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Abstract. Description Logics (DLs) are a family of logic-based Knowledge Representation (KR)
formalisms, which are particularly suitable for representing incomplete yet precise structured knowl-
edge. Several fuzzy extensions of DLs have been proposed in the KR field in order to handle imprecise
knowledge which is particularly pervading in those domains where entities could be better described
in natural language. Among the many approaches to fuzzification in DLs, a simple yet interesting one
involves the use of fuzzy concrete domains. In this paper, we present a method for learning within
the KR framework of fuzzy DLs. The method induces fuzzy DL inclusion axioms from any crisp DL
knowledge base. Notably, the induced axioms may contain fuzzy concepts automatically generated
from numerical concrete domains during the learning process. We discuss the results obtained on a
popular learning problem in comparison with state-of-the-art DL learning algorithms.

Keywords: Fuzzy Description Logics, Ontologies, Concept Learning.

1. Introduction
Description Logics (DLs) are a family of decidable First Order Logic (FOL) fragments that allow for the
specification of structured knowledge in terms of classes (concepts), instances (individuals), and binary
relations between instances (roles) [2]. Complex concepts (denoted with C) can be defined from atomic
concepts (A) and roles (R) by means of the constructors available for the DL in hand. As logic-based
formalisms for Knowledge Representation (KR) compliant with the Open World Assumption (OWA),
they are particularly suitable for representing incomplete knowledge. The OWA is used in KR to codify
the informal notion that in general no single agent or observer has complete knowledge. The OWA limits
the kinds of inference and deductions an agent can make to those that follow from statements that are
known to the agent to be true. In contrast, the Closed World Assumption (CWA) allows an agent to
infer, from its lack of knowledge of a statement being true, anything that follows from that statement
being false. It traditionally applies in databases and related KR settings such as Logic Programming (LP)
and Inductive Logic Programming (ILP). Heuristically, the OWA applies when we represent knowledge
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within a system as we discover it, and where we cannot guarantee that we have discovered or will discover
complete information. In the OWA, statements about knowledge that are not included in or inferred from
the knowledge explicitly recorded in the system may be considered unknown, rather than wrong or false.
Thanks to the OWA-compliancy, DLs have been considered the ideal starting point for the definition of
ontology languages for the Web (an inherently open world), giving raise to the OWL 2 standard. 1

In many applications, it is important to equip DLs with expressive means that allow to describe “con-
crete qualities” of real-world objects such as the length of a car. The standard approach is to augment DLs
with so-called concrete domains, which consist of a set (say, the set of real numbers in double precision)
and a set of n-ary predicates (typically, n = 1) with a fixed extension over this set [3]. Starting from nu-
merical properties such as the length one may want to deduce whether, e.g., a car is long or not. However,
it is well known that “classical” DLs are not appropriate to deal with imprecise (or vague) knowledge,
which is inherent to several real world domains and is particularly pervading in those domains where
entities could be better described in natural language [27]. Vagueness is traditionally captured with fuzzy
logic. We recall that under fuzzy theory fall all those approaches in which statements (for example, “the
car is long”) are true to some degree, which is taken from a truth space (usually [0, 1]). That is, an in-
terpretation maps a statement to a truth degree, since we are unable to establish whether a statement is
entirely true or false due to the involvement of vague concepts, such as “long car” (the degree to which
the sentence is true depends on the length of the car). 2

Although a relatively important amount of work has been carried out in the last years concerning the
use of fuzzy DLs as ontology languages [19, 29], the problem of automatically managing the evolution
of fuzzy ontologies by applying machine learning algorithms still remains relatively unaddressed [13,
11, 18]. In this paper, we present a novel method, named FOIL-DL, for learning fuzzy DL inclusion
axioms from any crisp DL knowledge base.3 The distinguishing feature of FOIL-DL w.r.t. previous work
in DL learning (see, e.g., [9, 16, 15]) is the treatment of numerical concrete domains with fuzzification
techniques so that the induced axioms may contain fuzzy concepts.

The paper is structured as follows. For the sake of self-containment, Section 2 introduces some basic
definitions we rely on. Section 3 describes the learning problem and the solution strategy of FOIL-DL.
Section 4 discusses related work and illustrates the results of a comparative evaluation with state-of-the-
art DL learning algorithms on the popular ILP problem of Michalski’s trains. Section 5 concludes the
paper with final remarks and outlines possible directions of future work.

2. Preliminaries
Description Logics. For the sake of illustrative purposes, we present here a salient representative of the
DL family, namely ALC [24], which is often considered to illustrate some new notions related to DLs.
The set of constructors forALC is reported in Table 1. A DL Knowledge Base (KB) K = 〈T ,A〉 is a pair
where T is the so-called Terminological Box (TBox) and A is the so-called Assertional Box (ABox). The
TBox is a finite set of General Concept Inclusion (GCI) axioms which represent is-a relations between
concepts, whereas the ABox is a finite set of assertions (or facts) that represent instance-of relations
between individuals (resp. couples of individuals) and concepts (resp. roles). Thus, when a DL-based
ontology language is adopted, an ontology is nothing else than a TBox (i.e., the intensional level of
knowledge), and a populated ontology corresponds to a whole KB (i.e., encompassing also an ABox, that

1http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
2For a clarification about the differences between uncertainty and vagueness see [8].
3The present paper deepens some of the issues treated in [17].
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Table 1. Syntax and semantics of constructs for ALC.

bottom (resp. top) concept ⊥ (resp. >) ∅ (resp. ∆I )
atomic concept A AI ⊆ ∆I

(abstract) role R RI ⊆ ∆I ×∆I

individual a aI ∈ ∆I

concept intersection C uD CI ∩DI
concept union C tD CI ∪DI

concept negation ¬C ∆I \ CI
universal role restriction ∀R.C {x ∈ ∆I | ∀y (x, y) ∈ RI → y ∈ CI}

existential role restriction ∃R.C {x ∈ ∆I | ∃y (x, y) ∈ RI ∧ y ∈ CI}

general concept inclusion C v D CI ⊆ DI

concept assertion a : C aI ∈ CI
role assertion (a, b) : R (aI , bI) ∈ RI

is, the extensional level of knowledge). We also introduce two well-known DL macros, namely (i) domain
restriction, denoted domain(R,A), which is a macro for the GCI ∃R.> v A, and states that the domain
of the abstract role R is the atomic concept A; and (ii) range restriction, denoted range(R,A), which
is a macro for the GCI > v ∀R.A, and states that the range of R is A. Finally, in ALC(D) (obtained
by enriching ALC with concrete domains D), each role is either abstract (denoted with R) or concrete
(denoted with T ). A new concept constructor is then introduced, which allows to describe constraints on
concrete values using predicates from the concrete domain. We shall make further clarifications about the
notion of concrete domains later on in this Section while presenting fuzzy ALC(D).

The semantics of DLs can be defined directly with set-theoretic formalizations (as shown in Table
1 for the case of ALC) or through a mapping to FOL (as shown in [5]). Specifically, an interpretation
I = (∆I , ·I) for a DL KB consists of a domain ∆I and a mapping function ·I . For instance, I maps a
concept C into a set of individuals CI ⊆ ∆I , i.e. I maps C into a function CI : ∆I → {0, 1} (either an
individual belongs to the extension of C or does not belong to it). Under the Unique Names Assumption
(UNA) [23], individuals are mapped to elements of ∆I such that aI 6= bI if a 6= b. However UNA
does not hold by default in DLs. An interpretation I is a model of a KB K iff it satisfies all axioms and
assertions in T and A . In DLs a KB represents many different interpretations, i.e. all its models. This is
coherent with the OWA that holds in FOL semantics. A DL KB is satisfiable if it has at least one model.
We also write C vK D if in any model I of K, CI ⊆ DI (concept C is subsumed by concept D).
Moreover we write C @K D if C vK D and D 6vK C.

The main reasoning task for a DL KB K is the consistency check which tries to prove the satisfiability
of K. Another well known reasoning service in DLs is instance checking, i.e., to check whether an
ABox assertion is a logical consequence of a DL KB. A more sophisticated version of instance checking,
called instance retrieval, retrieves, for a DL KB K, all (ABox) individuals that are instances of the given
(possibly complex) concept expression C, i.e., all those individuals a such that K entails that a is an
instance of C, denoted {a | K |= a:C}.
Mathematical Fuzzy Logic. Fuzzy Logic is the logic of fuzzy sets [30]. A fuzzy set A over a countable
crisp set X is characterised by a function A : X → [0, 1]. Unlike crisp sets that can be characterised by a
function A : X → {0, 1}, that is, for any x ∈ X either x ∈ A (i.e., A(x) = 1) or x 6∈ A (i.e., A(x) = 0),
for a fuzzy set A, A(x) dictates that x ∈ X belongs to the set A to a degree in [0, 1]. The classical
set operations of intersection, union and complementation naturally extend to fuzzy sets as follows. Let
A and B be two fuzzy sets. The standard fuzzy set operations are (A ∩ B)(x) = min(A(x), B(x)),
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Figure 1. (a) Trapezoidal function trz (a, b, c, d), (b) triangular function tri(a, b, c), (c) left-shoulder func-
tion ls(a, b), and (d) right-shoulder function rs(a, b).

(A ∪B)(x) = max(A(x), B(x)) and Ā(x) = 1−A(x), while the inclusion degree between A and B is
typically defined as

(A ⊆ B)(x) =

∑
x∈X(A ∩B)(x)∑

x∈X A(x)
. (1)

The trapezoidal (Fig. 1 (a)), the triangular (Fig. 1 (b)), the left-shoulder function, Fig. 1 (c)), and the right-
shoulder function, Fig. 1 (d)) are frequently used functions to specify membership functions of fuzzy sets.
Although fuzzy sets have a greater expressive power than classical crisp sets, their usefulness depends
critically on the capability to construct appropriate membership functions for various given concepts in
different contexts. The problem of constructing meaningful membership functions is a difficult one (see,
e.g., [12, Chapter 10]). However, one easy and typically satisfactory method to define the membership
functions is to uniformly partition the range of values into 5 or 7 fuzzy sets using either trapezoidal
functions, or triangular functions. The latter is the more used one, as it has less parameters and is also the
approach we adopt.

While classical logic is based on crisp set theory, Mathematical Fuzzy Logic (MFL) [10] is based on
generalised fuzzy set theory. Specifically, in MFL the convention prescribing that a statement is either
true or false is changed and is a matter of degree measured on an ordered scale that is no longer {0, 1},
but e.g. [0, 1]. This degree is called degree of truth of the logical statement φ in the interpretation I. For
us, fuzzy statements have the form 〈φ, α〉, where α∈ (0, 1] and φ is a statement, encoding that the degree
of truth of φ is greater or equal α. A fuzzy interpretation I maps each atomic statement pi into [0, 1] and
is then extended inductively to all statements as follows:

I(φ ∧ ψ) = I(φ)⊗ I(ψ) I(φ→ ψ) = I(φ)⇒ I(ψ) I(∃x.φ(x)) = supy∈∆I I(φ(y))
I(φ ∨ ψ) = I(φ)⊕ I(ψ) I(¬φ) = 	I(φ) I(∀x.φ(x)) = infy∈∆I I(φ(y)), (2)

where ∆I is the domain of I, and ⊗, ⊕,⇒, and 	 are so-called t-norms, t-conorms, implication func-
tions, and negation functions, respectively, which extend the Boolean conjunction, disjunction, implica-
tion, and negation, respectively, to the fuzzy case. One usually distinguishes three different logics, namely

Table 2. Combination functions of various fuzzy logics.

Łukasiewicz logic Gödel logic Product logic Zadeh logic
a⊗ b max(a+ b− 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a+ b, 1) max(a, b) a+ b− a · b max(a, b)

a⇒ b min(1− a+ b, 1)

{
1 if a ≤ b
b otherwise

min(1, b/a) max(1− a, b)

	 a 1− a
{

1 if a = 0

0 otherwise

{
1 if a = 0

0 otherwise
1− a



F.A. Lisi, U. Straccia / Learning in DLs with Fuzzy Concrete Domains 1005

Table 3. Syntax and semantics of constructs for fuzzy ALC(D).

bottom (resp. top) concept ⊥I(x) = 0 (resp. >I(x) = 1)
atomic concept AI(x) ∈ [0, 1]

abstract role RI(x, y) ∈ [0, 1]
concrete role TI(x, z) ∈ [0, 1]

individual aI ∈ ∆I

concrete value vI ∈ ∆D

concept intersection (C uD)I(x) = CI(x)⊗DI(x)

concept union (C tD)I(x) = CI(x)⊕DI(x)

concept negation (¬C)I(x) = 	CI(x)

concept implication (C → D)I(x) = CI(x)⇒ DI(x)

universal abstract role restriction (∀R.C)I(x) = infy∈∆I{RI(x, y)⇒ CI(y)}
existential abstract role restriction (∃R.C)I(x) = supy∈∆I{RI(x, y)⊗ CI(y)}
universal concrete role restriction (∀T.d)I(x) = infz∈∆D{TI(x, z)⇒ dD(z)}

existential concrete role restriction (∃T.d)I(x) = supz∈∆D{TI(x, z)⊗ dD(z)}

general concept inclusion (C v D)I = infx∈∆I{CI(x)⇒ DI(x)}

concept assertion aI ∈ CI
abstract role assertion (aI , bI) ∈ RI

concrete role assertion (aI , vI) ∈ TI

Łukasiewicz, Gödel, and Product logics [10], whose combination functions are reported in Table 2. Note
that any other continuous t-norm can be obtained from them (see, e.g. [10]).

Satisfiability and logical consequence are defined in the standard way, where a fuzzy interpretation I
satisfies a fuzzy statement 〈φ, α〉 or I is a model of 〈φ, α〉, denoted as I |= 〈φ, α〉, iff I(φ) ≥ α.

Description Logics with Fuzzy Concrete Domains. We recap here the syntactic features of the fuzzy
DL obtained by extending ALC with fuzzy concrete domains [28]. A fuzzy concrete domain or fuzzy
datatype theory D= 〈∆D, ·D〉 consists of a datatype domain ∆D and a mapping ·D that assigns to each
data value an element of ∆D, and to every n-ary datatype predicate d an n-ary fuzzy relation over ∆D.
We will restrict to unary datatypes as usual in fuzzy DLs. Therefore, ·D maps indeed each datatype
predicate into a function from ∆D to [0, 1]. Typical examples of datatype predicates are

d := ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d) | ≥v | ≤v | =v , (3)

where e.g. ≥v corresponds to the crisp set of data values that are greater or equal than the value v.
In fuzzy DLs, an interpretation I = (∆I , ·I) consist of a nonempty (crisp) set ∆I (the domain) and of

a fuzzy interpretation function ·I that, e.g., maps a concept C into a function CI : ∆I → [0, 1] and, thus,
an individual belongs to the extension ofC to some degree in [0, 1], i.e.CI is a fuzzy set. The definition of
·I forALC(D) with fuzzy concrete domains is reported in Table 3 (where x, y ∈ ∆I and z ∈ ∆D). Note
that the truth degrees vary according to the chosen fuzzy logic, i.e. to its set of combination functions.

Axioms in a fuzzy ALC(D) KB K = 〈T ,A〉 are graded, e.g. a GCI is of the form 〈C1 v C2, α〉 (i.e.
C1 is a sub-concept of C2 to degree at least α). We may omit the truth degree α of an axiom; in this case
α = 1 is assumed. An interpretation I satisfies an axiom 〈τ, α〉 if (τ)I ≥ α. I is a model of K iff I
satisfies each axiom in K. We say that K entails an axiom 〈τ, α〉, denoted K |= 〈τ, α〉, if any model of K
satisfies 〈τ, α〉. The best entailment degree of τ w.r.t. K, denoted bed(K, τ), is defined as

bed(K, τ) = sup{α | K |= 〈τ, α〉} . (4)

For a crisp axiom τ , we also write K |=+ τ iff bed(K, τ) > 0, i.e. τ is entailed to some degree α > 0.
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Figure 2. Fuzzy sets derived from the concrete domain used as range of the concrete role hasPrice in Exam-
ple 2.1: VeryLow (VL), Low (L), Fair (F), High (H), and VeryHigh (VH).

Example 2.1. Let us consider the following fuzzy GCI axiom 〈∃hasPrice.High v GoodHotel, 0.569〉, where hasPrice

is a concrete role whose range has values measured in euros and the price concrete domain has been automatically fuzzified
as follows. The partition into 5 fuzzy sets (VeryLow, Low, Fair, High, and VeryHigh) is obtained by considering the interval
defined by minimal and maximal hotel prices (resp. 45 and 136), and then by splitting it into four equal subintervals on which
three triangular functions, a left-shoulder and a right-shoulder function are built as illustrated in Figure 2. In particular, the
membership function underlying the fuzzy set High is tri(90, 112, 136).

Now, let us suppose that the room price for hotel verdi is 105 euro, i.e. the KB contains the assertion verdi:∃hasPrice. =105.
It can be verified under Product logic that K |= 〈verdi:GoodHotel, 0.18〉, i.e. hotel verdi is an instance of the class
GoodHotel with a truth degree 0.18.4

3. Learning fuzzy EL(D) axioms
3.1. The problem statement
The problem considered in this paper and solved by FOIL-DL is the automated induction of fuzzy
EL(D) 5 GCI axioms from a crisp DL 6 KB and crisp examples, which provide a sufficient condition
for a given atomic target concept At. It can be cast as a rule learning problem, provided that positive and
negative examples of At are available. This problem can be formalized as follows. Given: (i) a consistent
crisp DL KB K = 〈T ,A〉 (the background theory); (ii) an atomic concept At (the target concept); (iii) a
set E = E+ ∪ E− of crisp concept assertions e labelled as either positive or negative examples for At (the
training set); and (iv) a set LH of fuzzy EL(D) GCI axioms (the language of hypotheses), the goal is to
find a set H ⊂ LH (a hypothesis) such that H satisfies the following conditions: ∀e ∈ E+,K ∪ H |=+ e
(completeness), and ∀e ∈ E−,K ∪H 6|=+ e (consistency).

Remark 3.1. In the above problem statement we assume that K ∩ E = ∅. Please observe that two further restrictions
hold naturally. One is that K 6|=+ E+ since, in such a case, H would not be necessary to explain E+. The other is that
K ∪H 6|=+ a:⊥, which means that K ∪H is a consistent theory, i.e. has a model, that is, adding the learned axioms to the KB
keeps the KB consistent.

The background theory. A DL KB allows for the specification of very rich background knowledge in
the form of axioms, e.g. defining the range of roles or the concept subsumption hierarchy. We do not
make any specific assumption about the DL which the language LK of the background theory is based on,
except that K is a crisp KB. However, sinceH is a set of fuzzy GCI axioms, K ∪H is fuzzy as well.

The language of hypotheses. The language LH is given implicitly by means of syntactic restrictions over
a given alphabet, as usual in ILP. In particular, the alphabet underlying LH is a subset of the alphabet for
4Note that 0.18 = 0.318 · 0.569, where 0.318 = tri(90, 112, 136)(105).
5EL(D) is a fragment of ALC(D) [29].
6DL stands for any DL.
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function LEARN-SETS-OF-AXIOMS(K, At, E+, E−, LH): H
begin
1. H := ∅; D = INITIALISEFUZZYCONCRETEDOMAIN(K);
2. while E+ 6= ∅ do
3. φ := LEARN-ONE-AXIOM(K, At, E+, E−, LH);
4. H := H∪ {φ};
5. E+

φ := {e ∈ E+ | K ∪ {φ} |=+ e};
6. E+ := E+ \ E+

φ ;
7. endwhile
8. returnH
end

Figure 3. FOIL-DL: Learning a set of GCI axioms.

LK. However, LH differs from LK as for the form of axioms. More precisely, given the target concept
At, the hypotheses to be induced are fuzzy GCIs of the form

C v At , (5)

where the left-hand side is defined according to the following syntax

C −→ > | A | C1 u C2 | ∃R.C | ∃T.d . (6)

and the concrete domain predicates are the following ones

d := ls(a, b) | rs(a, b) | tri(a, b, c) . (7)

Note that the syntactic restrictions of Eq. (6) w.r.t. fuzzyALC(D) (see Table 3) allow for a straightforward
translation of the inducible axioms into rules of the kind “if x is a C1 and . . . and x is a Cn then x is an
At”, which corresponds to the usual pattern in fuzzy rule induction (in our case, C v At is seen as a rule
“if C then At”). Also, the restriction of Eq. (7) w.r.t. Eq. (3) is due to the fact that we build fuzzy concrete
domain predicates out of numerical data as illustrated in Example 2.1.

The language LH generated by this syntax is potentially infinite due, e.g., to the nesting of existential
restrictions yielding to complex concept expressions such as ∃R1.(∃R2 . . . .(∃Rn.(C)) . . .). LH is made
finite by imposing further restrictions on the generation process such as the maximal number of conjuncts
and the depth of existential nesting allowed in the left-hand side. Also, note that the learnable GCIs do
not have an explicit truth degree. However, as we shall see later on, once we have learned a fuzzy GCI of
the form (5), we attach to it a confidence degree cf that is obtained by means of the function in Eq. (12).

The training examples. Given the target concept At, the training set E consists of concept assertions of
the form a:At, where a is an individual occurring in K. Note that E is crisp. Also, E is split into E+ and
E−. Note that, under OWA, E− consists of all those individuals which can be proved to be instance of
¬At. On the other hand, under CWA, E− is the collection of individuals, which cannot be proved to be
instance of At. We say that an axiom φ ∈ LH covers an example e ∈ E iff K ∪ {φ} |=+ e.

3.2. The solution strategy
The popular rule induction method FOIL [22] has been chosen as a starting point in our proposal for
its simplicity and efficiency. In FOIL-DL, the learning strategy of FOIL (i.e., the so-called sequential
covering approach) is kept. The function LEARN-SETS-OF-AXIOMS (reported in Figure 3) carries on
inducing axioms until all positive examples are covered. When an axiom is induced (step 3.), the positive
examples covered by the axiom (step 5.) are removed from E (step 6.). In order to induce an axiom, the
function LEARN-ONE-AXIOM (reported in Figure 4) starts with the most general axiom (i.e.> v At) and
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function LEARN-ONE-AXIOM(K, At, E+, E−, LH): φ
begin
1. C := >;
2. φ := C v At;
3. E−φ := E−;
4. while cf(φ) < θ or E−φ 6= ∅ do
5. Cbest := C;
6. maxgain := 0;
7. Φ := SPECIALIZE(φ,LH,K)
8. foreach φ′ ∈ Φ do
9. gain := GAIN(φ′, φ);
10. if gain ≥ maxgain then
11. maxgain := gain;
12. Cbest := C′;
13. endif
14. endforeach
15. φ := Cbest v At;
16. E−φ := {e ∈ E− | K ∪ {φ} |=+ e};
17. endwhile
18. return φ
end

Figure 4. FOIL-DL: Learning one GCI axiom.

refines it by calling the function SPECIALIZE (step 7.). The iterated specialization of the axiom continues
until the axiom does not cover any negative example and its confidence degree is greater than a fixed
threshold (θ). The confidence degree of axioms being generated with SPECIALIZE allows for evaluating
the information gain obtained on each refinement step by calling the function GAIN (step 9.).

Due to the peculiarities of the language of hypotheses in FOIL-DL, necessary changes are made
to FOIL as concerns both candidate generation and evaluation. These novel features impact the defini-
tion of the functions SPECIALIZE and GAIN as detailed in Section 3.2.2 and Section 3.2.3, respectively.
A pre-processing phase (see the function INITIALISEFUZZYCONCRETEDOMAIN called at step 1. of
LEARN-SETS-OF-AXIOMS) is also required in order to generate the fuzzy datatypes to be used during
the candidate generation phase. The fuzzification method is shortly described in the next subsection.

3.2.1. The function INITIALISEFUZZYCONCRETEDOMAIN

Given a crisp DL KB K, the function INITIALISEFUZZYCONCRETEDOMAIN behaves as follows: For
each concrete role T occurring in K,

1. determine the minimal and maximal value that T entails according to K, that is minT = min{v |
K |= a:∃T. ≤v} and maxT = max{v | K |= a:∃T. ≥v};

2. partition the interval [minT ,maxT ] into four uniform subintervals and, for k = (maxT−minT )/4,
build the fuzzy concrete domain predicates (note that maxT = minT + 4k): V eryLowT =
ls(minT ,minT + k), LowT = tri(minT ,minT + k,minT + 2k), FairT = tri(minT +
k,minT + 2k,minT + 3k), HighT = tri(minT + 2k,minT + 3k,maxT ) and V eryHighT =
rs(minT + 3k,maxT ).

Eventually, the function returns the set of all built fuzzy datatype predicates

D =
⋃

T concrete role occurring in K
{V eryLowT , LowT , FairT , HighT , V eryHighT }

The method has been illustrated in Example 2.1.
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3.2.2. The function SPECIALIZE

In line with the tradition in ILP and in conformance with the search direction in FOIL-DL, the function
SPECIALIZE implements a downward refinement operator ρK which actually exploits the background
theory K in order to avoid the generation of redundant or useless hypotheses:

SPECIALIZE(φ,LH,K) = {φ′ ∈ LH | φ′ ∈ ρK(φ)} . (8)

The refinement operator ρK acts only upon the left-hand-side of a GCI:

ρK(φ) = ρK(C v At) = {C ′ v At | C ′ ∈ ρCK(C)} (9)

by either adding a new conjunct or replacing an already existing conjunct with a more specific one. More
formally, the refinement rules for EL(D) concepts are defined as follows (here dT is one of the fuzzy
datatypes for concrete role T build by means of the INITIALISEFUZZYCONCRETEDOMAIN function,
while A,B,D and E are atomic concepts, R is an abstract role):

ρCK(C) =



{A} ∪ {∃R.>} ∪ {∃R.B | range(R,B) ∈ T } ∪ {∃T.dT } if C = >
{A uD | D ∈ ρCK(>)} ∪ {B | B @K A} if C = A

{∃R.E | E ∈ ρCK(D)} ∪ {∃R.(D u E) | E ∈ ρCK(>)} if C = ∃R.D
{∃T.d uD | D ∈ ρCK(>)} if C = ∃T.dT

{C1 u · · · u Ci−1 uD u Ci+1 u · · · u Cn | D ∈ ρCK(Ci), 1 ≤ i ≤ n} if C =n
i=1 Ci

(10)

Note that the use of relevant knowledge from K such as range axioms and concept subsumption axioms
makes ρCK an “informed” refinement operator. Indeed, its refinement rules combine the syntactic manipu-
lation with the semantic one. Also, this allows the operator to perform “cautious” big steps in the search
space. More precisely, the less blind the rules are, the bigger the steps. ρCK also incorporates, in our
implementation, a series of simplifications of the concepts built such as

C u C 7→ C

C uD and D vK C 7→ D

C uD and C uD vK ⊥ 7→ ⊥ (in this case we drop the refinement)

to reduce the search space. We are not going to detail them here.

Example 3.2. Let us consider that At is the target concept, A, A′, B, R,R′, T are concepts and properties occurring in K,
and A′ vK A. Under these assumptions, the axiom ∃R.B v At is specialised into the following axioms:

• A u ∃R.B v At, B u ∃R.B v At, A′ u ∃R.B v At;

• ∃R′.> u ∃R.B v At, ∃T.dT u ∃R.B v At;

• ∃R.(B uA) v At, ∃R.(B uA′) v At;

• ∃R.(B u ∃R.>) v At, ∃R.(B u ∃R′.>) v At, ∃R.(B u ∃T.dT ) v At.

Note that in the above list, dT has to be instantiated for any of the five candidates for concrete role T (i.e., V eryLowT , LowT ,
FairT , HighT , V eryHighT ).

It can be verified that ρCK is correct, i.e. it drives the search towards more specific concepts according to
v. Please note that ρK reduces the number of examples covered by a GCI. More precisely, the aim of a
refinement step is to reduce the number of covered negative examples, while still keeping some covered
positive examples. Since learned GCIs cover only positive examples, K will remain consistent after the
addition of a learned GCIs.
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3.2.3. The function GAIN

The function GAIN implements an information-theoretic criterion for selecting the best candidate at each
refinement step according to the following formula:

GAIN(φ′, φ) = p ∗ (log2(cf(φ′))− log2(cf(φ))) , (11)

where p is the number of positive examples covered by the axiom φ that are still covered by φ′. Thus,
the gain is positive iff φ′ is more informative in the sense of Shannon’s information theory, i.e. iff the
confidence degree (cf ) increases. If there are some refinements, which increase the confidence degree,
the function GAIN tends to favour those that offer the best compromise between the confidence degree
and the number of examples covered. Here, cf for an axiom φ of the form (5) is computed as a sort of
fuzzy set inclusion degree (see Eq. (1)) between the fuzzy set represented by concept C and the (crisp)
set represented by concept At. More formally:

cf(φ) = cf(C v D) =

∑
a∈Ind+

D(A) bed(K, a:C)

|IndD(A)|
(12)

where Ind+
D(A) (resp., IndD(A) ) is the set of individuals occurring in A and involved in E+

φ (resp.,
E+
φ ∪ E

−
φ ) such that bed(K, a:C) > 0. We remind the reader that bed(K, a:C) denotes the best entailment

degree of the concept assertion a:C w.r.t. K as defined in Eq. (4). Note that K |= a:At holds for
individuals a ∈ Ind+

D(A) and, thus, bed(K, a:C uAt) = bed(K, a:C). Also, note that, even if K is crisp,
the possible occurrence of fuzzy concrete domains in expressions of the form ∃T.dT in C may imply that
both bed(K, C v At) 6∈ {0, 1} and bed(K, a:C) 6∈ {0, 1}.

3.3. The implementation

A variant of FOIL-DL has been implemented in the fuzzyDL-Learner 7 system and provided with two
GUIs: One is a stand-alone Java application, the other is a tab widget plug-in for the ontology editor
Protégé 8 (release 4.2). Several implementation choices have been made as detailed below.

Reasoning support. Fuzzy GCIs in LH are interpreted under Gödel semantics (see Table 2). How-
ever, since K and E are represented in crisp DLs, we have used a classical DL reasoner, together with
a specialised code, to compute the confidence degree of fuzzy GCIs. Therefore, the system relies on
the services of crisp DL reasoners to solve all the deductive inference problems necessary to FOIL-
DL to work, namely instance retrieval, instance check and subclasses retrieval. In particular, the sets
Ind+

D(A) and IndD(A) are computed by posing instance retrieval problems to the DL reasoner. Con-
versely, bed(K, a:∃T.dT ) can be computed from the derived T -fillers v of a, and applying the fuzzy
membership function of dT to v. The examples covered by a GCI, and, thus, the entailment tests in
LEARN-SETS-OF-AXIOMS and LEARN-ONE-AXIOM, have been determined in a similar way. The sys-
tem can be configured to work under both CWA and OWA.

Optimizations. The search in the hypothesis space can be optimized by enabling a backtracking mode.
This option allows to overcome one of the main limits of FOIL, i.e. the sequential covering strategy.
Because it performs a greedy search, formulating a sequence of rules without backtracking, FOIL does
not guarantee to find the smallest or best set of rules that explain the training examples. Also, learning
rules one by one could lead to less and less interesting rules. To reduce the risk of a suboptimal choice at

7http://straccia.info/software/FuzzyDL-Learner
8http://protege.stanford.edu/
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any search step, the greedy search can be replaced in FOIL-DL by a beam search which maintains a list
of k best candidates at each step instead of a single best candidate.

Declarative bias. The language of hypotheses can be biased by imposing the use of only “direct” sub-
classes. Additionally, FOIL-DL provides two parameters to limit the search space and guarantee termina-
tion: namely, the maximal number of conjuncts and the maximal depth of existential nesting allowed in a
fuzzy GCI. In fact, the computation may end without covering all positive examples.

4. A comparative study
4.1. Related work
Several extensions of FOIL to the management of vague knowledge are reported in the literature [7, 25, 26]
but they are not conceived for DL ontologies. In DL learning, DL-FOIL [9] adapts FOIL to learn crisp
OWL DL equivalence axioms.9 DL-Learner [14] is a state-of-the-art system which features several al-
gorithms, none of which however is based on FOIL. Yet, among them, the closest to FOIL-DL is ELTL
since it implements a refinement operator for concept learning in EL [16]. Conversely, CELOE learns
class expressions in the more expressive OWL DL [15]. Both DL-FOIL, ELTL and CELOE work only
under OWA and deal only with crisp DLs. Learning in fuzzy DLs has been little investigated. Konstan-
topoulos and Charalambidis [13] propose an ad-hoc translation of fuzzy ŁukasiewiczALC DL constructs
into LP in order to apply a conventional ILP method for rule learning. However, the method is not sound
as it has been recently shown that the mapping from fuzzy DLs to LP is incomplete [21] and entailment
in Łukasiewicz ALC is undecidable [6]. Iglesias and Lehmann [11] propose an extension of DL-Learner
with some of the most up-to-date fuzzy ontology tools, e.g. the fuzzyDL reasoner [4]. Notably, the result-
ing system can learn fuzzy OWL DL equivalence axioms from FuzzyOWL 2 ontologies. 10 However, it
has been tested only on a toy problem with crisp training examples and does not build automatically fuzzy
concrete domains. Lisi and Straccia [18] present SoftFOIL, a FOIL-like method for learning fuzzy EL
inclusion axioms from fuzzy DL-Litecore ontologies (a fuzzy variant of the classical DL, DL-Litecore [1]).
We would like to stress the fact that FOIL-DL provides a different solution from SoftFOIL not only as
for the KR framework but also as for the refinement operator and the heuristic. Also, unlike SoftFOIL,
FOIL-DL has been implemented and tested.

4.2. FOIL-DL vs DL-Learner
In this section we report the results of a comparison of FOIL-DLwith ELTL and CELOE (available in DL-
Learner 11) on a very popular learning task in ILP proposed 20 years ago by Ryszard Michalski [20] and
illustrated in Figure 5. Here, 10 trains are described, out of which 5 are eastbound and 5 are westbound.
The aim of the learning problem is to find the discriminating features between these two classes.

For the purpose of this comparative study, we have considered two slightly different versions, trains2
and trains3, of an ontology encoding the original Trains data set. 12 The former has been adapted from the
version distributed with DL-Learner in order to be compatible with FOIL-DL. Notably, the target classes
EastTrain and WestTrain have become part of the terminology and several class assertion axioms have
been added for representing positive and negative examples. The metrics for trains2 are reported in Ta-
ble 4. The ontology does not encompass any data property. Therefore, no fuzzy concept can be generated
9The implementation of DL-FOIL was not made available by the authors.
10http://www.straccia.info/software/FuzzyOWL
11http://dl-learner.org/Projects/DLLearner
12http://archive.ics.uci.edu/ml/datasets/Trains



1012 F.A. Lisi, U. Straccia / Learning in DLs with Fuzzy Concrete Domains

Figure 5. Michalski’s example of eastbound (left) and westbound (right) trains (illustration taken from [20]).

when learning GCIs from trains2 with FOIL-DL. However, the ontology can be slightly modified in or-
der to test the fuzzy concept generation feature of FOIL-DL. Note that in trains2 cars can be classified
according to the classes LongCar and ShortCar. Instead of one such crisp classification, we may want a
fuzzy classification of cars. This is made possible by removing LongCar and ShortCar (together with the
related class assertion axioms) from trains2 and introducing the data property hasLength with domain
Car and range double (together with several data property assertions). The resulting ontology, called
trains3, presents the metrics reported in Table 4.

Table 4. Ontology metrics for trains2.owl and trains3.owl according to Protégé.

ontology # logical axioms # classes # object properties # data properties # individuals DL
trains2 345 32 5 0 50 ALCO
trains3 343 30 5 1 50 ALCO(D)

Note that a fuzzy OWL 2 version of the trains’ problem (ontology fuzzytrains v1.5.owl ) 13 has been
developed by Iglesias for testing the fuzzy extension of CELOE proposed in [11]. However, FOIL-DL
can not handle fuzzy OWL 2 constructs such as fuzzy classes obtained by existential restriction of fuzzy
datatypes, fuzzy concept assertions, and fuzzy role assertions. Therefore, it has been necessary to prepare
an ad-hoc ontology (trains3 ) for comparing FOIL-DL and DL-Learner.

4.2.1. Qualitative analysis of results on the ontology trains2

Trial with FOIL-DL. The settings for this experiment allow for the generation of hypotheses with up to
5 conjuncts and 2 levels of existential nestings. Under these restrictions, the GCIs learned by FOIL-DL
for the target concept EastTrain are:

Confidence Axiom
1,000 3CarTrain and hasCar some (2LoadCar) subclass of EastTrain
1,000 3CarTrain and hasCar some (3WheelsCar) subclass of EastTrain

1,000 hasCar some (ElipseShapeCar) subclass of EastTrain

1,000 hasCar some (HexagonLoadCar) subclass of EastTrain

whereas the following GCIs are returned by FOIL-DL for WestTrain:

Confidence Axiom

1,000 2CarTrain subclass of WestTrain
1,000 hasCar some (JaggedCar) subclass of WestTrain

13Available at http://wiki.aksw.org/Projects/DLLearner/fuzzyTrains.
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- hasLength_low: hasLength, triangular(23.0,32.0,41.0)

- hasLength_fair: hasLength, triangular(32.0,41.0,50.0)

- hasLength_high: hasLength, triangular(41.0,50.0,59.0)

- hasLength_veryhigh: hasLength, rightShoulder(50.0,59.0)

- hasLength_verylow: hasLength, leftShoulder(23.0,32.0)

Figure 6. Fuzzy concepts derived by FOIL-DL from the data property hasLength.

The algorithm returns the same GCIs under both OWA and CWA. Note that an important difference be-
tween DL learning and standard ILP is that the former works under OWA whereas the latter under CWA. In
order to complete the Trains’ example we would have to introduce definitions and/or assertions to model
the closed world. However, the CWA holds naturally in this example, because we have complete knowl-
edge of the world, and thus the knowledge completion was not necessary. This explains the behaviour of
FOIL-DL which correctly induces the same hypotheses in spite of the opposite semantic assumptions.
Trial with ELTL. The class expressions learned by ELTL are the following:

EastTrain: hasCar some (ClosedCar and ShortCar) (accuracy: 1.0)

WestTrain: hasCar some LongCar (accuracy: 0.8)

The latter is not fully satisfactory as for the example coverage.
Trial with CELOE. For each target class CELOE learns several class expressions out of which the most
accurate are the following:

EastTrain: hasCar some (ClosedCar and ShortCar) (accuracy: 1.0)

WestTrain: hasCar only (LongCar or OpenCar) (accuracy: 1.0)

Note that the former coincide with the corresponding result obtained with ELTL while the latter is a
more accurate variant of the corresponding class expression returned by ELTL. The increase in example
coverage is due to the augmented expressive power of the DL supported in CELOE.

4.2.2. Qualitative analysis of results on the ontology trains3

Trial with FOIL-DL. The outcomes for the target concepts EastTrain and WestTrain remain un-
changed when FOIL-DL is run on trains3 with the same configuration of the first trial. Yet, fuzzy
concepts are automatically generated by FOIL-DL from the data property hasLength (see Figure 6).
However, from the viewpoint of discriminant power, these concepts are weaker than the other crisp con-
cepts occurring in the ontology. In order to make the fuzzy concepts emerge during the generation of
hypotheses, we have appropriately biased the language of hypotheses. In particular, by enabling only the
use of object and data properties in LH, FOIL-DL returns the following axiom for EastTrain:

Confidence Axiom

1,000 hasCar some (hasLength_fair) and hasCar some (hasLength_veryhigh)
and hasCar some (hasLength_verylow) subclass of EastTrain

Conversely, for WestTrain, a lighter bias is sufficient to make fuzzy concepts appear in the learned
axioms. In particular, by disabling the class 2CarTrain in LH, FOIL-DL returns the following axioms:

Confidence Axiom
1,000 hasCar some (2WheelsCar and 3LoadCar) and hasCar some (3LoadCar and CircleLoadCar) subclass of WestTrain

1,000 hasCar some (0LoadCar) subclass of WestTrain

1,000 hasCar some (JaggedCar) subclass of WestTrain
1,000 hasCar some (2LoadCar and hasLength_high) subclass of WestTrain

1,000 hasCar some (ClosedCar and hasLength_fair) subclass of WestTrain

Trial with ELTL. ELTL returns the following class expressions:
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EastTrain: (hasCar some TriangleLoadCar) and (hasCar some ClosedCar) (accuracy: 0.9)

WestTrain: TOP (accuracy: 0.5)

Note that the class expression learned for EastTrain leaves some positive example uncovered (incom-
plete hypothesis) whereas the one induced for WestTrain, being overly general, covers also negative
examples (inconsistent hypothesis). This bad performance of ELTL on trains3 is due to the low expres-
sivity of EL and to the fact that the classes LongCar and ShortCar, which appeared to be discriminant
in the first trial, do not occur in trains3 and thus can not be used anymore for building hypotheses.

Trial with CELOE. The most accurate class expression found by CELOE for the target EastTrain is:

((not 2CarTrain) and hasCar some ClosedCar) (accuracy: 1.0)

However, interestingly, CELOE learns also the following class expressions containing classes obtained
by numerical restriction from the data property hasLength:

hasCar some (ClosedCar and hasLength <= 48.5) (accuracy: 1.0)
hasCar some (ClosedCar and hasLength <= 40.5) (accuracy: 1.0)
hasCar some (ClosedCar and hasLength <= 31.5) (accuracy: 1.0)

These “interval classes” are just a step back from the fuzzification which, conversely, FOIL-DL is able
to do. It is acknowledged that using fuzzy sets in place of “intervall classes” improves the readability
of the induced knowledge about the data. As for the target concept WestTrain, the most accurate class
expression among the ones found by CELOE is:

(2CarTrain or hasCar some JaggedCar) (accuracy: 1.0)

Once again, the augmented expressivity increases the effectiveness of DL-Learner.

4.2.3. Quantitative analysis of results

Some indicators of time performance of the three algorithms for the two learning problems on trains2 and
trains3 are reported in Table 5 and Table 6, respectively. Notably, FOIL-DL outperforms CELOE in 3
out of the four cases. The bad time performance of FOIL-DL for the EastTrain learning problem on
trains3 is due to the computational overhead of satisfying the many constraints imposed on the language
of hypotheses in this case.

Table 5. Time performance (in ms) on trains2.

EastTrain WestTrain

algorithm instance retrieval instance checking total instance retrieval instance checking total
FOIL-DL 73 203 649 22 53 230
ELTL 2 13 62 2 315 1,089
CELOE 2 1,584 10,000 3 3,440 10,000

Table 6. Time performance (in ms) on trains3.

EastTrain WestTrain

algorithm instance retrieval instance checking total instance retrieval instance checking total
FOIL-DL 5,000 8,000 19,093 347 1,000 3,681
ELTL 4 350 1,005 5 429 1,028
CELOE 5 2,665 10,000 5 3,130 10,000
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5. Conclusions
We have described a novel method, named FOIL-DL, which addresses the problem of learning fuzzy
EL(D) GCI axioms from any crisp DL KB. The method extends FOIL in a twofold direction: from crisp
to fuzzy and from rules to GCIs. Notably, vagueness is captured by the definition of confidence degree
reported in (12) and incompleteness is dealt with the OWA. Also, thanks to the variable-free syntax of
DLs, the learnable GCIs are highly understandable by humans and translate easily into natural language
sentences. In particular, FOIL-DL present the learned axioms according to the user-friendly presentation
style of the Manchester OWL syntax 14 (the same used in Protégé).

The experimental results are quite promising and encourage the application of FOIL-DL to more
challenging real-world problems. Notably, in spite of the low expressivity of EL, FOIL-DL has turned
out to be robust mainly due to the refinement operator and to the fuzzification facilities. A distinguishing
feature of ρK is that it exploits the TBox, e.g. for concepts A2 @ A1, we reach A2 via >  A1  A2.
This way, we can stop the search if A1 is already too weak. The operator also uses the range of roles to
reduce the search space. This is similar to mode declarations widely used in ILP. However, in DL KBs,
domain and range are usually explicitly given, so there is no need to define them manually. Overall, ρK
supports more structures, i.e. concrete domains, than e.g. [16] and tries to smartly incorporate background
knowledge. Additionally, unlike CELOE, the fuzzification of concrete domains enables the invention of
new concepts during the learning process, which can be considered as a special case of predicate invention.

For the future, we intend to conduct a more extensive empirical evaluation of FOIL-DL, which could
suggest directions of improvement of the method towards more effective formulations of, e.g., the infor-
mation gain function and the refinement operator as well as of the search strategy and the halt conditions
employed in LEARN-ONE-AXIOM. Also, it can be interesting to analyse the impact of the different fuzzy
logics on the learning process. Eventually, we shall investigate about learning fuzzy GCI axioms from
FuzzyOWL 2 ontologies, by coupling the learning algorithm to the fuzzyDL reasoner, instead of learning
from crisp OWL 2 data by using a classical DL reasoner.
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