions1,2. Domains are the words of the protein

universe3, and several dictionaries have been compiled (e.g.,
SMART, Pfam, SCOP2, CATH). The omics era provided key
insight into how multidomain proteins evolve. Rearrangement of
existing protein domains4–6, mostly at termini7–9, is a sufficiently
effective strategy to rapidly diversify protein function2,10,11.

The potassium (K+) channel superfamily exemplifies this rapid
functional diversification through domain rearrangement. This
family first appeared in prokaryotes and expanded into distinct
structural and functional classes during metazoan evolution12.
Different sub-families arose from appending domains at the
termini of the K+-selective pore, such as adding RCK domains in
KCa, cyclic nucleotide-binding (CNG), voltage-sensing domains
in voltage-dependent K+ channel (Kv), and an immunoglobulin
(Ig)-like C-terminal Domain (CTD) in inward rectifier K+

channel (Kir)12,13. The same ancestral architecture of Kir, with
minor adaptation in eukaryotes14, was leveraged throughout the
evolution of the Kir family for regulation by allosteric ligands at
different sites, all of which couple to pore domain gating15.

Considering wide-spread domain recombination, do different
domains have different intrinsic combinatorial propensity? Fre-
quently recombined domains often encode broadly useful func-
tions (e.g., SH2 domains dock to phosphorylated residues), but
the evidence for a causal link between function and likelihood of
combinatorial expansion is ambiguous16–18. Although some stu-
dies hint at a biophysical basis of domain compatibility17,18,
comprehensive studies are needed to test whether these correla-
tions reflect genuine biological mechanisms that underlie a
domain recombination grammar19. We must go beyond domain
combinations founds in extant proteins, which are biased towards
combinations that work, and broadly explore domain recombi-
nation space for a global picture of protein domain compatibility.
Are extant proteins examples of what multidomain architectures
have to be, or are they sampled from a much larger set of possible
multidomain protein architectures?

Knowing the answer to this question has implications beyond
natural proteins; domain recombination-based approaches are
also used to generate synthetic proteins in biomedical
engineering20. Many biosensors and protein switches are made by
combining domains that sense the desired property (e.g., ligand,
voltage, aberrant protein activity) and domains that respond to
these events (e.g., fluorescence, alter gene expression, induce
apoptosis)21–23. Domain recombination is a key tool in synthetic
biology for designing programmable circuits from multidomain
proteins in living cells24,25. Light-gated K+ channels, useful as
optogenetic tools, can be constructed from domain
recombination26,27. Despite these successes, synthetically recom-
bined proteins that fold and function well are typically the result
of trial-and-error and iterative optimization28–34. Only a few
synthetic multidomain proteins emerged from explicit rule-based
proteins design35–41. Deriving practical rules to accelerate domain
recombination-based protein design is challenging because struc-
ture/function relationships and folding/unfolding equilibria of
isolated and recombined domains can differ42,43. Computational
methods have become increasingly useful in protein engineering;
however, they are most successful for designing stable folds44–47 or
simple, non-allosteric multi-component protein switches48. Sys-
tematic domain recombination studies, therefore, would not only
provide insight into the fundamental biological mechanism of
multidomain protein evolution but also help improve the rule-
based and computational design of synthetic proteins.

To produce a rich dataset from which these potential insights
and improvements can be sourced, we generated 759 polypeptide
motif (donor) insertions at all 435 amino acids of the Inward

Rectifier K+ channel Kir2.1 (recipient) and measured cell surface
expression of the resulting channel/insertion variants. Previously,
we found surprising variability between three motif’s insertional
profiles, which implies complex constraints on donor-recipient
compatibility27. We chose 759 donor motifs as a representative
sample to exhaustively study compatibility (Supplementary
Table 1, Supplementary Data 1, see Supplementary Table 2 for
summary statistic of biophysical properties). They comprise
everything from small motifs to larger domains, hydrophobic
filaments, flexible linkers, and disordered fragments. Larger
domains include motifs often used in protein engineering (e.g.,
the phototropin LOV2 domain), and domains commonly found
in extant proteomes (e.g., SH2 domains). We included all PDB
entries <50 AA used in a global analysis of protein folding49,
conserved structural motifs in proteins (smotifs50), peptide motifs
enriched in all known protein folds51, disordered fragments, and
domains curated from DisProt52, cysteine-rich peptide toxins,
and short polypeptide linkers. The massive scale of these
experiments (over 300,000 variants) is made possible by incor-
porating recent technology advances in the form of unbiased
insertional libraries53 and rapid construction of single copy, stable
variant library cell lines54 (Fig. 1).

Results
Systematic motif insertions reveal strong fitness pattern con-
sistent with known ion channel biochemistry. For Kir2.1 to
conduct K+ ions and maintain cellular excitability15, it must first
fold, tetramerize, and traffic to the plasma membrane (collectively
referred to as surface expression from hereon)55–59. While the
impact of domain insertion on surface expression is distinct from
its impact on function (K+ permeation)27, measuring how
domain recombination affects surface expression provides a
valuable perspective that is relevant to the evolution of ion
channels12, engineering of synthetic ion channels26,60, and
understanding the mechanism of ion channel mutations that
cause defects in folding and trafficking61.

As we did in smaller scale Kir2.1 domain insertion studies27,
we measure the impact of insertions on surface expression
through fluorescent antibody labeling and fluorescently activated
cell sorting coupled to sequencing (Fig. 1a). We calculate surface
expression fitness of insertion variants as enrichment or depletion
of surface-expressed vs. non-surface-expressed variants (Fig. 2a±c,
Supplementary Figure 1). Note that the specific implementation
of this assay prevents us from including wildtype Kir2.1 as one of
the variants for which we determine surface expression. Fitness of
domain insertion variants is therefore z score normalized to the
effect (averaged across all Kir2.1 positions) of inserting a flexible
linker motif (amino-acid sequence AGSAGSA). Thus, positive
insertion fitness means this insertion variant is trafficking better
than insertions of a small flexible linker on average, zero is
neutral, and negative fitness is worse trafficking.

Overall, surface expression fitness is consistent with expected
biochemistry. Insertions into the extracellular FLAG tag, used to
label surface-expressed Kir2.1, mimic decreased fitness because
they disrupt antibody binding. Motif insertions into transmem-
brane regions (M1, M2, Pore, Filter) strongly decrease fitness
(Wilcoxon rank-sum test p value <2.2e-16) presumably by
impairing membrane insertion of the nascent protein57,62.
Insertions in folding-critical core beta-sheets of the CTD13 also
decrease fitness. This aligns with many disease-associated
mutations impairing forward trafficking by affecting the core
stability of the CTD13,61,63,64. Conversely, most insertions in the
unstructured N- or C-termini are tolerated. As expected,
insertions into Golgi export signals decrease surface expression
(Fig. 2a, green lines). This is particularly strong for an N-terminal
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signal with a tertiary structure (Fig. 2a, positions 46–5056). On the
other hand, insertion phenotypes in an ER export signal (the
linear diacidic FCYENE signal55, Fig. 2a, positions 382–387) are
more varied with some not affecting surface trafficking. Perhaps
the specific residue orientation that is required for function in
structured export signals renders them more sensitive to motif
insertion, while linear unstructured signals that rely on localized
charge or hydrophobicity are more robust.

Although many insertional fitness patterns are consistent with
known biochemistry and therefore expected, the relatively high
insertion fitness of the interfacial helix (aka slide helix, αA/B) and
tether helix (αF) is surprising, given their prominent roles in
allosteric ligand binding and gating65 and several known
mutations that impair cell surface localization in Andersen–Tawil
syndrome61,66. Homologous mutations in Kir1.1 and Kir6.2 also
have defective trafficking phenotypes and are associated with
Bartter Syndrome and hyperinsulinemic hypoglycemia type 2,
respectively61. In this context, it is important to remember that
our assay measures surface-expression fitness and does not assess
channel function, which is a distinct phenotype. It is possible that
channel function is impaired after insertions into interfacial and
tether helices, but that these regions have an intrinsic capacity to
accommodate the insertions such that the channel subunit can
fold, assemble into a tetramer, and traffic to the cell surface.

Taken together, our data confirm many expected motif
insertion effects, which shows that our approach is working.
Nevertheless, the variability of insertion fitness across donor
motifs and recipient insertion sites (trafficking motifs, tertiary
structure elements) implies more complex mechanisms for
domain compatibility.

Recipient and donor properties interact to determine insertion
fitness. To learn if donor properties affect fitness, we hier-
archically clustered insertion fitness by motif revealing three
groups enriched for short unstructured motifs, larger folded
motifs, and hydrophobic motifs (Fig. 2a, Supplementary Fig. 3).

Hydrophobic motifs are most distinct from other motifs
groups by having less insertional fitness across the gene. In
qualitative terms, hydrophobics have decreased in fitness in
regions that are more often compatible with the other two motif
groups, such as the N terminus. On the other hand, some
hydrophobic motifs can be inserted where no other motifs can
(e.g., beginning of M1 and end of M2 transmembrane helices).

Short unstructured motifs are allowed in more parts of Kir2.1
than the other groups and seem to have little variability between
motifs. Short unstructured motifs are unsurprisingly enriched for
in flexible loops connecting secondary structure elements (e.g.,

Fig. 1 Large-scale insertional fitness profiling. a Motifs are inserted into all positions of a recipient protein using SPINE53. A stable single-copy insertion
library is generated by BxBI-mediated recombination in HEK293T54. Cells are sorted based on channel surface expression (the phenotype) as determined
by antibody labeling of an extracellular FLAG tag. Genotypes of each sorted cell population are recovered by NextGen Sequencing (NGS). b–c Scatterplots
with the percent missing of Kir2.1 insertion fitness data after alignment by (b) position and (c) motif. d–e Density plots of Kir2.1 insertion fitness data
percent missing by (c) position and (d) motif.
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βCD, βDE, or βHI) in the CTD. Again, it is a surprise that
insertions into the slide helix (αA/B) and the tether helix (αF, also
known as C-linker) are largely permitted. Both helices undergo
conformational changes during Kir2.1 gating, so compatibility
with the insertion of unstructured motifs may reflect a higher
degree of conformational plasticity. Insertions into N- or
C-termini are generally allowed, but not consistently in every
position.

The group of larger structured motifs contains nearly all motifs
longer than 90 amino acids. This group is most allowed at the
termini—more than any other group—and occasionally in

structured Kir2.1 regions. For a cluster of motifs enriched for
frequently recombined domains (e.g., SH2; Supplementary
Table 1) this effect is particularly prominent and, apart from
the βDE loop, they are only allowed in the termini with the N
terminus having a particularly strong signal in comparison to the
rest of the protein (Fig. 2a, black box). If the biophysical
properties of an insertion determine whether it is beneficial at the
termini, we would expect different enrichment of folded domains
vs. unstructured peptides at termini compared to within the
protein. To test this premise, we compared the fraction of
insertions with high surface expression fitness at termini

Fig. 2 Heatmap of insertion fitness. a Insert fitness, normalized to a control flexible linker motif (see Methods) for 759 motifs inserted into all positions of
Kir2.1. Secondary structural elements (gray boxes) are Kir2.1 are shown above, along with known Golgi and ER export signals (green and magenta boxes,
respectively). Motifs are hierarchically clustered using a cosine distance metric. Dendrograms are colored by major motifs groups. The black box indicates
a subset of well-structured motifs (Supplementary Table 1, Supplementary Data 1). b Mean normalized insertion fitness mapped onto the structure of
Kir2.2 (PDB: 3SPI65; 70% identity with Kir2.1; residues 1–40 and 379–410 are modeled). c Distribution of normalized insertion fitness. d Productive
insertions at N- or C-termini (first or last 45 residues) or the middle of Kir2.1 (342 residues) for commonly recombined motifs (e.g., SH2 domains; blue
bars; see Supplementary Table 1), short peptide linker (AGSAGSA; yellow bars). Gray bars indicate a random distribution.
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(45 terminal residues) versus the middle of Kir2.1 for either
structured frequently recombined domains and unstructured
short peptides (Fig. 2d). Most (~65%) productive short peptide
insertions are found in the middle of Kir2.1, whereas 72% of
productive promiscuous domain insertions occur at either N- or
C-termini. Interestingly, this number is very close to the reported
number of evolutionary domains gains at protein termini in the
human genome (~71%)67. A likely mechanism for this observa-
tion is that—compared to unstructured peptides—well-folded
domains, when inserted at termini, can provide a stabilizing
influence on a recipient protein in the form of chaperone-like
activities (preventing aggregation) or passive folding assistance
whereby folding of one domain can promote folding of
others43,68,69. As previously established in several other fusion
proteins, adding structured domains on N- or C-termini is also a
common strategy to improve the biochemistry and structural
biology of hard-to-fold proteins70–72.

Biophysical mechanisms, such as the impact of motif gain or
loss on protein folding, likely played a major role in shaping the
evolution of multidomain proteins. Perhaps multidomain pro-
teins became enriched in metazoans because both genomic
mechanisms (intron formation, loss of stop codon, exon
extension, etc.9) act in concert with biophysical mechanisms to
favor the gain of larger structured domains at protein termini.
Domain gain at termini is less likely to disrupt the folding and
function of the rest of the protein. It may increase folding
robustness and stability of the fusions protein by reducing
topological frustration73 or increasing folding cooperativity68,69.
Because larger structured domains are more likely to encode
useful functions (compared to shorter unstructured motifs), they
are more likely to provide a selectable advantage to the resulting
recombined protein.

To learn if there are commonalities in surface expression
phenotypes among different insertion positions, we used Uniform
Manifold Approximation and Projection (UMAP74). Three
distinct insertion position clusters emerge (Fig. 3a) corresponding
to contiguous regions of Kir2.1 (Fig. 3b). These regions represent
the (1) pore domain and CTD core beta-sheets, (2) unstructured
N- and C-termini, and (3) PIP2 (Kir2.1’s activator) binding sites,
interfaces between the pore domain/CTD, and monomer
interfaces within CTD. The emergence of discrete yet contiguous
Kir2.1 regions from unbiased clustering of surface expression
fitness suggests commonalities in local Kir2.1 properties in these
regions that influence fitness.

To test if specific biophysical properties influence insertion
fitness, we calculated sequence-, structure-, and dynamics-based
properties of inserted motifs (Supplementary Table 2, Supple-
mentary Data 4) and recipient Kir2.1 (Supplementary Table 3,
Supplementary Data 5). We find that insertion fitness has a weak
to moderate correlation with Kir2.1 backbone flexibility (mole-
cular dynamics-derived root mean square fluctuation and
anisotropic network model-derived stiffness; Pearson correlation
coefficient 0.48 and −0.32, respectively, Fig. 4a) implying that
Kir2.1 rearranges structurally after motif insertion. Available
space at insertion sites (e.g., contact density) was only weakly
correlated with insertion fitness (Spearman correlation coefficient
−0.21, Fig. 4b). Previously discussed inserted motif clusters have
distinct property distributions (Fig. 4c–h), which implies that the
pattern of insertion fitness correlates with the biophysical
properties of the motif. This is illustrated by a subcluster
comprised of longer motifs that are commonly recombined in
evolution containing hydrophobic and negatively charged
residues (black box in Fig. 2a, Fig. 4f–h).

While motif properties are clearly important, they behave non-
linearly. For example, the correlation of insertion fitness with
motif length is negative for motifs under 25 amino acids but

becomes positive for longer motifs (−0.31 and 0.18 Pearson
correlation coefficients, respectively, Fig. 4i). All motif properties
correlate positively and negatively with fitness dependent on
insertion position. Motif lengths, for example, are positively
correlated in flexible termini and loops but negatively correlated
in the G-loop (Fig. 4m). This suggests that our data provide
highly resolved information about both donor motifs and the
recipient channel that may hint at the rules that govern domain
compatibility. Hierarchical clustering of correlations between
fitness and motif properties at each residue separates Kir2.1 into
three distinct classes (Fig. 4l, Supplementary Fig. 4). Within each
class, the correlation sign (positive or negative) between fitness
with inserted donor properties is identical. For example, all
residues in the pore domain and beta-sheet core of the CTD class
correlate positively with motif hydrophobicity and negatively
with motif polarity (Supplementary Fig. 4). Furthermore, the
classes that emerge from hierarchical clustering of fitness/
calculated property correlation are similar to those that emerge
from UMAP clustering of fitness alone (compare Fig. 3b and
Fig. 4l, Pearson’s χ2 test p value <2.2e-16, Cramer’s V 0.42). This
strongly points to insertion fitness being influenced by the
inserted motif’s properties.

Taken together, we can draw two important qualitative
conclusions from this systematic quantification of domain
recombination compatibility. First, insertional compatibility is
based on biophysical properties of both inserted motif (donor)
and Kir2.1 (recipient). Second, recipient and donor properties
interact, often non-linearly, to determine insertion fitness.

Machine learning reveals the basis for donor/recipient com-
patibility. To further identify which donor and recipient prop-
erties are important and how they interact in compatible insertion
variants, we used Machine Learning (ML). While ML methods
are sometimes treated as black boxes, they are useful for exploring
and interpreting rich genotype/phenotype datasets with non-
linear interactions75. We trained and tested regression random
forests to predict insertional fitness at every amino-acid position
based on recipient and motif properties. To identify the most
important properties and aid interpretation, we reduced proper-
ties from over 900 to 10 based on redundancy and feature
importance with little impact on performance (Supplementary
Fig. 5, Supplementary Table 4). The final model successfully
predicts ~40% insertional fitness variance in data withheld from
model training. It performs better when predicting fitness in
recipient position (for all inserted motifs) when compared with
the mean fitness effect (for all insertion positions) of a motif
(Supplementary Fig. 6e–h).

On the recipient side, local Kir2.1 flexibility (root mean
squared fluctuations (RMSF) and stiffness) is important for
model performance and is positively associated with insertion
fitness (Fig. 5a, e, Supplementary Fig. 7c, g). Insertion position
space (contact density) plays a major non-linear role (Fig. 5a, b).
All recipient properties have monotonic relationships with
insertional fitness, which suggests that insertion compatibility is
predominantly determined by recipient properties (Supplemen-
tary Fig. 7).

The most important motif properties are length, hydrophobi-
city, and negativity, all of which have non-linear relationships
with insertion fitness (Fig. 5a, c–d, Supplementary Fig. 7). To
understand why they are non-linear and how properties interact,
we explored all property interactions within the model (Fig. 6).
Recipient properties have relatively few interactions with other
recipient properties (strength > 0.3 in ~17% of interactions),
whereas motif properties strongly interact amongst themselves
(strength > 0.3 in ~67% of interactions) and recipient properties
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(Fig. 6a). By exploring property interactions, we can begin to
develop mechanistic explanations for insertion fitness patterns
(Supplementary Discussion, Supplementary Figs. 8–11). For
example, there is an enrichment for insertions in surface-
exposed loops between beta-strands. Recipient-recipient interac-
tions reveal a strong positive fitness in regions with low stiffness
(high flexibility) and a φ angle between −150 to −75 degrees
(corresponding to beta-sheets). A similar relationship also exists
between insertion positions with low stiffness and high polar
surface area. In both cases, these are consistent with insertions
being allowed in flexible surface-exposed beta hairpins.

We can also explore why motif clusters behave distinctly
(Supplementary Discussion, Supplementary Figs. 8–10). For
example, longer motifs benefit from strong positive interactions
between motif length and moderate hydrophobicity (Fig. 6c,
Supplementary Fig. 8b). We interpret moderate mean hydro-
phobicity as the presence of a hydrophobic core in these motifs
that can promote folding76. The formation of a stable hydrophobic
core as a desirable property of engineered domains corroborates
conclusions from high-throughput protein design experiments49.
Too much or too little hydrophobicity in large motifs negatively
impact insertion fitness probably because this either promotes
aggregation or disorder, respectively. Interestingly, high contact
density is somewhat beneficial for the largest structured motifs
(Supplementary Fig. 8l). Highly hydrophobic donor motifs are
deleterious within flexible regions (small flexible loops) of Kir2.1
likely because their solvent-exposed hydrophobic residues will be
destabilizing and promote aggregation (Supplementary Fig. 10a,
f)77. In contrast, being inserted into buried regions with high
stiffness and contact density is beneficial for hydrophobic motifs

because these insertion positions minimize solvent exposure
(Supplementary Fig. 10a, c, f). Shorter unstructured motifs, which
are less hydrophobic (Fig. 4d, Supplementary Fig. 9b) are
deleterious in stiff, non-dynamic regions of Kir2.1 but beneficial
in flexible, dynamic regions (Supplementary Fig. 9a, f, k). Stiff,
non-dynamic regions are characterized by high contact density;
the disruptive effect of inserting unstructured motifs we observe in
the model likely is the result of important structural elements
being disrupted (Supplementary Fig. 9l). The high compatibility of
beta-sheet hairpin to accept short unstructured motifs (Fig. 2a) is
captured by the model (Supplementary Fig. 9d). By investigating
the interactions between properties in the model we can develop
mechanistic explanations for the patterns seen in this rich dataset.

The ML model also allows us to propose a rudimentary
framework of rules for successfully inserting donor motifs into
recipient proteins:

● Insertion positions are ideally located in flexible protein
regions with sufficient space.

● To form a well-folded domain, motifs need sufficient length
and hydrophobic amino-acid content to form a well-
ordered hydrophobic core.

● If the desired insertion position is located within a buried
and rigid region, the inserted motif should be hydrophobic.

● More flexible regions prefer small non-hydrophobic
insertions, and larger more structured domains will only
be allowed if there is sufficient flexibility.

● Most significantly, the interactions between motifs and
recipient properties determine the outcome of protein
recombination.

Fig. 3 Unbiased clustering of insertion fitness. a Uniform Manifold Approximation Projection (UMAP) was used to cluster the insertion fitness of each
channel. Cluster membership of each residue is indicated by color. Optimal cluster number was determined using the R package Nbclust using the majority
rule. b UMAP classification clusters are mapped onto the structure of Kir2.2 (PDB: 3SPI65; 70% identity with Kir2.1; residues 1–40 and 379–410 are
modeled). Fitness classes describe conformationally rigid and structured pore domain and CTD beta-sheet core (low fitness; cyan), highly flexible and
unstructured N/C termini (high fitness; red), and structured yet dynamic interface between TM and CTD, or between subunit in the CTD (intermediate
fitness; yellow). PIP2 (Kir2.1’s activator) is shown in magenta. c The intermediate fitness cluster is enriched for Inward Rectifier K+ channels allosteric
modulator and ligand binding sites Independence of binding sites (PIP2 – Kir2.1, Kir3.1, Kir6.2, Gβγ–Kir3.1 only, ATP–Kir6.2 only; see Supplementary Table 7
for annotation) with respect to different residue classes identified by unbiased clustering of insertion fitness was tested using two-sided Fisher’s Exact
tests, p values are shown. Only the intermediate fitness class (colored yellow in a–b) is enriched for ligand binding sites.
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Fig. 4 Relationships between fitness data and computed properties. Pairwise scatterplots between recipient properties (a RMSF, b contact density) and
insertion fitness. A LOESS regression curve is fitted to each scatterplot, with the red line representing the fit and the gray area representing the 95%
confidence interval. c–e Boxplots of motif (c) length, (d) hydrophobicity, and (e) negativity across the three motif clusters from Fig. 2a. Cluster samples
sizes: Structured motifs (n= 168), unstructured motifs (n= 317), hydrophobic motifs (n= 151). Median is marked with a dashed line, the vertical length of
the box represents the interquartile range (IQR), upper fence: 75th percentile +1.5 × IQR, lower fence: 25th percentile −1.5 × IQR, outlier points and p
values from pairwise Wilcoxon tests are shown. f–h Density plots of motif (f) length, (g) hydrophobicity, and (h) negativity of the cluster of well-structured
domains (black box in Fig. 2a) and all other motifs. Density is weighted by group size to allow direct comparison. i–k Pairwise scatterplots between motif
properties (i motif length and j NC termini distance, k motif hydrophobicity) and insertion fitness. A LOESS regression curve is fitted to each scatterplot,
with the red line representing the fit and the gray area representing the 95% confidence interval. l Hierarchical clusters of motif properties correlations with
Kir2.1 position (Supplementary Fig. 3) is mapped onto the structure of Kir2.2 (PDB: 3SPI65; 70% identity with Kir2.1; residues 1–40 and 379–410 are
modeled). The regulator PIP2 is shown in magenta. m Spearman correlation plot between motif properties and the fitness of that motif at each Kir2.1
position. Properties are hierarchically clustered.
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Distinct insertion fitness phenotypes classes are driven by a
hierarchical organization of Kir2.1 that balances folding sta-
bility and dynamics required for gating. Motif and recipient
property interactions produce distinct classes of motifs and
regions (Fig. 2b, Fig. 4l). From correlation with biophysical
properties, the ML model, and prior studies, we can develop an
intuitive explanation for why we observe the segregation of dis-
tinct Kir2.1 regions into these classes. The first class represents
protein regions that comprise TM and CTD core beta-sheets.
Based on prior protein structure/function studies, we hypothesize
that these regions require specific conformations to achieve a
stable fold. This renders them very sensitive to insertions, in
particular those that introduce disorder (e.g., unstructured
motifs). The second class is comprised mostly of the N/C termini.
The termini are not resolved in crystal structures of Kir, pre-
sumably because they are flexible. Flexibility suggests that they
can adopt many folding-compatible conformations and they,
therefore, allow most insertion types. The third class represents
interfaces between TM and CTD, or between tetramer subunits.
These contain many Kir2.1 regions that conformationally change
upon PIP2 binding and during closed to open state transi-
tions (PIP2 binding site, TM/CTD, and subunit interfaces)65,78.
Since gating mechanisms are conserved across the inward rectifier
family79, we hypothesize that the interface class may also be
enriched for other inward rectifier regulators binding sites, such
as Gβγ (GIRK), and ATP (Kir6.2). This is indeed the case
(p value < 2e-16, two-sided Fisher’s Exact test, Fig. 3c).

Taken together, a steady-state biochemical assay that measures
surface expression alone appears to map out the sensitivity of
different regions of the channel to domain insertion. Sensitivity
falls into distinct categories (class patterns) that are correlated
with different structural and functional roles in Kir2.1. The
contiguous nature of these class patterns suggests a hierarchical
organization of inward rectifiers. Some regions are conforma-
tionally rigid to support folding and stability, while others are
conformationally dynamic to enable gating and allosteric
regulation. Considering what we know about how proteins work,
this is an expected and obvious result. However, it points to the
possibility that we can use domain insertion profiling—measuring

how a protein’s phenotype changes upon systematic motif
insertion—for annotating protein sequences with distinct roles
in folding stability and conformational dynamics.

What is a possible mechanistic basis for detecting protein
regions with distinct roles in folding stability and conformational
dynamics through an assay that measures surface expression
alone? It is plausible that the recipient protein will need to fold
into an alternative conformation to adapt to a large topological
insertion. However, this confirmation must still occupy allowable
conformational states for successful folding, membrane insertion,
and tetramerization. This implies that insertions are sampling an
allowed conformational landscape, and with surface expression-
based assays we are learning how tolerant a given insertion
position is to large perturbation. From this perspective, it is
intuitive how we could identify regions essential for folding—they
will not allow any type of insertions. In contrast, for the regions
not directly associated with folding and that can adopt a wide
range of conformations, it is expected that any insertions type is
allowed. The functional and regulatory regions we have identified
with our assays are enriched for regions that undergo disorder/
order transitions during channel gating or ligand binding. This
means that they sample a limited ensemble of conformational
states, which makes them more amenable to insertion compared
to folding-critical sites, but less tolerant compared to non-critical
sites. The metastable nature of these sites renders them sensitive
to the specific degree of perturbation that different inserted motifs
represent, which is why the intermediate and more insertion
sensitive class overlaps well with regions involved in regulation
and function.

Insertional profiling is a generalizable method for coarse-grain
annotation of ion channels. While it is clearly interesting that
insertional profiling can probe Kir2.1’s backbone based on dis-
tinct structure-function roles, a question remains whether this
applies to other ion channels. To test if our compatibility fra-
mework and the hierarchical organization generalizes, we profiled
surface expression fitness in the inward rectifier Kir3.1 (GIRK),
the voltage-dependent K+ channels Kv1.3, the purinoreceptor
P2X3, and the acid-sensing channel Asic1a by inserting a smaller

Fig. 5 Machine learning model. a Heatmap of the recipient or donor property importance in predicting insertion fitness. Importance is based on the mean
absolute error of removing features from the predictive model. b–e Plots of the Accumulated Local Effects (ALE) of properties on prediction insertion
fitness for b recipient contact density, c motif hydrophobicity, d motif length, and e recipient RMSF. Marginal ticks indicate values that are present in the
property data.
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set of 15 motifs (Fig. 7a, Supplementary Table 5, Supplementary
Fig. 12). Kir3.1 is a G-protein regulated paralog of Kir2.1 with a
very similar structure79 but requires co-expression of Kir3.2 for
effective trafficking56. Kv1.3, P2X3, and Asic1a have different
folds, gating, and regulation80–82.

For related channels—Kir2.1 and Kir3.1—insertion profiles are
correlated (Pearson correlation coefficient 0.56). Insertions in
membrane-embedded regions are deleterious, insertions into

termini are allowed, and different inserted motifs give rise to
distinct fitness profiles (Supplementary Fig. 12). This suggests
that biophysical properties and mechanisms that dictate fitness in
Kir2.1 are generalizable to other ion channels that share the
inward rectifier architecture. The general patterns of surface
expression in inward rectifiers also apply to Kv1.3, P2X3, and
Asic1a, however, the data sets are noisier likely due to reduced
numbers of motifs and less efficient epitope labeling. There is a

Fig. 6 Property interactions. a Heatmap of pairwise property’s interaction strength. Boxes indicate interactions among properties of the recipient (top left)
and motifs (lower right), respectively. b–d Pairwise ALE plots investigate how pairwise interactions contribute to the prediction of b recipient stiffness-
recipient φ angle, c motif hydrophobicity-motif length, and d motif hydrophobicity-recipient stiffness. Marginal ticks indicate values that are present in the
property data.
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weak to moderate correlation between the relative impact of each
domain (Supplementary Figs. 13 and 14) in different channels.
Although inserted motifs have similar effects across channels, in
an assay that determines the fitness of recipient protein upon
insertion, we would expect the recipient channel’s properties (i.e.,
the fold-specific difference in insertion sensitivity) to dominate.

Since properties manifested as distinct classes in Kir2.1, we
wondered if this concept would also apply to Kir3.1, Kv1.3, and
P2X3. Applying the same UMAP-based clustering approach used
for Kir2.1, reveals discrete insertion fitness classes in all channels
(Fig. 7b, Supplementary Fig. 2). As expected from shared fold
architecture, Kir3.1’s classes resemble Kir2.1’s (Pearson’s χ2 test p
value <2.2e-16, Cramer’s V 0.36) with three classes encompassing
the TM and CTD core, regulator binding sites and interfaces, and
termini. Using established structure/function data, we can infer
those classes have distinct roles in folding stability and
conformational dynamics. In each channel, there is a class that
allows few insertions and corresponds to structural elements
required for tetramerization (Kv1.3 T1 tetramerization domain),
folding (inward rectifier CTD Ig-like fold13, P2X3 disulfide-
stabilized ectodomain81, and Asic1a beta-sheets), or membrane
insertion (transmembrane helices). All channels except for P2X3
have a class that allows nearly all insertions, and which coincides
with flexible protein termini. The final class is intermediate,
allowing only certain insertions. The intermediate class is

enriched for residues that conformationally change during gating
or regulation, for example, the Kir TM/CTD interface65, the
Kv1.3 S1-T1 linker (based on homology of this region to Kv1.283),
and P2X3 cytoplasmic cap81. That we can identify distinct classes
in all ion channel data sets with clear correspondence to different
roles in folding and function suggest that insertional scanning is a
generalizable method for annotation of ion channel structure.

Discussion
We applied a high-throughput surface-expression assay that
leverages flow cytometry and NextGen Sequencing to determine
phenotypes of hundreds of thousands Kir2.1 insertional variants
in a single experiment. This provides the necessary scale to
comprehensively map genotype/phenotype relationships of sys-
tematic domain recombination. From this large-scale dataset, we
explore the biophysical basis for domain compatibility, develop a
basic framework of rules for protein engineering by domain
insertion, and discover that insertional scanning can annotate
structure/function relationships of a protein’s backbone.

The basic premise for our study is that systematic perturbation
can provide insight into the general, fundamental properties of
the Kir family. This is well supported by the literature (reviewed
in ref. 84), which has shown that systematic single amino-acid
mutations can reveal intrinsic properties of proteins85, determine
protein structures86, and explain protein behavior in healthy and

Fig. 7 Generalization to other ion channels. Mean normalized insertion fitness (a) and UMAP insertion fitness clustering (b) mapped onto the crystal
structures of Kir2.2 (PDB 3SPI65; 70% identity with Kir2.1), Kir3.2 (PDB 4KFM79; 45% identity with Kir3.1), Kv1.2/Kv2.1 paddle chimera (PDB 2R9R80, 62%
identical with Kv1.3), P2X3 (PDB 5SVK81), and Asic1a (PDB 6AVE82). N- and C-terminal residues not resolved in crystal structures are modeled. For all
channels apart from P2X3, low fitness (cyan) coincides with conformationally rigid and structured regions, while high fitness (red) coincides with highly
flexible and unstructured regions. Intermediate fitness (yellow) is enriched in regions known to be dynamic and/or important for gating transitions (dashed
circles). In P2X3, there are two regions that separate rigid transmembrane helices and ectodomain (class 1; cyan) and structured and dynamic regions
(class 3; yellow). The ligand ATP is shown in soft red.
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diseased cellular contexts87. Systematic domain insertion27,33,88,89

can help map different biophysical properties of proteins.
Although motif insertions represent the more extreme end of a
perturbation spectrum, they are highly relevant to fundamental
protein evolution processes. Proteins evolve through (1) sub-
stitution, insertion, and deletions of amino acids or (2) large-scale
recombination of proteins domains with discrete structures and
functions11. The former predominantly fine-tune existing protein
functions, the latter enables rapid acquisition of new protein
functions. The exact combination of mechanisms that drive
protein evolution through domain recombination is an open
question, but it is generally accepted that they involve genomic
mechanisms (e.g., exon joining) that bias domain gain to protein
termini and adaptive dynamics that result from potential selective
advantages conferred by domain gain9,43,90. Genomic events
(recombination, retroposition) that result in a domain insertion
into the middle of a protein are rare7,67,91. This means that the
viability of domain gain at termini vs. domain insertion into the
middle of a protein has not been sampled at the same rate during
protein evolution. Studying the evolution of genome architecture
may therefore be insufficient to detect additional mechanisms
that constrain viable multidomain architectures. In this study, we
are not restricted by genomic mechanisms to generate domain
insertions; we can systematically probe the viability of inserting
any domain into any position of a recipient gene with respect to
folding and trafficking. Proper folding and trafficking are only
two among likely many other properties (e.g., ion conductance)
that are under selection pressure in the domain recombination
scenario of ion channel evolution. However, they are absolutely
required and therefore represent a hard constraint on allowable
domain recombination space that evolution can explore. While
for the moment limited to one ion channel, our data indicate that
terminal gain is a generalizable feature across many different
types of larger, structured domains. This provides strong support
for a biophysical basis of domain compatibility in ion channels.
Acquisition of this domain type at termini is tolerated because it
is more likely to retain unperturbed folding of each domain that
comprises a multidomain protein while still linking the functions
of each domain to the same polypeptide chain. Compared to
unstructured or hydrophobic motifs, gaining larger structured
domains at the termini also avoids the potential aggregation of
nascent polypeptide chains. It may even assist folding by nucle-
ating a fast-folding stable subdomain that reduces topological
frustration73 or increases folding cooperativity68,69. In this sce-
nario, domain gain at termini would result in more stable ion
channels, which could represent a selective advantage even in the
absence of specific functional gains. How functionally gratuitous
adaptation can become entrenched in protein evolution was
recently demonstrated for the evolution of multimerization in
protein complexes92. In this model, domain gains that initially
only increase protein stability without adding new functions can
serve as a foundation of latent functional capacity. Further
adaptive changes can reveal this latent capacity and then give rise
to functional divergence, for example, new protein/protein
interactions or signaling behaviors93.

Beyond the evolution of protein recombination, our study
provides an opportunity for improving engineering efforts. Using
our experimental dataset and computed biophysical properties of
the recipient protein and inserted motifs, we build a quantitative
biophysical model of domain recombination in ion channels. Our
discovery of specific interactions between donor and recipient
properties is a crucial step towards universal domain recombi-
nation grammar19 for rational engineering of fusion proteins. The
framework of rules we derived is very coarse and insufficient for
practical use in designing synthetic proteins. Nevertheless, it is
representative of fundamental mechanistic insight data-driven

approaches to protein science can provide. More data, from
across protein types and measured phenotypes (abundance,
function, trafficking, etc.), and more sophisticated analytical
models are needed to compile a comprehensive framework of
design rules for algorithmic multidomain protein design. The
need for such protein engineering frameworks will only grow in
the future when combining protein domains and motifs into
synthetic proteins with new functions (e.g., light- or drug
switchable channels26,60,94) emerges as a strategy for observing
and controlling molecular and cellular circuits. Successes not-
withstanding, engineering synthetic multidomain proteins that
fold and function well remains challenging. By moving away from
trial-and-error towards computational models that predict viable
combinations for given donor motifs and recipient proteins, we
can accelerate this process. Beyond identifying compatible
domain insertion sites, these models could be used to improve the
recombinability of commonly used protein domain switches23,34

and sensors95 itself. A model of domain recombinability could
also be incorporated in de novo protein design to expand its reach
beyond well-folded isolated proteins. A toolbox of
recombination-optimized protein domains would allow us to take
the next step in synthetic protein engineering: standardized
assembly of designed domains into useful multidomain protein
tools and therapeutics.

Systematic mutation experiments such as Deep Mutational
Scanning84 can reveal intrinsic properties of proteins85, deter-
mine protein structures86, and identify pathogenic mutations87.
Circular permutation profiling has been used to study how pro-
tein topology and stability influences protein activity and muta-
tional tolerance96. It is an open question whether insertional
mutagenesis can reveal similar insight into protein features.
Amino acid substitutions, which sample how a specific residue’s
biochemistry contributes to phenotype, are often neutral because
they do not affect a protein’s activity (catalysis, binding, etc.),
folding, or conformational ensembles. Circular permutation alters
protein topology and local chain entropy without affecting the
overall structure. Insertions, on the other hand, represent more
severe perturbations and will affect all these protein properties.
Perhaps this is why insertions appear to sample more global
properties of a protein backbone such as conformational plasti-
city. A comparison of single amino acid substitutions (i.e., Deep
Mutational Scanning84) and motif insertion in the same assay is
needed to establish a universal protein perturbation scale. A
unified perturbation framework that ranges from amino-acid
substitutions to large-scale topological changes would set the
foundation for using perturbation scanning as a general approach
for protein biochemistry and biophysics.

Insertional profiling provided insight into the general, funda-
mental properties of Kir2.1 and other ion channels. Unbiased
clustering of insertion fitness reveals that insertion fitness phe-
notypes are driven by ion channel regions with different material
properties (conformationally rigid, semi-flexible, flexible). We
propose that class organization is a universal feature of ion
channels that results from constraints on channel structure to
satisfy folding, assembly, and interaction with trafficking partners
while providing flexibility for allosteric regulation and con-
formational changes during channel opening and closing. Other
studies proposed similar ideas of spatially contiguous protein
regions linked to specific functions: protein sectors based on co-
evolution across homologs85,97–99, mapping regions involved in
folding stabilization vs. conformational flexibility by circular
permutation profiling96, or revealing the functional architecture
of enzymes from high-throughput enzyme variant kinetics100.
Shared among these studies is the concept of a perturbation
(naturally occurring or engineered mutations, insertions) probing
the underlying biophysical properties that directly impact
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sequence-function relationships. Further experiments are
required to establish whether the hierarchical organization of
insertion fitness exists in all proteins. Should this be the case,
insertional profiling could take a place within the larger spectrum
of perturbation profiling as a universal high-throughput coarse-
grain structural biology method for protein function, folding, and
dynamics from steady-state biochemical experiments.

Between Deep Learning-based method (e.g., AlphaFold101) and
atomic resolution cryo-electron microscopy protein structure
determination is becoming less of a bottleneck in protein science.
With an abundance of available structural information, the focus
will shift towards the functional annotation of these structures.
Insertional profiling could play a crucial role in solving this
problem as a generalizable approach for annotating the functional
capacity of different regions of a protein. Mapping the functional
contribution of protein backbone components is crucial for
understanding basic protein biology and developing small
molecule drugs to treat disease.

Methods
Choice of domains. We curated 759 motifs a representative sample of biophysical
properties that drive donor/recipient compatibility (Supplementary Table 1, see
Supplementary Data 1 for oligonucleotide sequences). Common domains in extant
proteins are selected from SMART domain groups, focusing on those with available
structural information, and varying ranges of frequencies within the human
genome102. The disordered protein fragments and proteins are from a curated
disordered protein database, DISPROT52. While disordered fragments are derived
from disordered regions within mostly structured proteins, disordered proteins are
proteins that are entirely disordered. The manually curated motifs include natural,
synthetic proteins, several switchable proteins, and a flexible glycine-serine-
alanine-glycine (AGSAGSA) linker (Supplementary Table 5). The polypeptide
linkers are manually selected hydrophobic and hydrophilic subsections from
Kir2.1. Ancestral motifs have been proposed by Alva et al.51. The small non-
domain proteins are manually selected monomeric small proteins which are not
commonly recombined. The smotifs are super-secondary structural motifs that are
common across proteins50. The natural proteins <50 AA acid motifs are a set of
proteins under 50 amino acids that do not contain cysteines that were used in a
massive protein stability assay49. Peptide toxins are a set of genetically encodable
disulfide-rich neurotoxin peptides.

Molecular biology. Genes encoding mouse Kir2.1 (Uniprot P35561), mouse Kir3.1
(Uniprot P63250), mouse Kir3.2 (Uniprot P48542), human Asic1a (Uniprot
P78348), human P2X3 (Uniprot P56373), and human Kv1.3 (Uniprot P22001)
were produced by DNA synthesis (Twist Bioscience). A Kozak sequence
(GCCACC) and P2A-EGFP were added before and after each open reading frame,
respectively. FLAG tag epitopes were added into previously described extracellular
loops of Kir2.1 (between S116 and K11759), Kir3.1 (between K114 and A11556),
Asic1a (between F147 and K148103), and P2X3 (between N72 and R73 based on
insertion into the paralog P2X2

104). Golden Gate compatible 5′ and 3′ sites were
added to each gene by inverse PCR. Sequences of final constructs are in Supple-
mentary Data 2.

Library generation. We generated motif insertion libraries using Saturated Pro-
grammed Insertional Engineering (SPINE)53. In brief, we use multi-step Golden
Gate cloning to insert a series of motifs in between all consecutive residue pairs of a
gene. In silico, we break up a gene into fragments (~159 bp or 53 amino acids) with
a genetic handle cassette inserted at every amino-acid position. See Supplementary
Data 7 for oligonucleotide sequences: Cassette primers that encode insertional
diversity, barcode primer to amplify subpool of cassette primers, and gene primers
for inverse PCR of the backbone. The genetic handle has outward-facing BsaI type
IIS restriction sites, which are subsequently replaced by an antibiotic cassette,
chloramphenicol, to remove background wild-type DNA and to select for inserted
library members. As the final step, the chloramphenicol cassette is replaced by the
candidate motif flanked by short N-terminal Ser-Gly and C-terminal Gly-Ser lin-
kers. As a quality control step, we sequence all our libraries for baseline coverage
prior to screens (Supplementary Fig. 15).

Cloning domains. The common domains, hand-curated motifs, and non-domain
proteins were ordered as gene fragments (Twist Bioscience). The disordered, gene
fragments, ancestral, structural, and motifs PDBs <50 amino acids were ordered in
the form of an OLS pool (Agilent). See Supplementary Data 1 for nucleotide
sequences. All motifs were mammalian codon-optimized and designed with
amplifiable barcodes and BsaI type IIS restriction sites complementary to those in
the inserted genetic handle. Golden gate cloning is conducted with BsaI-v2 HF
(NEB), T4 Ligase (NEB) following the manufacturer’s instructions. Completed

Golden Gate reactions were cleaned with Zymo Clean Concentrate kits and
transformed into E. cloni™ electrocompetent cells (Lucigen). Diversity was main-
tained at every step such that there are at least 30× successfully transformed
colony-forming units as determined by serial dilutions and plating an aliquot of
liquid cultures.

Library cell line construction. To generate cell lines, we used a rapid single-copy
mammalian cell line generation pipeline51. In brief, insertion libraries are cloned
into a staging plasmid with BxBI-compatible attB recombination sites using BsaI
Golden Gate cloning. We amplify the staging plasmid backbone using inverse PCR
and the library of interest with primers that add complementary BsaI cut sites.
Golden Gate cloning is conducted with BsaI-v2 HF (NEB), T4 Ligase (NEB) fol-
lowing the manufacturer’s instructions. Completed Golden Gate reactions were
cleaned with Zymo Clean Concentrate kits and transformed into E. cloni™ elec-
trocompetent cells (Lucigen). Diversity was maintained at every step such that
there are at least 30× successfully transformed colony-forming units as determined
by serial dilutions and plating an aliquot of liquid cultures. Completed library
landing pad constructs are co-transfected with a BxBI expression construct
(pCAG-NLS-Bxb1) into (TetBxB1BFP-iCasp-Blast Clone 12 HEK293T cells). This
cell line has a genetically integrated tetracycline induction cassette, followed by a
BxBI recombination site, and split rapalog inducible dimerizable Casp9. Cell are
maintained in D10 (DMEM, 10% fetal bovine serum (FBS), 1% sodium pyruvate,
and 1% penicillin/streptomycin). Two days after transfection, doxycycline (2 μg/ml,
Sigma-Aldrich) is added to induce expression of our genes of interest (successful
recombination) or the iCasp-9 selection system (no recombination). Successful
recombination shifts the iCasp-9 out of frame, thus only cells that have undergone
recombination survive, while those that have not will die from iCasp-9-induced
apoptosis. One day after doxycycline induction, AP1903 (10 nM, MedChemEx-
press) is added to cause dimerization of Casp9 and selectively kill cells without
successful recombination. One day after AP1903-Casp9 selection, media is changed
back to D10 + doxycycline (2 μg/ml, Sigma-Aldrich) for recovery. Two days after
cells have recovered, cells are reseeded to enable normal cell growth. Once cells
reach confluency, library cells are frozen in 50% FBS and 10% DMSO stocks in
aliquots for assays.

Sequencing-based surface expression assay. Thawed stocks of library cell lines
were seeded a six-well dish and media was swapped the following day to D10. Cells
were grown to confluency, split once to ensure maximum cell health, and then
media was swapped to D10+ doxycycline (2 μg/ml, Sigma-Aldrich). Kir3.1 cannot
homo-tetramerize and therefore requires a co-expressed Kir3.2 or Kir3.4 inward
rectifier to surface express56. For this reason, 48 hours prior to sorting Kir3.1
libraries, we transiently transfected the stable Kir3.1 insertion library cell line with
2 μg Kir3.2-P2A-miRFP670 and 6 μl Turbofect per well of a six-well plate. For all
libraries except for Kv1.3, we detached cells with 1 ml Accutase (Sigma-Aldrich),
spun down and washed three times with FACS buffer (2% FBS, 0.1% NaN3, 1×
PBS), incubated for 1-hour rocking at 4degC with a BV421 anti-flag antibody
(Biolegend catalog# 637321) at 1:200 dilution, washed twice with FACS buffers,
filtered with cell strainer 5 ml tubes (Falcon), covered with aluminum foil, and kept
on ice for transfer to the flow cytometry core. For Kv1.3, cells were detached and
washed the same except after initial washing cells were brought up in FACS buffer
with Agitoxin-2-Cys-TAMRA (5 nM, Alomone), filtered with cell strainer 5 ml
tubes, and brought to cell sorting facility on ice. Before sorting, 5% of cells were
saved as a control sample for sequencing prior to sorting.

All cells were sorted on a BD FACSAria II P69500132 cell sorter. Flow data was
collected using FACSDiva version 8.0.1 and analyzed using FlowJo 10.

EGFP fluorescence was excited with a 488 nm laser and recorded with a 525/
50 nm bandpass filter and 505 nm long-pass filter. BV421 fluorescence was excited
using a 405 nm laser and recorded with a 450/50 nm bandpass filter, TAMRA
fluorescence was excited using a 561 nm laser and recorded with a 586/15 nm
bandpass filter, and miRFP670 was excited with a 640 nm laser and recorded with
670/30 nm bandpass filter. All cells (except those expressing Kir3.1) were gated on
forwarding scattering area and side scattering area to find whole cells, forward
scattering width, and height to separate single cells, EGFP for cells that expressed
variants without errors (our library generation results in single base pair deletions
that will not have EGFP expression because deletions will shift EGFP out of
frame53), and label (either Agitoxin-Cys-TAMRA for Kv1.3, BV421 for all others)
for surface-expressed cells. Kir3.1 library cells were gated on forwarding scattering
area and side scattering area to find whole cells, forward scattering width, and
height to separate single cells, miRFP670 for Kir3.2 co-expression, GFP for cells
that expressed variants without errors, and label (BV421) for surface-expressed
cells. The surface expression label gate boundaries were determined based on
unlabeled cells from the same population because controls tend to have non-
representative distributions. Examples of the gating strategy for each channel are
depicted in Supplementary figures 16–20.

EGFPhigh/labellow (cells expressing non-trafficking variants) and EGFPhigh/
labelhigh cells (expressing surface-trafficked variants) were collected into catch
buffer (20% FBS, 0.1% NaN3, 1× PBS). For larger pooled sublibrary samples, we
collected between at least 100,000 to 500,00 cells per gate which is ~8–35×
coverage. 15,000 cells in both gates of a Kir2.1 library with a small flexible
AGSAGSA linker was collected each day to normalize all the pooled libraries. For
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smaller 15 motifs samples, we collected between 4000–50,000 of each sample/
library pair which is ~10–120× coverage for all libraries. Note that theoretical
coverage given above assumes that all positions are present in each cell collection,
which will underestimate coverage. In practice, the more disruptive an insertion the
fewer surface-labeled cells can be collected. However, those cells that are collected
will be enriched for the few positions in which this disruptive variant is allowed.
This means that fewer collected cells sample that smaller set of compatible
insertion positions, which in turn result in sufficient coverage.

The entire process was repeated to collect two independent replicates.

Sequencing. For both biological replicates, DNA from pre-sort control and sorted
cells was extracted with Microprep DNA kits (Zymo Research) and triple-eluted
with water. The elute was diluted such that no more than 1.5 μg of DNA was used
per PCR reaction and amplified for 20 cycles of PCR using Primestar GXL (Takara
Clonetech), run on a 1% agarose gel, and gel purified. Primers that bind outside the
recombination site ensure leftover plasmid DNA from the original cell line con-
struction step is not amplified. Purified DNA was quantified using Picogreen DNA
quantification. Equal amounts (by mass) of each domain insertion sample were
pooled by cell sorting category (“pre-sort control”, “surface expression”, “no sur-
face expression”). For Kir2.1, pools were further divided to segregate highly similar
motifs sequences. Pooled amplicons were prepared for sequencing using the
Nextera XT sample preparation workflow and sequenced using Illumina Novaseq
in 2x150bp mode. Read count statistics and coverage of mapped reads are in
Supplementary Table 6. Source sequencing data is available in the Sequence Raw
Archive (SRA- https://www.ncbi.nlm.nih.gov/sra) and the accession codes for the
data are: PRJNA766040 (Project_047) and PRJNA766074 (Project_045).

Enrichment calculations. Forward and reverse reads were aligned individually
using a DIPseq pipeline32, slightly modified for SPINE compatibility and for
updated python packages. If both forward and reverse reads report an insertion,
duplicated domain insertion calls are removed to avoid artificially boosting counts.
This pipeline results in.csv spreadsheets indicating insertion position, direction,
and whether it is in frame.

Surface-expression enrichment was calculated by comparing the change in
EGFPhigh/labellow to EGFPhigh/labelhigh. Enrichment calculation was based on
Enrich2105 and implemented in R version 4.1.0. Only positions with reads in both
labellow and labelhigh groups were used in enrichment calculations. For each cell
group, the percentage of reads at each position was calculated after adding 0.5 to
assist positions with very small counts. Enrichment was calculated by taking the
natural logarithm of EGFPhigh/labelhigh percentage divided by the EGFPhigh/
labellow percentage for each position (i), inserted motif (m), and replicate (r).

Enrichmentrawi;m;r ¼ ln
0:5þ Count Highi;m;r

∑n
i 0:5þ Count Highi;m;r

=
0:5þ Count Lowi;m;r

∑n
i 0:5þ Count Lowi;m;r

ð1Þ

All datasets were z scored to an internal control flexible linker motif
(AGSAGSA) enrichment (separate for each sequencing subpool) by subtracting the
average control motif enrichment (μflex linker) and dividing by the standard
deviation of the control motif enrichment (σflex linker).

Enrichmentz scoredi;m;r ¼
Enrichmentrawi;m;r � μflex linker

σ flex linker
ð2Þ

Replicates (r) were combined by a weighted average, which was calculated by a
restricted maximum likelihood estimate (M) and standard error (SE) using 50
Fisher scoring iterations.

Enrichmentz scoredi;m ¼ ∑n
r Enrichmentz scoredi;m;r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mm;r þ SEm;r
2

q

∑n
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mm;r þ SEm;r
2

q ð3Þ

Standard error was calculated assuming a Poisson distribution.

SEm;r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Count Highi;m;r þ 0:5

þ 1
Count Lowi;m;r þ 0:5

þ 1
∑n

i Count Highi;m;r þ 0:5
þ 1

∑n
i Count Lowi;m;r þ 0:5

s

ð4Þ
All other positions are treated as NA and are not considered in further analysis

(exclusion criteria) except for correlations between datasets as removing data adds
more noise than treating NAs as 0 s due to sampling.

Data quality. Inserting 759 motifs into 435 Kir2.1 positions yields a total theo-
retical library diversity of 327,888 variants. Each sub-pooled library we generated
and screened encompassed 12,500 variants. Owing to random variance, some data
sets were incomplete (Fig. 1b–e). To make downstream analysis more robust, we
only included motifs with data (after exclusion criteria outlined in Enrichment
Calculations) in >80% of positions. This left us with 637 out of 759 motifs (further
details in Supplementary Table 1).

Clustering. All motif insertional profiling data was clustered by calculating a cosine
distance matrix and clustering it with Ward’s hierarchical clustering method using
the hclust function in R (version 4.1.0) with the “ward.D2” method. UMAP-based

clustering was done using the uwot R package (version 0.1.10) using cosine or
Euclidean distance metrics, and a local neighborhood size of 10 sample points.
Neighborhood size influences how UMAP balances local versus global structure in
the data. Within a range of neighborhood sizes tested (2–50), our choice best
conveys the broader structure of the data.

Ensemble network model. To calculate the dynamics of the recipient and motifs
with available PDBs, we used the Prody Python package106 and code from Golinski
et al.107 as a starting point kindly provided by Alexander Golinski and Benjamin
Hackel (University of Minnesota). We calculated the mean stiffness of each
backbone based on weighted sums of normal modes from an Anisotropic Network
Model of vibration. We calculated summed recipient stiffness for varying lengths
(1, 3, 5, 7, 9, 11 amino acids) before, centered on, and after an insertion position.
Motif stiffness was summed for the entire motif and for varying lengths of the N-
and C-termini (1, 2, 3, 4, 5, and 6 amino acids).

Molecular dynamics simulations. All-atom force-field-based molecular dynamics
simulations were carried out to sample multi-μs trajectories. Our structural models
(PIP2-bound PDB 3SPI and apo state PDB 3JYC65) are constituted by the channel
embedded in a bilayer of ~1300 POPC lipids hydrated by two slabs containing
~170,000 waters and ~600 KCl ion pairs, for a total of ~700,000 atoms. We first
generated the coordinates of the missing amino acids in the experimental struc-
tures (mostly located in unstructured regions) using ROSETTA (for this purpose
we generated 10,000 models and kept the representative structure of the most
populated cluster). We then used charmm-gui108 to model the bilayer and the
aqueous compartment. Simulations are being performed with the charmm36 force-
field109 at a temperature of T= 303.15 K, using the highly parallel computational
code NAMD2.12110 on 280 processors cores from Temple University’s Owlsnest.
Per-RMSF were calculated by considering the position of the Cα atoms of each
residue using the R bio3D package111.

Structure mapping. Calculated properties (e.g., fitness) were mapped onto atomic
ion channel structures using Chimera version 1.16 (build 42330)112. Missing loops
were manually built using Pymol as poly-alanine chains.

Amino-acid scoring. We calculated bioinformatic scores for amino acids using
Quantiprot (version 0.2.4) written for Python 2.7.16113. For scores we used:
molecular weight, surface area, alpha-helical propensity, beta-sheet propensity,
buried accessibility ratio propensity, flexibility, hydropathy, hydrophobicity,
negative charge, pKa, polarity, positive charge, reverse turn propensity, and
volume. These scores were calculated for both recipients and donors. We calculated
summed recipient scores for varying lengths before, centered on, and after an
insertion position (1, 3, 5, 7, 9, 11 amino acids). Motif sequence scores were
summed for the entire motif and for varying lengths of the N and C termini (1, 2, 3,
4, 5, and 6 amino acids). Motif length was also included.

Protein structural properties. A series of properties were calculated with heavily
modified code kindly provided by Alexander Golinski and Benjamin Hackel107 that
uses Pymol called from python scripts (Python version 2.7.16). Recipient protein
PDBs were trimmed of any ions, water, and other non-protein atoms. Recipient
protein phi, psi, contact degree, contact order, long contact degree, secondary
structure percentage, alpha-helical percentage, beta-sheet percentage, nonpolar
solvent accessible surface area (SASA), charged SASA, and hydrophobic SASA. For
each of these properties, we summed recipient structural scores for varying lengths
(1, 3, 5, 7, 9, 11 amino acids) before, centered on, and after an insertion position.
For motifs with structures, the mean phi angle, mean psi angle, the radius of
gyration, the distance between N- and C-termini, the distance of N- and C-termini
to the center of mass, motif size in Daltons, mean contact degree, mean contact
order, mean long contact degree, mean secondary structure percentage, mean
alpha-helical percentage, mean beta-sheet percentage, mean nonpolar SASA, mean
charged SASA, mean hydrophobic SASA, and RMSD (in case of multiple con-
formers) were calculated. In addition to mean motif structural properties, N- and
C-terminal varying lengths (1, 2, 3, 4, 5, and 6 amino acids) sums were calculated
for the phi angle, psi angle, contact degree, contact order, long contact degree,
secondary structure percentage, alpha-helical percentage, beta-sheet percentage,
nonpolar SASA, charged SASA, hydrophobic SASA, and RMSD. Note that we
switched from contact degree to contact density in the final construction of Ran-
dom Forests. Contact density was calculated using the Arpeggio webserver114,
which counts the number of interatomic contacts in Kir2.1 (PDB 3SPI) based on
SMARTS atom-typing and distance/angle-based contact definitions
(CREDO115,116).

Choosing features to train Random Forest. To allow for greater interpretability
of our Random Forest-based models, we filtered the input features for redundancy.
Our approach to reducing property redundancy was as follows: for motifs, we took
the shortest and longest N- and C-terminal features as well as the mean motif
features. We identified redundant motif properties by setting a ±0.8 correlation
cutoff calculated between the motif property and permissibility across all motifs for

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27342-0 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:7114 | https://doi.org/10.1038/s41467-021-27342-0 | www.nature.com/naturecommunications 13

https://www.ncbi.nlm.nih.gov/sra
www.nature.com/naturecommunications
www.nature.com/naturecommunications


a given site. We chose the most explanatory of highly correlated motif properties
based on summed absolute correlative value across all positions. For recipient
properties, we took the longest and shortest of each mean property before, cen-
tered, and after the insertion position. We identified redundant recipient properties
by setting a ±0.8 correlation cutoff calculated between the recipient property and
permissibility across all positions for a given motif. We chose the most explanatory
of highly correlated recipient properties based on summed absolute correlative
value across all motifs. These steps reduced our properties from 908 (520 recipient
and 388 motif) down to 64 (32 recipients and 32 motifs) properties.

Random Forests. Once we had a non-redundant set of 64 properties, we trained a
preliminary random forest model with 500 trees (Supplementary Fig. 5). Based on
this preliminary model, we further trimmed the properties down to the most
explanatory 20 (12 recipient and 8 motif properties). We retrained the model
without a significant drop in model performance (39.98% variance explained for 69
properties and 39.44% for 18 properties, Supplementary Table 4). However, at this
point, we were including motif structural properties. This meant that we were not
able to include any motifs without structural data. As only 1 of the top 10 most
predictive properties (“Motif Phi Mean” as the 9th most predictive) were from the
structured domain set, we decided to exclude structure-based motif features alto-
gether. This allowed us to include more motifs and reduce our non-redundant
properties set down further (38.69% for 10 properties, Supplementary Table 4). We
ended up choosing the top 10 most predictive features which included 6 recipient
features (stiffness, phi angle of 11 AA centered around insertion site, MD simu-
lation RMSF, contact density at insertion site, polar surface area of 11 AA pre-
ceding insertion site, beta-sheet content in 11 AA preceding insertion site) and 4
motif features (mean hydrophobicity, motif length, mean negative charge, mean
amino-acid volume of seven N-terminal residues). This final model was trained
using 85% of the data, with the other 15% withheld for testing, and performed well
on the test dataset (Supplementary Fig. 6). All random forests were trained using
the Randomforest package in R (version 4.6-14) with 500 trees and localimp =
“TRUE” with all model parameters set to default values.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
Sequencing data generated in this study have been deposited in the Sequence Raw
Archive (https://www.ncbi.nlm.nih.gov/sra) under accession codes PRJNA766040
(Project_047) and PRJNA766074 (Project_045); refer to Supplementary Table 6 for
corresponding metadata. Raw data are provided with this paper: Processed data (z scored
surface trafficking scores) are available as Supplementary Data 3. Calculated inserted
motif and recipient protein properties are available as Supplementary Data 4 and 5.
Additional raw data (machine learning model, raw data of manuscript figures) are
deposited on Zenodo (https://doi.org/10.5281/zenodo.5683566). All structural models are
available at the Protein Data Bank (https://www.rcsb.org) under accession codes 3SPI
(PIP2-bound Kir2.2), 3JYC (apo state Kir2.2), 4KFM (Kir3.2), 2R9R (Kv1.2/Kv2.1 paddle
chimera), 5SVK (P2X3), and 6AVE (Asic1a). Primary sequences of all channels used in
this study are available at https://www.uniprot.org under accession codes P35561 (mouse
Kir2.1), P63250 (mouse Kir3.1), P48542 (mouse Kir3.2), P78348 (human Asic1a), P56373
(human P2X3), P22001 (human Kv1.3). Supplementary Data 1 and 2 contain inserted
domain and target channel sequences, respectively. Together these are the minimal set of
data required to replicate the analysis. All data are available without restriction.

Code availability
The code for handling data from domain insertion library sequencing is available at:
https://github.com/SavageLab/dipseq. The SPINE code is available at: https://github.com/
schmidt-lab/spine. The version used for this study is archived at https://zenodo.org/
badge/latestdoi/223953195. The Enrich2 that was adapted for data analysis is available at:
https://github.com/FowlerLab/Enrich2. Quantiprot is available at: https://pypi.org/
project/quantiprot/. Prody is available at: http://prody.csb.pitt.edu. A R Markdown
document to reproduce manuscript figures is provided as Supplementary Data 6.
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