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Abstract

Thanks to the recent spread of the Linked Open Data (LOD) initiative, a huge

amount of machine-readable knowledge encoded as RDF statements is today

available in the so-called LOD cloud. Accordingly, a big effort is now spent to

investigate to what extent such information can be exploited to develop new

knowledge-based services or to improve the effectiveness of knowledge-intensive

platforms as Recommender Systems (RS).

To this end, in this article we study the impact of the exogenous knowl-

edge coming from the LOD cloud on the overall performance of a graph-based

recommendation framework. Specifically, we propose a methodology to auto-

matically feed a graph-based RS with features gathered from the LOD cloud

and we analyze the impact of several widespread feature selection techniques in

such recommendation settings.

The experimental evaluation, performed on three state-of-the-art datasets,

provided several outcomes: first, information extracted from the LOD cloud can

significantly improve the performance of a graph-based RS. Next, experiments

showed a clear correlation between the choice of the feature selection technique

and the ability of the algorithm to maximize specific evaluation metrics, as

accuracy or diversity of the recommendations. Moreover, our graph-based al-
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gorithm fed with LOD-based features was able to overcome several baselines, as

collaborative filtering and matrix factorization.

Keywords: Recommender Systems; PageRank; Graphs; Linked Open Data;

Feature Selection; Diversity

1. Introduction

In 2007, the Linked Open Data project [8] was launched to stimulate re-

searchers and organizations publishing their data in RDF1 format and adopting

shared vocabularies, in order to express an agreed semantics and interlink the

data to each other. Nine years later, 150 billions2 of RDF triples and almost5

10,000 linked datasets are available on the Web, thus representing a rapidly

growing piece of the big data puzzle [30].

These interconnected RDF statements form a huge decentralized knowledge

base, called Linked Open Data (LOD) cloud (see Figure 1). The LOD cloud

covers many topical domains, ranging from government and geographical data10

to structured information about media (movies, books, etc.) and life sciences.

The typical entry point to these data is DBpedia [3], the RDF mapping of

Wikipedia which is commonly considered as the nucleus of the emerging Web

of Data.

Due to the enormous availability of such machine-readable knowledge, a big15

effort is now spent to investigate whether and how knowledge-intensive ser-

vices and applications, as Recommender Systems (RS) [27], may benefit of this

plethora of data. By considering a typical pipeline carried out by a RS, a very

straightforward use of the information encoded in the LOD cloud regards the

enrichment of the representation of the items to be recommended as well as20

of the preferences of the target user. For example, the movie The Matrix is

described in the LOD cloud by means of a huge set of properties (see Figure 2).

1http://www.w3.org/TR/rdf-concepts/
2http://stats.lod2.eu/
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Figure 1: The core of the Linked Open Data Cloud

Figure 2: A (tiny) portion of the properties describing the movie ”The Matrix”
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Clearly, some of the properties (as the director of the movie, the year or

the composer) are quite trivial, but many others are very fine-grained and can

actually enrich the representation of the items by automatically injecting new25

and useful knowledge. Accordingly, thanks to these novel data points, user

preferences and tastes can be better modeled: as an example, it is possible to

infer that a user interested in The Matrix may be also interested in Dystopian

or Cyberpunk movies.

Similarly, also recommendation algorithms can be boosted by exploiting30

the non-trivial connections encoded in the LOD cloud. As shown in Fig-

ure 3, the information encoded in DBpedia allows to discover that both The

Matrix and The Lost World: Jurassic Park share some unexpected connec-

tions: indeed, by just sifting through the LOD cloud it emerges that both

movies, mapped to the URIs http://dbpedia.org/resource/The Matrix35

and http://dbpedia.org/resource/The Lost World:Jurassic Park, re-

spectively, share the common feature category:Films shot in Australia,

which is encoded through the property dcterms:subject.

It immediately follows that RS technologies can benefit of the information

stored in these novel data silos, since in a movie recommendation scenario Juras-40

sic Park can be easily suggested to a user who already enjoyed the Matrix. How-

ever, the enormous plethora of connections emerging from the LOD cloud can

be exploited to generate more daring and unexpected recommendations: as an

example, Minority Report may be suggested to a user who enjoyed Cloud Atlas,

given that both movies share the common characteristic of having a director45

who shot a movie in Australia.

Given the enormous potential of the data encoded in the LOD cloud, in this

article we study the impact of such exogenous knowledge on the overall perfor-

mance of a graph-based recommendation framework. We focused our attention

on graph-based approaches since they use a uniform formalism to represent both50

collaborative and LOD-based features. Indeed, in the first case users and items

are represented as nodes and preferences are represented as edges. Similarly,

entities from the LOD cloud are represented as nodes while the connections
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Figure 3: A (tiny) portion of the connections between entities which are encoded in

the Linked Open Data cloud.

between them (expressed through RDF properties) are represented as edges. It

is very straightforward that through a simple mapping of the items to be rec-55

ommended with the URIs available in the LOD cloud, both representations can

be connected and merged in a unique and powerful formalism. Given such a

representation, we adopted PageRank with Priors [20] as graph-based recom-

mendation algorithm.

In this work we also compared several techniques to automatically select the60

best subset of LOD-based properties (that is to say, the best subset of edges

modeled in the resulting representation), with the aim to investigate to what

extent a specific feature selection technique can influence the overall behavior

of the algorithm and can endogenously lead to a higher accuracy or a higher

diversity of the recommendations. In this case, the experimental evaluation65

showed a clear correlation between the choice of the feature selection algorithm

and the ability of the RS to maximize a specific evaluation metric. Moreover,

our graph-based algorithm fed with LOD-based features was able to overcome

several state-of-the-art baselines, further confirming the insight that LOD-based
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features can be effectively exploited in RS research.70

To sum up, the contributions of the paper can be summarized as follows:

• We investigate the impact of the integration of the knowledge coming from

the LOD cloud in a graph-based recommendation framework.

• We propose a methodology to automatically feed a graph-based recom-

mendation algorithm with features coming from the LOD cloud.75

• We give guidelines to drive the choice of the feature selection technique,

according to the needs of a specific recommendation scenario (i.e., maxi-

mize accuracy, maximize diversity).

• We validate our methodology by evaluating its effectiveness with respect

to several state-of-the-art datasets.80

The rest of the paper is organized as follows: Section 2 analyzes related

literature. The description of our recommendation methodology is the core of

Section 3, while an overview of the feature selection techniques is provided in

Section 4. Next, the details of the experimental evaluation we carried out are

described in Section 5. Finally, Section 6 sketches conclusions and future work.85

2. Related Work

This work investigates two different research lines: graph-based RSs and

LOD-based RSs.

In this section we present the current literature in both areas.

2.1. Graph-based Recommender Systems90

A very early work in the area of graph-based RSs is due to Aggarwal et al. In

[2], they present Horting, an approach which models users as nodes in a graph

and connects users according to their similarity. Given this representation, pre-

dictions are calculated by walking the graph to nearby nodes and combining

the opinions of the nearby users. The adoption of a graph-based topology is95
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also the core of several work proposed by Huang et al. [22, 23]. In such articles

the authors propose a two-layer graph structure which is applied in both an e-

commerce and a book recommendation scenario. According to this model, items

and users are represented as nodes on two separate layers. Next, transactional

data (e.g. a user purchasing an item) are exploited to link nodes in different100

layers. Given such a representation, several recommendations methods as di-

rect retrieval (e.g. retrieving products similar to the target customers previous

purchases) or association rules mining are exploited to generate suggestions.

Next, graph-based representations have been largely adopted to model the

concept of trust in RSs [39]. As an example, in [24] the authors defined a trust-105

based network among the users which is exploited to overcome the cold start, a

typical issue of RSs. Indeed, in this setting ratings of trustful users (instead of

similar users, as in classic collaborative filtering algorithms [16]) are exploited to

generate recommendations. A similar attempt towards this research direction

is due to Golbeck et al. [18], who modeled trust between users in a movie RS.110

In both cases the experimental evaluation supported the insight that trustful

users (or, generally speaking, authoritative nodes of a social network) lead to

better suggestions.

More recently, due to the large popularity of PageRank [41], many papers

introduced approaches inspired by Random Walk in the area of RS as well. In-115

deed, several research showed that the analysis of the social interactions among

users in a social network is very important, since authoritative nodes influence

other users’ choices [50], and this is tremendously important for recommender

systems-related scenarios.

The main difference between the approaches inspired by Random Walk lies120

in the topology of the graph-based representation: for example, FolkRank has

been proposed by Hotho et al. [21] for tag recommendation in social book-

marking systems. The model proposed an adaptation of PageRank relying on

a graph-based representation of resources along the tags the community used

to annotate them. Next, approaches inspired by PageRank gained a lot of in-125

terests in movie and video recommendation scenarios: in [9], Bogers proposed
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ContextWalk, a movie RS relying on PageRank, which also models tags, genres

and actors, while Baluja et al. [4] present a recommender system for YouTube

videos based on random walks on the bipartite user-video graph. They eval-

uate their method on a three-month snapshot of live data from YouTube and130

they show that such a novel approach is able to outperform typical baselines

for video recommendations. Random Walk was also applied to the problem of

rater identification in recommender systems. In [48], a relational context-aware

graph consisting of four types of nodes, i.e., user, item, rating and time, and the

relations between them is used to distinguish common preferences from personal135

ones, which could have a great potential for improving group recommendation

models. Similarly, in [29], the extra knowledge provided by Last.fm users’ so-

cial activity was able to improve the performance of a recommendation system

using the Random Walk method, and was also able to overcome a common

memory-based collaborative filtering item recommendation method, augmented140

with the social knowledge as well. In the domain of music recommendation,

more complex approaches have also been proposed to include multiple types

of social media information and music acoustic-based content. Indeed, in [11],

the recommendation problem is modeled as a ranking problem on a unified hy-

pergraph which models the multitype objects in a music social community and145

their relations.

Recently, de Gemmis et al. [13] evaluated RandomWalk with Restart and in-

vestigated to what extent such graph-based representation can lead to serendip-

itous recommendations. Other attempts are due to Gori [19], who defined the

graph on the ground of co-viewing users behavior, and Abbassi et al. [1] who150

combines Personalized PageRank with Spectral Clustering techniques to recom-

mend weblogs according to the underlying link structure. Moreover, a recent

work by Noulas et al. [38] exploited personalized Random Walk for a place

recommendation algorithm. In this setting, the technique is run over the user-

places graph and combines information coming from social networks (connection155

between users) with venue visits frequency data. As stated by the authors, this

novel approach obtained a significant improvement with respect to other mod-
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els for place recommendation, thus confirming the effectiveness of approaches

inspired by PageRank in a broad range of scenarios.

One of the distinguishing aspects of our work is that none of the current160

literature investigated the integration of LOD-based data in graph-based RSs.

The only recent similar attempt has been presented by Ostuni et al. [40]. In

this work the authors extract the paths connecting users to items by merging

the information coming from user preferences with those extracted from the

LOD cloud. Given this hybrid data model, the relevance of an item for a user165

is calculated by counting the number of paths connecting that user and that

item: the more the paths, the more the relevance. However, differently from

that work, we encoded LOD-based features in a graph-based representation and

we exploited Page Rank with Priors as recommendation technique.

2.2. LOD-based Recommender Systems170

In this section we focus on the exploitation of knowledge specifically encoded

in the Linked Open Data cloud to improve recommendations, while the authors

in [49] proposed a survey on recommendation scenarios adopting alternative

forms of information concerning users and items, such as those extracted from

social networks, folksonomies, tags, or reviews and comments.175

Research in the area of LOD-based RSs takes its root in the field of ontology-

based recommender systems, introduced by Middleton et al. [33]. The prelimi-

nary attempts towards the exploitation of Linked Open Data in RS area are due

to Passant [42], who proposed a music recommender system based on semantic

similarity calculations involving DBpedia properties. The use of DBpedia for180

similarity calculation is also the core of the work presented by Musto et al. [37]:

in that paper music preferences are extracted from Facebook pages of users and

are used as input to find other relevant artists and to build a personalized music

playlist. Another DBpedia-based similarity measure has been recently proposed

by Meymandpour et al. in [32], where the authors adopt the Partitioned Infor-185

mation Content (PIC) [31], a similarity measure inspired by Information Theory

and adapted to the scenario of Linked Open Data, to assess about the similarity
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of two resources described through LOD properties. Next, such semantic simi-

larity measure is used as backbone of a collaborative recommendation approach

to identify items similar to those the target user already voted. Experiments190

reported by the authors demonstrated how such approach overcomes all the

baselines taken into account.

A relevant research line investigated the adoption of data sources belong-

ing to the Linked Open Data cloud as a feature generation tool, since they

have been largely used to introduce new relevant features to better model user195

preferences and better represent the items. For example, in [10] the authors

present TasteWeight, a recommender systems relying on Facebook-based music

preferences. In this work DBpedia is exploited to gather one or more labels

describing the genre played by each artist extracted from Facebook. Recom-

mendations are generated by querying a SPARQL endpoint with such labels,200

in order to obtain new artists playing (most of) the genres liked by the target

user. Similarly, Baumann et al. [7] extract features from Freebase3, a large

collaborative knowledge base, to describe artists. A similar approach is also

proposed by Schmachtenberg et al. [47], who query LinkedGeoData4 to collect

features describing points of interests. In all these papers Linked Open Data205

are used to avoid the problem of limited content analysis [12], which is typical

of content-based recommendation approaches.

Subsequent papers have focused on the impact of LOD-based features on the

overall accuracy of a recommender system. A relevant paper has been presented

by Di Noia et al. [14], who performed a preliminary comparison of different210

manually-selected LOD properties in a movie recommender system. Similarly,

an empirical evaluation of the impact of LOD-based features on several recom-

mendation techniques (as PageRank and text classifiers) has been presented in

[35]. Such studies confirmed the usefulness of injecting Linked Open Data into

recommender systems since, regardless the specific technique adopteed to gen-215

3https://www.freebase.com/
4http://linkedgeodata.org

10



erate recommendations, the performance of LOD-enabled RSs often overcome

that obtained by several widespread recommendation techniques as collabo-

rative filtering and matrix factorization. This has been further confirmed by

several studies performed in many different domains, as book recommendation

[44], e-learning resources recommendation [15] and event recommendation [28].220

More recently, the use of LOD-based data sources has been the core of

the ESWC 2014 Recommender Systems Challenge5: in that setting, the best-

performing approaches were based on ensembles of several widespread algo-

rithms. Specifically, the winning approach proposed by Basile et al. [5, 6] used

Borda Count to aggregate the output coming from Random Forests, Logistic225

Regression and PageRank with Priors, running on diverse sets of features gath-

ered from the LOD cloud. Similarly, the second best-performing configuration

[46] was based on the same ingredients, since it combined different base recom-

menders, such as collaborative and content-based ones, with a non-personalized

recommender based on popularity.230

However, differently from this work, none of the above described approaches

tackles the issue of identifying and selecting the most promising subset of LOD-

based features, since all analysis are performed by using trivial sets of properties,

as the most popular ones within the LOD cloud or a manually selected subset.

To this end, in this paper we perform an extensive study aiming to understand235

to what extent the introduction of a methodology to automatically select the

(best) set of features extracted from the LOD cloud can contribute to the overall

effectiveness of the graph-based recommendation framework. Finally, another

distinguishing aspect of this article is the thorough analysis of the impact of fea-

ture selection techniques on the diversity of recommendations. Indeed, none of240

the work presented in literature addresses the problem of investigating whether

specific feature selection techniques are endogenously able to maximize specific

evaluation metrics as the diversity or the novelty of the recommendations.

It is worth to state that this article significantly extends the results presented

5http://2014.eswc-conferences.org/important-dates/call-RecSys
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in [34] and [36], where we confirmed the insight that feature selection techniques245

can be useful to automatically select a subset of LOD-based properties. In

this article we further validated those results by extending the experimental

protocol to three different (and bigger) datasets and by evaluating the results

at different sparsity levels. Moreover, we introduced a thorough analysis of

the scalability issues raised by the massive introduction of data points coming250

from the Linked Open Data cloud. Finally, more challenging baselines as a

matrix factorization algorithm including side information were introduced, in

order to further emphasize the effectiveness of our graph-based recommendation

approach.

3. Methodology255

In this section we describe our graph-based recommendation methodology.

In the first part some basics of the PageRank with Priors are provided, while

the second part describes how we intend to exploit data available in the LOD

cloud for our goals. Finally, we motivate the need to adopt feature selection

techniques to automatically detect the most relevant features gathered from the260

LOD cloud.

3.1. Basics of Graph-based Recommendations

The main idea behind our graph-based model is to represent users and items

as nodes in a graph. Formally, given a set of users U = {u1, u2, . . . un} and a

set of items I = {i1, i2, . . . im}, a graph G = �V,E� is instantiated. It is worth265

to note that G is a bipartite graph, since it models two different kind of entities

(that is to say, users and items). Next, an edge connecting a user ui to an item

ij is created for each positive feedback expressed by that user (likes(ui, ij)),

thus E = {(ui, ij)|likes(ui, ij) = true}. Clearly, if each user and each item have

at least a positive rating, then |V | = |U |+ |I|.270

Given this basic formulation, built on the ground of simple collaborative6

6We just modeled user-item couples, as in collaborative filtering algorithms
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U1(.142) U2(0.142) U3(0.142)

I1(0.142) I2(0.142) I3(0.142) I4(0.142)

Figure 4: PageRank with users and items.

data points, each item i ∈ I can be provided with a relevance score. To calculate

the relevance of each item, we used a well-known variant of the PageRank called

PageRank with Priors [20].

The behavior of the classic PageRank is sketched in Figure 4: in the original275

formulation an evenly distributed prior probability is assigned to each node ( 1
N ,

where N is the number of nodes). Differently from PageRank, PageRank with

Priors adopts a non-uniform personalization vector assigning different weights

to different nodes to get a bias towards some nodes (specifically, the preferences

of a specific user). As shown by Figure 5, in our algorithm the probability280

was distributed by defining a simple heuristics, set after a rough tuning: 80%

of the total weight is evenly distributed among items liked by the users (0%

assigned to items disliked by the users), while 20% is evenly distributed among

the remaining nodes. Damping factor was set equal to 0.85, as in [41].

Given this setting, the PageRank with Priors is executed for each user (this285

is mandatory, since the prior probabilities change according to user’s feedbacks),

and nodes are ranked according to their PageRank score which is in turn cal-

culated on the ground of the connectivity in the graph. The output of the

PageRank is a list of nodes ranked according to PageRank scores, labeled as

L. Given L, recommendations are built by extracting from L only non-voted290

nodes i1 . . . in ∈ I. An example of the basic behavior of PageRank in a rec-

ommendation setting is sketched in Figure 6: in this case user U3 is provided
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U1(.033) U2(0.033) U3(0.033)

I1(0.033) I2(0.033) I3(0.033) I4(0.800)

Figure 5: Personalized PageRank on U3, who previously liked item I4.

U1 U2 U3

I1(0.039) I2(0.108) I3(0.073) I4(0.313)

Figure 6: Results of the Personalized PageRank on U3. List of ranked items: {I2, I3,
I1}.

with I2 as recommendation, since it is the non-voted item node with the high-

est PageRank score, which is calculated according to the connectivity of the

resulting users-items graph.295

3.2. Introducing LOD-based features

As stated above, our basic formulation does not take into account any data

point different from users’ ratings. The insight behind this work is to enrich the

above described graph by introducing some extra nodes and edges, according

to the information available in the LOD cloud. Formally, we want to define300

an extended graph GLOD = �VLOD−ALL, ELOD−ALL�, where VLOD−ALL =

V ∪ VLOD and ELOD−ALL = E ∪ ELOD. In this case, ELOD is the set of

the new connections resulting from the properties encoded in the LOD cloud
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(e.g. director, subject, genre, etc.), while VLOD is the new set of nodes (e.g.

Wachowski brothers or Keanu Reeves) connected to the items i1 . . . im ∈ I305

through the properties of the LOD cloud.

It is worth to note that we only included nodes and properties which are

directly connected to the items to be recommended. This choice is due to the

results already presented in [35], where it is shown that the introduction of non-

direct relationships and nodes leads to an exponential growth of the PageRank310

running time, but it does not produce a significant improvement in the precision

of the recommendation process.

Clearly, in this setting GLOD is a tripartite graph, since beyond users and

items the properties gathered from the LOD cloud describing the items are now

modeled as well.315

By considering again the movie The Matrix, as previously explained the in-

formation about the director of the movie is encoded by the property modeled in

the LOD cloud as http://dbpedia.org/property/director. In this case,

an extra node The Wachowski Brothers is added to VLOD and an extra edge,

labeled with the name of the property, is instantiated in ELOD to connect the320

movie with its director. Similarly, if we want to model in the new resulting

graph also the information about the cast of the movie (encoded by the prop-

erty http://dbpedia.org/property/starring), many new nodes and new

edges are defined, for example between The Matrix and its main actors, as

Keanu Reeves. In turn, given that Keanu Reeves acted in several movies, many325

new edges are added to the graph and many new paths now connect different

movies: it is worth to note that these paths would not have been available if

the only collaborative data points were instantiated.

It immediately emerges that, due to this novel enriched representation, the

structure of the graph tremendously changes since many new nodes and many330

new edges are added to the model. As shown in Figure 7, it may happen that

many new resources are connected to the items: in our case, each novel node Vi

represents a resource gathered from the LOD which is connected to the items

in the dataset.
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U1(.02) U2(0.02) U3(0.02)

I1(0.02) I2(0.02) I3(0.02) I4(0.80)

V1(0.02) V2(0.02) V3(0.02) V4(0.02)

Figure 7: PageRank with Priors on U3 with users, items and resources gathered from

the LOD.

As a consequence, given that relevance scores are calculated on the ground335

of graph topology, the recommendations generated for a user ui also change

when LOD-based data points are taken into account. As shown in Figure 8, it

may happen that the ranking of the items changes due to the novel informa-

tion gathered from the LOD cloud. In this example item I3 is now ranked as

first (instead of second). The first goal of our experimental session will be to340

investigate whether graph-based RSs can benefit from the introduction of novel

LOD-based features.

3.3. Selecting LOD-based features

Thanks to the data points available in the LOD cloud, many new information

are encoded in our graph. It is likely that such new data lead our recommen-345

dation algorithm to better suggestions, since user preferences as well as items

characteristics are better represented thanks to the information available in the

LOD cloud. However, as the number of extra nodes and extra edges grows, the

computational load of the PageRank with Priors significantly grows as well. As

a consequence, it is necessary to reduce the overall load of the algorithm. A350
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U1 U2 U3

I1(0.031) I2(0.086) I3(0.089) I4(0.281)

V1) V2 V3 V4)

Figure 8: Results of the PageRank with Priorsk on U3 with users, items and resources

gathered from the LOD. List of ranked items: {I3, I2, I1}.

promising strategy is to investigate to what extent (if any) each of the properties

modeled in the graph improves the accuracy of our recommendation strategy,

in order to filter out unuseful connections and maintain only the subset of the

most useful properties.

A very naive approach may be to manually select the most relevant LOD-355

based features, according to simple heuristics or to domain knowledge (e.g.

properties as director, starring, composer may be considered as relevant for the

Movie domain, whereas properties as runtime or country may be not). This

basic approach has several drawbacks: first, it requires a manual effort, but it

is also strictly domain-dependent, and it is not possible to arbitrarily state that360

a certain property (as director) can be useful and another one can not without

an extensive experimental evaluation.

To this aim, in this work we proposed a different methodology, based on

the exploitation of features selection techniques to automatically select the

most promising LOD-based features. Formally, our idea is to take as input365

ELOD, the overall set of LOD-based properties, and to produce as output

ELOD−FST
⊆ ELOD, the set of properties a specific feature selection technique

T returned as relevant. Clearly, the exploitation of a feature selection technique

17



T also produces a set VLOD−FST
⊆ VLOD, containing all the LOD-based nodes

connected to the properties in ELOD−FST
.370

Given that the application of such techniques causes a change in the topology

of the graph, the PageRank with Priors needs to be executed again for each user.

In this setting, given a FS technique T , PageRank will be executed against the

graph GLOD−T = �VLOD−T , ELOD−T �, where VLOD−T = V ∪ VLOD−FST
and

ELOD−T = E ∪ ELOD−FST
.375

In the experimental session the effectiveness of all these topologies will be

evaluated, by comparing also different techniques for LOD-based features selec-

tion.

4. Overview of the feature selection techniques

In this section we provide an overview of the features selection (FS) tech-380

niques exploited in this work to identify the most promising subset of LOD-based

properties.

Clearly, an exhaustive description of each technique is out of the scope of

the paper: we will just provide the insight behind each technique and we will

give some methodological details about its behavior. It is worth to state that385

all the techniques have been exploited in a top-K selection setting. That is

to say, given a set of features F = {f1 . . . fr}, a FS technique T produces a

ranked features list FT = {f1 . . . fk} ⊆ F , where each feature fi is ranked

according to descending relevance order. Next, the first K features7 returned

by the algorithm are used to feed the graph-based recommendation algorithm.390

Clearly, in the experimental setting different values for K have been evaluated.

Hereafter, a brief description of the seven FS techniques we taken into account

follows:

PageRank (PR): PR itself can be used as FS technique. In this setting,

differently from the process described in Section 3.1, for each property gathered395

7Hereafter, the concepts of features and properties can be considered as synonyms, since

in this setting each property gathered from the LOD is a feature of our graph-based model.
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from the LOD cloud and for each item to be recommended a new node is created.

Next, an edge between an item node ij and a property node pk is instantiated

whenever an item ij is described by the property pk. Finally, classical PageRank

is run and the relevance score associated to each property node is calculated.

Properties are ranked according to their PR score and the first K are returned.400

Given that the relevance score of each node is calculated on the ground of its

connectivity in the graph, the insight behind this technique is that the more

a property node in the graph is connected with other nodes, the more is the

likelihood that it will be labeled as relevant.

Principal Component Analysis (PCA): PCA [26] is a popular tech-405

nique for FS. This strategy aims at identifying the subset of features (called

Principal Components, PC) which are relevant, mutually uncorrelated and able

to maintain most of the information conveyed by the whole set of features. Op-

erationally, PC are extracted in three steps: first, an item-property matrix X

encoding the distribution of the properties along the items is built. Next, the410

matrix Σ, calculated as the covariance matrix of X, is obtained and its eigen-

vectors are calculated. Finally, the K eigenvectors of matrix Σ with the highest

eigenvalues are labeled as PC and are returned as output of the processing.

Support Vector Machines (SVM): even if SVM [25] has been largely

used as classification framework, it can be adopted for FS as well. Indeed, given415

the previously described set of features F , for each item i a classification hy-

pothesis H = θ0f0 + θ1f1 + . . .+ θrfr is learned by SVM in a one-vs-all fashion

(that is to say, the item itself along with its features is labeled as positive exam-

ple, while all the other items are labeled as negative). The variables θ0 . . . θr are

the parameters of the hyphothesis learned by SVM, and their values (typically420

called magnitude) describe the importance of the corresponding feature in the

model. When SVM is used as FS technique, features are ranked according to

the average magnitude learned over the classes i1 . . . im, and the first K are

returned as output of the process.
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Chi-Squared Test (CHI): CHI8 is a statistical test largely adopted to425

evaluate the dependency between a feature and a class attribute. As for SVM,

we considered each item as a different class and we calculated to what extent a

specific feature is relevant for that class. As described in [52], the overall score of

each feature is the average value returned by Chi-Squared tests run throughout

the available items (classes). The K features obtaining the higher CHI scores430

are the output of the FS process.

Information Gain (IG): IG measures the decrease of entropy when a

feature is given versus when it is absent. Formally, given a feature fi, IG is

calculated as follows:

IG(fi) = E(I)−
�

v∈dom(fi)

|Iv|
|I| ∗ E(Iv) (1)

where E(I) is the overall entropy on the data, Iv is the number of items in435

which feature fi assumes a value equal to v, and E(Iv) is the entropy of the

data calculated only on data where feature fi has value v. Intuitively, IG of a

specific feature is high when the overall sum is high, so a specific feature has a

high IG if E(Iv) is low. By exploiting this FS technique, features are ranked

according to their IG and the top-K are returned as output.440

Information Gain Ratio (GR): the goal of GR is to extend the classi-

cal IG to penalize the attributes that assume a broad range of different values

throughout the data. This is done by introducing a normalization term calcu-

lated as follows:

Norm(I, f) = −
�

v∈dom(f)

|Iv|
|I| ∗ log |Iv||I| (2)

Next, GR is calculated as the ratio between IG(f) and Norm(I, f). As for445

IG, the K features with the highest GR scores are returned as output.

8http://en.wikipedia.org/wiki/Chi-squared test
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Mininum Redundancy Maximum Relevance (MRMR): MRMR [43]

is a feature selection technique which aims to identify the subset of features

which are highly relevant but enough diverse from each other. To this end,

two functions based on Mutual Information are defined. Given a subset of fea-450

tures, the first one tries to minimize the average mutual information calculated

between all the possible couples of features, while the second one tries to max-

imize their correlation with the target class. In our setting, we extracted our

K features by adopting a Greedy strategy to build a set of features which was

gradually larger.455

5. Experimental Evaluation

Our experiments were designed on the ground of four different research ques-

tions:

1. Do graph-based recommender systems benefit of the introduction of LOD-

based features?460

2. Do graph-based recommender systems exploiting LOD features benefit of

the adoption of FS techniques?

3. Is there any correlation between the choice of the FS technique and the

behavior of the algorithm?

4. How does our methodology perform with respect to state-of-the-art tech-465

niques?

5.1. Experimental Design

Description of the datasets. Experiments were performed by exploiting

three state-of-the-art datasets, i.e. MovieLens 1M9, DBbook and Last.fm10.

The first one is a widespread dataset for movie recommendations, the second470

comes from the previously mentioned Linked-Open Data-enabled Recommender

9http://grouplens.org/datasets/movielens/1m/
10http://grouplens.org/datasets/hetrec-2011/
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Systems challenge and focuses on book recommendation, and the latter is a

music recommendation dataset relying on Last.fm’s users listening habits. Some

statistics about the datasets are provided in Table 1.

A quick analysis of the data immediately shows the very different nature475

of the datasets: MovieLens 1M is the most suitable dataset for collaborative

filtering algorithms, since both users and items is provided with a significant

number of ratings (165.59 per user and 269.88 per item, on average), and this

makes the identification of the neighborhood and similarity calculations easier.

On the other side, DBbook and Last.fm resulted as more sparse. The first one480

has a small number of ratings per user (only 11.70 ratings with only 5 ratings as

mode) while Last.fm has a very small number of ratings for each item (5.26, with

a mode equal to 1). Due to these issues, it is likely that both these datasets will

benefit of the integration of the new data points coming from the LOD cloud.

Furthermore, DBbook has the peculiarity of being unbalanced towards negative485

ratings (only 45% of positive preferences), and this makes the recommendation

task more challenging.

Table 1: Statistics of the Datasets

MovieLens 1M DBbook Last.fm

Users 6,040 6,181 1,892

Items 3,883 6,733 17,632

Ratings 1,000,209 72,372 92,834

Positive Ratings 57.51% 45.86% 53.10%

Avg. Rat./User ± stdev 165.59 ± 192.74 11.70 ± 5.85 49.06 ± 5.84

Median/Mode per user 96 / 21 11 / 5 50 / 50

Avg. Rat./Item ± stdev 269.88 ± 384.04 10.74 ± 27.14 5.26 ± 20.62

Median/Mode per item 124 / 1 4 / 1 1 / 1

Experimental protocol. Experiments were performed by adopting differ-

ent protocols: we used a 80%-20% training-test split for MovieLens 1M, and

a 70%-30% one for Last.fm, performed on a per-user basis, in order to main-490
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tain in the training set enough ratings for each user. For DBbook we used the

training-test split provided in literature.

Different protocols were also adopted to build user profiles. In MovieLens

1M, given that user preferences are expressed on a 5-point discrete scale, we

decided to consider as positive only those ratings equal to 4 and 5, while for495

Last.fm we adopted the same protocol defined in [40]: given that each user

was provided with the listening count for each artist, we calculated the average

number of listening for that user and we considered as positive ratings all the

artists whose listening count was over the average. On the other side, the

DBbook dataset is already available as binarized, thus no further processing500

was needed.

As recommendation algorithms we used the previously described PageRank

with Priors, set as explained in Section 3.1. As introduced in Section 3, we

compared the effectiveness of our graph-based recommendation methodology by

considering three different graph topologies: G, modeling the basics collaborative505

information about user ratings; GLOD, which enriches G by introducing LOD-

based features gathered from DBpedia, and GLOD−T which lighten the load of

PageRank with Priors by relying on the features selected by a FS technique T .

In order to evaluate also how our recommendation algorithm is able to deal

with cold-start recommendation scenarios, we repeated the experiments by ex-510

ploiting a gradually lower number of ratings for each user. We defined four

different sparsity levels: Given-All, Given-50, Given-20, Given-10, when all,

50%, 20% and 10% of the ratings available for each user were exploited, re-

spectively. Ratings for each user were randomly chosen, but the proportion

between positive and negative ratings was maintained (e.g., a user expressing515

90 positive and 10 negative ratings will be modeled in Given-10 configuration

with 9 positive and only one negative rating.) The sparsity of the datasets on

varying the sparsity levels is presented in Table 2. Clearly, our expectation is

that LOD-based features have a more significant impact on more sparse config-

urations. Indeed, our insight is that thanks to the injection of such knowledge,520

both user preferences and items representation are better modeled, and this can
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Table 2: Sparsity of the datasets

MovieLens 1M DBbook Last.fm

Given-All 96.42% 99.85% 99.80%

Given-50 98.21% 99.92% 99.90%

Given-20 99.29% 99.97% 99.96%

Given-10 99.64% 99.98% 99.98%

also overcome the shortage of ratings resulting in more sparse recommendation

settings.

In order to enrich the graph G, each item in the dataset was mapped to

a DBpedia entry. Specifically, 3,300 MovieLens 1M entries were successfully525

mapped (85% of the items) while 6,600 items (98.02%) from DBbook were

associated to a DBpedia node. In the first case we automatically mapped the

items by launching a SPARQL query based on the title of the movie against

a DBpedia endpoint, while in the latter we used the mapping made available

for the previously mentioned RecSys challenge. Finally, 8,175 Last.fm’s artists530

(46.36%) were mapped to DBpedia. In this case we used the mapping made

available in [40]. The items for which a DBpedia entry was not found were only

represented by using collaborative data points. Overall, MovieLens 1M entries

were described through 60 different DBpedia properties, while the number of

properties describing books and artists was equal to 70 and 81, respectively.535

As feature selection techniques all the approaches previously described in

Section 4 were employed, while for the K parameter (the number of LOD-based

features) three different values were compared: 10, 30 and 50. The performance

of each graph topology was evaluated in terms of F1-measure and Mean Av-

erage Precision (MAP), in order to also evaluate the goodness of the ranking.540

Moreover, we also calculated the overall running time11 of each experiment with

a specific graph topology. To answer the third research questions we also evalu-

11Experiments were run on an Intel-i7-3770 CPU3.40 gHZ, with 32GB RAM.
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ated the diversity of the recommendations, calculated by exploiting the classical

Intra-List Diversity (ILD) [53], which is calculated as the opposite of the av-

erage similarity between all the couples of items in the recommendation set.545

Formally, let R be a recommendation set, let Ij and Ik be a couple of items in

R, let sim(Ij , Ik) be a similarity measure, as the classic cosine similarity, the

ILD of a recommendation set R can be calculated as follows.

ILD(R) = 1−
�N

j,k=1(j �=k) sim(Ij , Ik)

|R| (3)

Given that cosine similarity needs a vector-space representation of the items

to be compared, we represented each item relying on features encoded in the550

Linked Open Data cloud (e.g. subject, genre, director), and we calculated the

similarity on the ground of the matching between those values.

Statistical significance was assessed by exploiting Wilcoxon and Friedman

tests, chosen after running the Shapiro-Wilk test12, which revealed the non-

normal distribution of the data. Finally, it is worth to note that the source555

code of our graph-based recommendation framework has been published on

GitHub13. The code extends the Jung framework14, a Java library to manage

graph-based data, by introducing new code to extract features from the LOD

cloud and exploit them in a recommendation setting.

5.2. Discussion of the Results560

Experiment 1. In the first experiment we evaluated the introduction of

LOD-based features in graph-based recommender systems. Results are pre-

sented in Figure 9 and 10.

At first glance, it emerged a very dataset-dependant behavior, since the only

dataset which always benefits of the introduction of LOD is Last.fm. With this565

dataset, the LOD-boosted recommender system always overcame the baseline

12http://en.wikipedia.org/wiki/Shapiro-Wilk test
13https://github.com/cataldomusto/lod-recsys/
14http://jung.sourceforge.net/
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Figure 9: Impact of Linked Open Data on graph-based recommender systems (F1@5)

26



Figure 10: Impact of Linked Open Data on graph-based recommender systems (MAP)
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with a statistically significant improvement (p << 0.0001) on both F1-measure

and MAP, for all the sparsity levels.

Next, the behavior on DBbook dataset was as challenging as expected. The

only significant improvement was obtained by considering MAP on Given All570

configuration. In all the other cases, the GLOD configuration never overcame the

baseline. It is likely that this behavior is due to the negatively unbalanced ratio

between positive and negative ratings, which made very difficult to model user

preferences in a proper way, especially on more sparse configurations. Moreover,

the decrease in performance may be also justified by the fact that some of the575

properties encoded in the LOD cloud (only those about books, clearly) are noisy,

thus the injection of all the knowledge available in the LOD cloud does not

provide any significant improvement.

Finally, by considering MovieLens 1M data, results provided interesting out-

comes: as expected, our graph-based recommendation methodology particularly580

benefits of the information available in the LOD cloud on more sparse configu-

rations. Indeed, on Given 10 configuration we noted a significant improvement

(from 0.4888 to 0.4905 in terms of F1-measure) between G and GLOD config-

urations. An improvement was also noted on the same configuration in terms

of MAP (from 0.3141 to 0.315). This means that the features coming from the585

LOD cloud are useful when our data model does not hold enough knowledge

about user preferences. Indeed, when the number of available ratings increases,

the importance of LOD-based features progressively decreases. As reported in

Figure 9, on more dense configurations the differences are really tiny and non-

significant for both F1-measure and MAP.590

Moreover, the computational load requested by the LOD-aware version of

PageRank with Priors requests a deeper investigation of the benefits provided

by the Linked Open Data. Indeed, as shown in Figure 11, the introduction

of Linked Open Data features causes a growth of both nodes and edges in the

graph. The growth is almost exponential on DBbook and Last.fm, since many595

new connections are due to the information available in the LOD are injected,

but is less significant for MovieLens 1M, since also the original bipartite user-
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Figure 11: Statistics about Run Time and Graph Topologies - Data report the total

run time over all the set of users

item graph already encodes more than 400,000 user-item connections.

However, regardless the peculiarities of each dataset, the run time of the

algorithms grows as well. By the way, it is worth to note that the data in600

Figure 11 refer to the whole set of users. By calculating the running time for

each user the results are still acceptable (around 50 seconds for Last.fm, around

20 seconds for DBbook and MovieLens 1M). For the sake of simplicity we only

report the data obtained by the Given All configuration, but the trend is similar

with more sparse versions of the datasets.605

To sum up, the main outcome of this first experiment is that the injection

of LOD features needs to be carefully evaluated. Although a global merge of

the collaborative data points with the information available in the LOD cloud

tends to improve the overall F1 on several recommendation settings, the strong

increase in terms of run time and computational load may be of hindrance for610

a complete exploitation of such a representation.

Moreover, we noted that this behavior has a strict connection with the topol-

ogy of the graph: as the number of available (positive) ratings drops down, most

of the connections modeled in the graph depend only on the properties encoded

in the LOD. As a consequence, the recommendation process is much more in-615

fluenced by similarities and connections between items instead of being driven
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by user preferences. This can lead a twofold behavior: when the properties

gathered from the LOD cloud are particularly significant (as for MovieLens 1M

and Last.fm), they can successfully overcome the lack of ratings and can provide

accurate recommendations in cold-start scenarios, as well. On the other side,620

when properties tend to be noisy (as for DBbook), overall results drop down.

These issues further underline the need to adopt feature selection techniques:

on one hand, they can be useful to filter out non-useful connections and lighten

the load of the algorithm. On the other, given that only relevant LOD-based

features are maintained in the graph, this can lead to an overall improvement625

of both F1-measure and MAP.

Experiment 2. In the second experiment we evaluated the impact of all

the previously presented feature selection techniques in such recommendation

setting. Results of the experiments are provided in Figures 12-13 (for F1@5)

and in Figures 14-15 (for MAP). In this case we only show the results of F1@5630

and MAP for Given All and Given 10 configurations. In both cases we avoided

to report more results since Given 50 and Given 20 obtained result similar

Given All and Given 10, respectively.

In the plots we show the results obtained by the algorithm fed with the

first K properties returned by each of the seven feature selection techniques635

previously presented, with K = 10, 30 and 50. In order to easily read the out-

comes of the experiment, we also reported an horizontal line showing the result

obtained by the baseline GLOD. The overall best-performing configuration is

further highlighted with a star.

The first outcome emerging from the results is that feature selection is able to640

improve the overall F1-measure obtained by our graph-based recommendation

strategy. For example, by considering MovieLens 1M data, on varying the value

of the K parameter all the techniques overcome the baseline at least once. The

only exception to this trend are represented by F1@5 calculated on the Given 10

configuration. Indeed, in this case only four out seven techniques overcome the645

baseline (even with a small, but significant gap). However, by considering MAP,

all the techniques are able to improve the overall effectiveness of the algorithm.
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Figure 12: Impact of feature selection techniques on LOD-aware graph-based recom-

mender systems - F1@5 - Given All configuration
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Figure 13: Impact of feature selection techniques on LOD-aware graph-based recom-

mender systems - F1@5 - Given 10 configuration
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Figure 14: Impact of feature selection techniques on LOD-aware graph-based recom-

mender systems - MAP - Given All configuration
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Figure 15: Impact of feature selection techniques on LOD-aware graph-based recom-

mender systems - MAP - Given 10 configuration
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A similar behavior is also noted for DBbook and Last.fm, since the horizontal

line representing the baseline is often overcame by the configurations based on

features selection. This confirms one of the insight behind this work.650

Moreover, by deeply analyzing the results, a strong connection between the

topology of the graph and the feature selection strategy to be adopted was noted.

Indeed, when the dataset is more dense (as MovieLens 1M, in the Given All

configuration) enough collaborative data points are modeled in the graph, thus

it is not necessary to perform a strong feature selection. It is not by chance that655

the best performing configuration is obtained with K = 30 for both F1-measure

and MAP. This means that by injecting half of the properties available in the

LOD cloud we can obtain the highest accuracy.

Alternatively, when the data gets more sparse, we noted a twofold behavior:

when LOD-based features are meaningful as for Last.fm (as emerged in Experi-660

ment 1), it is a good choice to model all the data points available. Indeed, if we

consider the Given All configuration on Last.fm data it immediately emerges

that configurations run with K = 50 overcome the others for all the techniques

on both F1@5 and MAP. This was someway expected since, as shown in Exper-

iment 1, even by injecting all the 81 available features gathered from the LOD665

the algorithm was able to overcome the baseline, thus it was not necessary to

strongly reduce the number of features modeled in the graph.

On the other side, when LOD-based features are noisy as for DBbook, a

more aggressive feature selection is necessary to obtain better results. Indeed,

in this case we obtained the best results with K = 10 and K = 30. It is also670

worth to note that thanks to feature selection our strategy always overcome

both G and GLOD baselines.

It is also worth to note that the results emerging from the experiments

are confirmed regardless the specific evaluation metrics. Indeed, for DBbook

the same configuration obtained the best results on both F1@5 and MAP (IG675

with 10 features for the Given All configuration and PCA with 30 features

for the Given 10 configuration). Similarly, IG with 50 features and PCA with

30 features were the best-performing configuration on Last.fm for both the the
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metrics on Given All and Given 10 configurations, respectively. Little variations

were noted on MovieLens 1M: PCA with 30 features was the best-performing680

configuration in terms of F1@5 while IG (with the same number of features)

obtained the best results in terms of MAP. The unique controversial behavior

was noted on the more sparse version of MovieLens 1M dataset: while on one

side IG with 50 features obtained the higher F1-measure, only 10 features were

enough to get the best results in terms of MAP. This behavior is probably due685

to the fact that an higher number of features can improve the recall of the

algorithms (which influences the F1@5), while a very small subset of features is

good enough when only the precision has to be considered.

However, regardless this consideration, the overall behavior for both the met-

rics confirmed the soundness of the approach, since features selection techniques690

significantly overcame all the baselines took into account in this experiment.

To sum up, some methodological outcomes emerged from this experiment:

first, results showed a clear connection between the sparsity of the data and the

need for feature selection. A preliminary comparison between the F1-measure

and the MAP obtained by G and those obtained by GLOD give the informa-695

tion about how strong the feature selection should be. When GLOD performs

worse than the baseline, it is likely that most of the properties gathered from

the LOD are noisy, thus it is necessary to filter them out before running the

algorithm. Moreover, results let clearly identify the best-performing features

selection techniques, since PCA and IG obtained the best results in most of the700

comparisons.

Next, we compared the best-performing configurations based on feature se-

lection with the results shown in Experiment 1. Results are presented in Fig-

ures 16 and 17. These plots give a complete comprehension of the usefulness of

injecting LOD-based knowledge into graph-based recommender systems, since705

regardless the specific dataset or the specific sparsity level, the LOD-aware con-

figurations boosted by feature selection overcome the baseline with significant

gaps. Gaps are significant also on MovieLens 1M data: even if differences are

very tiny (due to the fact that most of the PageRank calculations are due to the
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original bipartite user-item graph, which is very huge), the improvement was710

constant over all the users, and this led to the significance of the results. Specif-

ically, Last.fm obtained an improvement which tended to get larger on varying

the sparsity level for both the metrics. Moreover, a notable improvement on

more challenging configurations (that is so say, when the data gets more sparse)

was noted, i.e. on MovieLens 1M data. This further underlined the effectiveness715

of the approach, since thanks to feature selection techniques even the config-

urations which did not overcome the baseline in Experiment 1 here obtained

a higher F1-measure. This final outcome is also confirmed on DBbook data,

where the application of feature selection techniques on the features gathered

from the LOD cloud led to results which are better than the baseline relying on720

simple collaborative data points, for both F1@5 and MAP.

Beyond the significant increase in the overall F1 obtained by the algorithm,

the adoption of feature selection also leads to a significant decrease in the overall

load of the PageRank algorithm. As shown in Figure 18, the exploitation of

feature selection strongly reduced the running time of the algorithms as well as725

the number of nodes and edges modeled in the graph. Specifically, the number

of nodes and edges was reduced on all the datasets (-23.5% nodes and -3.55%

edges on MovieLens 1M, -58.10% nodes and -73.39% edges on DBbook, and

-22.48% nodes and -39.00% edges on Last.fm). This led to a decrease in terms

of running time on the three datasets equal to -20.05 .%, -95.27%, and -20.93%,730

respectively.

To sum up, Experiment 2 totally confirmed the insight behind this work,

since we showed that the injection of the knowledge gathered from the LOD

cloud can improve the overall effectiveness of a graph-based recommender sys-

tem. Moreover, our methodology to automatically feed the recommender system735

with LOD-based properties relying on feature selection technique leads to both

improvement in F1-measure and a lighten in the overall computation load of

the recommendation algorithm.

Experiment 3. In the third experiment we shifted the attention from

the accuracy to different evaluation metrics, and we investigated whether the740
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Figure 16: Comparison of the best-performing configuration based on feature selection

with both the baselines G and GLOD. (F1@5)

38



Figure 17: Comparison of the best-performing configuration based on feature selection

with both the baselines G and GLOD. (MAP)
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Figure 18: Statistics about Run Time and Graph Topologies with Feature Selection

adoption of a specific FS technique can endogenously induce a higher diversity

at the expense of a little decrease of F1. In this case we avoid also the discuss

the impact of the diversity on the MAP since Experiment 1 and Experiment 2

showed that both the metrics had a comparable behavior.

Results of the experiments are provided in Figure 19. In this case we provide745

only the results for F1@5 with Given All configuration. The baseline GLOD is

identified in all the plots by a red diamond.

By analyzing the results, data showed a very technique-dependent trend:

features selection techniques as PR, PCA and SVM tend to improve the F1

measure of the algorithm system without a significant impact on the diversity750

of the recommendations. Specifically, SVM improved the F1 in several com-

parisons, while it did not provide any benefit in terms of diversity, with the

exception of DBbook data. Similarly, PR led to a significant improvement over

the baseline but provides a (little) improvement in terms of diversity over the

baseline in almost all the comparisons.755

It is worth to note that PCA, which performed as one the best techniques in

Experiment 2, here always decreases the diversity of the recommendations on

MovieLens 1M and DBbook data. Thus, these results suggest to adopt PCA

only in those recommendation settings where the diversity of the recommenda-

tions is not a primary requirement. Similarly, the use of GR as features selection760
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Figure 19: Trade-off between F1 and Diversity, compared to the baseline GLOD.

(F1@5)
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technique led to a significant decrease in diversity in all the comparisons, with

the only exception of Last.fm in the Given All configuration.

Next, the behavior shown by CHI is worth to be more investigated, since

this technique performed the worst on MovieLens 1M data (in the Given All

configuration it obtained the highest decrease in Diversity) but it improved the765

metrics on both DBbook and Last.fm data. Finally, the techniques able to

provide users with most diverse recommendation sets was IG, which was able

to improve the baseline in all the comparisons. Also mRMR obtained good

results, since it overcame the baseline in two out of three datasets. As shown in

Figure 19, such techniques are often put in the upper right corner of the plots:770

this means that the adoption of such techniques led to both an improvement in

terms of F1 and diversity of the recommendation.

To sum up, these results show that the choice of a particular FS technique has

a significant impact on the overall behavior of the recommendation algorithm.

As shown in both experiments, some techniques have the ability of inducing a775

higher diversity (or F1) at the expense of a little of a little decrease in F1 (or

diversity, respectively), whereas others can provide a good compromise between

both metrics. Clearly, more investigation is needed to deeply analyze the be-

havior of each technique, but these results already give some general guidelines

which can drive the choice of the FS technique which best fits the requirements780

of a specific recommendation scenario.

By considering the results emerging from this experimental session, it is pos-

sible to draw some general guidelines to drive the choice of the feature selection

technique:

• PCA and PR are the best FS technique when diversity is not important,785

since they provide an improvement in terms of F1.

• mRMR is the technique able to maximize the diversity, at the expense

sometimes of a little of F1.

• IG is the technique generally emerging as the best-performing one, since
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it provides the best compromise between improvement an F1 and increase790

in diversity.

Experiment 4. In the last experiment we compared the effectiveness of our

graph-based recommendation methodology with several state of the art recom-

mendation algorithms. This experiment is further split in two parts: in the first

we compare our methodology to some state-of-the-art baseline which did not use795

any information coming from the LOD cloud, i.e. User-to-User (U2U-KNN) and

Item-to-Item Collaborative Filtering (I2I-KNN), a popularity-based approach,

the Bayesian Personalized Ranking (BPRMF) which uses Matrix Factorization

as the learning model with Bayesian Personalized Ranking (BPR) optimization

criterion [45].800

Next, we evaluated the impact of LOD-based features also on a hybrid ex-

tension of BPR. Specifically, we used the features gathered from the LOD as

side information on items using an item-attributes matrix [17]. We built the

item-attribute matrix using the same content data used for our graph-based

recommendation algorithm. The computation of the recommendations for the805

previous baselines has been done with the publicly available software library

MyMediaLite15.

For U2U and I2I, experiments were carried out by setting the neighborhood

size to 50, 80 and 100 and by using cosine similarity as similarity measure, while

BPRMF was run by setting the factor parameter equal to 10, 20, 50, 100 and810

adopting 0.05 as learning rate. For brevity, we only report the results obtained

by the best-performing configurations (80 neighbors for U2U and I2I, 100 factors

for BPRMF, 50 factors for BPRMF with side information).

Results showing the comparison between our methodology and the base-

lines which do not exploit information coming from the LOD are depicted in815

Figures 20 and 21. As shown in the plots, our graph-based RS significantly

outperforms all the baselines for both F1@5 and MAP. Our approach obtained

15http://www.mymedialite.net/
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Figure 20: Comparison to baselines. (F1@5)
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Figure 21: Comparison to baselines. (MAP)
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higher results on both the metrics also when compared to a well-performing

matrix factorization algorithm as BPRMF. It is worth to note that the gap

gets significantly larger when the sparsity gets higher. As expected, our conjec-820

ture regarding the adoption of content-based features gathered from the LOD

to overcome the shortage of ratings is here empirically confirmed. It is not

by chance that, differently from collaborative recommendation strategies, our

graph-based framework tends to have more stable values for F1-measure and

MAP, even when the number of ratings gets dramatically down.825

Finally, results further confirmed how challenging has been the recommen-

dation task on all the dataset we exploited in the experimental sessions: indeed,

as the data got more sparse (and negatively unbalanced, as in the case of DB-

book) the best-performing configuration was the simple popularity-based base-

line. However, also in this setting, our graph-based RS boosted with LOD-based830

features obtained the best results and definitely confirmed the effectiveness of

our approach.

Next, we also evaluated the impact of LOD-based features on a different

recommendation algorithm. As previously explained, we extended the original

BPRMF by introducing side information extracted from the LOD cloud. In835

Figures 22 and 23, we showed the impact of side information on BPRMF. re-

spectively. For both the metrics, the outcomes emerging from the experiments

are similar to those emerged by discussing Experiment 1, since the impact of

side information positively influences both F1@5 and MAP only on Last.fm. As

regards DBbook, it seems that the integration of the information coming from840

the LOD cloud can improve only the MAP, while by analyzing MovieLens 1M

data it emerged that side information have a positive impact only on F1@5 on

more sparse configurations. These outcomes underlined the usefulness of fea-

tures selection techniques to automatically process the features gathered from

the LOD cloud also for BPRMF.845

Similar outcomes also emerged by evaluating the impact of features selection

techniques on BPRMF including side information. As shown in Figures 24 and

25, BPRMF can benefit of such techniques since in most of the experiments
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Figure 22: Comparison of BPRMF with BPRMF including side information. (F1@5)
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Figure 23: Comparison of BPRMF with BPRMF including side information. (MAP)
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settings it is possible to get an improvement of both F1@5 or MAP, as previously

reported for PageRank with Priors.850

Finally, we also compared the best-performing configuration based on BPRMF

with side information with the best-performing configuration based on our

graph-based methodology based on PageRank with Priors. Results are pre-

sented in Figure 26 and 27, and show how our recommendation algorithm al-

ways overcomes BPRMF, even when side information are included. It is also855

worth to note that the improvement is particularly significant on cold-start rec-

ommendation settings (as Given 10 and Given 20 configurations).

These results finally confirmed the effectiveness of our methodology and gave

empirical evidence of the soundness of the insights behind our work.

6. Conclusions and Future Work860

In this work we proposed a graph-based recommendation methodology based

on PageRank with Priors, and we evaluated different techniques to automati-

cally feed such a graph-based representation with features extracted from the

LOD cloud. In the experimental session we investigated the impact of LOD-

based features and results showed that graph-based RSs can benefit of the infu-865

sion of novel knowledge coming from the LOD cloud. Moreover, the adoption of

FS techniques further improved the results obtained by our graph-based recom-

mendation methodology, especially in scenarios with high data sparsity. Further

investigations showed a clear correlation between the adoption of a specific FS

technique with the overall results of the recommender, since some techniques870

endogenously showed the ability of increasing also the diversity of the recom-

mendations generated by the algorithm. We also showed that our methodology

was able to overcome several state-of-the-art baselines on all the datasets. A

publicly available implementation of the framework as well as of the splits used

for the evaluation guaranteed the reproducibility of the experimental results.875

To sum up, the main lesson learned from these experiments is that recom-

mender systems can benefit of the information encoded in the LOD cloud, but
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Figure 24: Impact of feature selection techniques on BPRMF with side information.

(F1@5)
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Figure 25: Impact of feature selection techniques on BPRMF with side information.

(MAP)
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Figure 26: Comparison of BPRMF with side information and features selection to our

graph-based methodology (GLOD) on F1@5
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Figure 27: Comparison of BPRMF with side information and features selection to our

graph-based methodology (GLOD) on MAP
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the overall effectiveness of the algorithm strictly depends on the choice of the

parameters of the model, as the number of properties extracted from the LOD

cloud as well as the choice of the feature selection algorithm. As expected,880

experiments did not provide a best overall feature selection techniques neither

an optimal number of features to be chosen, since both of them are strictly de-

pendent on the characteristics of the data the recommendation algorithm relies

on.

As future work, we will investigate the impact of LOD-based features with885

different learning approaches as RS relying on text classification techniques (as

Random Forests or SVM) or on semantics Vector Space models [51]. Finally,

we will also analyze the quality of the recommendations by exploiting different

evaluation metrics as novelty and serendipity.
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